
1. The Existence of Giant Components in GD(continued)

We continue with the proof of the following two theorems.

Theorem 1.1. For any sufficiently small ω > 0, if M is sufficiently large in terms

of ω and if RD < ωD then

P (F > ω1/9M) = o(1).

Theorem 1.2. For every ε > 0 there is a δ > 0 such that if M is sufficently large

in terms of epsilon, dn 6
√
M

log M
, and R > εM then:

P (F > δM) = 1− o(1).

We have stated three claims which imply Theorem 1.1. Before proving them we

sketch the proof of Theorem 1.2.

1.1. A proof sketch for Theorem 1.2.

In this case, we cannot be content with tracking X ′t we must focus directly on Xt.

Letting d′(wt) be the number of edges between wt and St−1 we have that Xt is at

least Xt−1 + d(wt) − 2 − 2d′(wt) (we have at least here because when Xt−1 = 0 we

do not subtract 2). We will focus on the contribution from d(wt) − 2 and d′(wt)

separately. We let At = d(wt)−E[d(wt)] and Bt = d′(wt)−E[d′(wt)] so Xt−E(Xt) =

At + Bt. We let Fbad be the event that for some t either |
∑

t′6tAt| >
M

log log M
or

|
∑

t′6tBt| > M
log log M

.

We note that if the theorem is true for any ε it is true for all larger ε so we can and

do assume ε is as small as we like..

The following has the same flavour as Claim 2.

Claim 4: Prob(Fbad) = o(1).

We next claim that the expected drift is positive until we have explored a constant

fraction of the edges

Claim 5: Provided X ′t + 2t 6 10−6ε2M , we have: E[d(wt)− 2] > ε
4

and E[d′(wt)] 6
E[d(wt)−2]

3
. Hence E[Xt −Xt−1] >

E[d(wt)−2]
3

> ε
12

.

We consider the first t for which X ′t + 2t exceeds 10−6ε2M . We note that by Claim

5,

E[
∑
t′6t

Xt −Xt−1] > min(

∑
t′6tE[d(wt)− 2]

3
,
εt

12
)

I.e.

Xt − Σt′6tAt′ − Σt′6tBt > min(
X ′t −X ′0 − Σt′6tBt

3
,
εt

12
)

So we have that for large M and sufficiently small ε,, unless Fbad holds:
1



2

Xt > min(10−7ε2M − t, εt
12
− M

loglogM
)− 2M

log log M
> 10−9ε3M.

Since P (Fbad) = o(1), Theorem 1.2 follows.

1.2. Some Details.

We give now the details of the proof of Theorem 1.1. We let Mt be the sum of the

degrees of the vertices in V − St. I.e. Mt = M −X ′t − 2t. We let n1 be the number

of vertices of degree 1 in GD.

Proof of Claim 1: We note that di(di − 2) is only negative if di is 1, so the

sum of all such negative terms is at most −M . It follows that for all j < jD,

dj 6
√
M + 2. Thus, letting S ′ = S − {vj|j > jD − 1}, we have that

∑
v∈S′ d(v) >

5ω1/4M −RD −
√
M − 2 > 4ω1/4M . If every vertex of S has degree exceeding ω−1/4

then ∑
v∈S′

d(v)(d(v)− 2) > (ω−1/4 − 2)
∑
v∈S′

d(v) > (
ω−1/4

2
)4ω1/4M = 2M.

But this contradicts the definition of jD. So (i) holds.

Since the lowest degree vertex in S has degree at most ω−1/4, as does v if it is not

in S, Further, by the definition of S the sum of the degrees of the vertices in S0 is

at most 5ω1/4M + 2ω−1/4 6 7ω1/4M . So (iii) holds. Hence, the sum of the degrees

of the vertices in V − S0 is at least M − 7ω1/4M > M
2

. So, if these vertices all

have degree one, (ii) holds. Otherwise every vertex in S has degree at least 3, so∑
v∈S′ d(v)(d(v) − 2) >

∑
v∈S′ d(v) > 4ω1/4M . Hence by the definition of JD, (ii)

holds.

Proof of Claim 2: We need to apply Azuma’s Inequality which is obtained by

deleting independent in the statement of the Simplified Azuma’s Inequality. We

apply it to X =
∑

t′6t Yt. This is determined by t trials each of which is a choice of

a wt′ . Now, given the first i trials, E(X) is simply
∑i

j=1 Yj because the expectation

of Yj for j > i is by definition 0. Since d(wt′) − 2 and its expectation both lie

between −1 and ω−1/4− 2, it follows that the conditions of the inequality hold with

ci = ω−1/4. Since t is at most M , and E(X) = 0 it follows that:

P (|X| > M2/3) 6 P (|X − E(X)| > M2/3) 6 e
−M4/3

ω−1/2M = o(
1

M2
).

Since this holds for all of the at most M values of t, the claim follows.

Proof of Claim 3: We will need

Claim 6: if t 6 ω1/9M,X ′t−1 6 ω1/5M , and Xt′ > 0 for all t′ < t then the following

hold:

(a) if w ∈ V − St−1 and d(w) = 1 then P [wt = w] > (1− 9ω1/5) 1
Mt−1

,
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(b) if w ∈ V − St−1 and d(w) = d then P [wt = w] 6 (1 + 9ω1/5) 1
Mt−1

.

and

Claim 7: For any sequence a1, .., aj of positive integers none of which are 2 and a

nonnegative integer l such that
∑j

i=1 ai > 2j − l, we have
∑j

i=1 ai(ai − 2) > j − 2l.

The easy proof of Claim 7 is omitted it can be found on page 18 of Joos et al.

We note that there are least M
4

vertices of degree 1 in G as otherwise∑
v∈V−S

d(v)(d(v)− 2) >
−M

4
+ (3− 2)(M − M

4
− 7ω1/4M) > 0

contradicting the definition of jD.

We will prove Claim 3 by induction on t. For t = 1, Claim 1(iii) tells that X ′0 6
ω1/5M

2
. Hence Claim 6 implies:

E[d(wt)− 2] 6
(1 + 9ω1/5)

∑
w∈V−S0

d(w)(d(w)− 2) + 18ω1/5n1

M0

. So, applying Claim (1)(ii) and then Claim 1(iii), we have:

E[(d(wt)− 2] 6
18ω1/5M

M0

6 18ω1/5(1− 7ω1/4)−1 6
−1

M
+ 19ω1/5.

For 2 6 t 6 τ , by induction we obtain

X ′t−1 = X ′0 + Σt−1
i=1E[d(wt)− 2] + Σt′<tYt 6

ω1/5M

2
+ 19ω1/5t+M2/3 6 ω1/5M.

Since Xt′ > 0 for all t′ 6 t− 1, X ′t−1 > 0 and hence;

Σt−1
i=1d(wi) = 2(t− 1) + Σt−1

i=1(d(wi)− 2) = 2(t− 1) + (X ′t−1 −X ′0) > 2(t− 1)−X ′0
.

So, Claim 7 implies Σt−1
i=1d(wi)(d(wi) − 2) > (t − 1) − 2X ′0. Since V − St−1 =

V − S0 − {w1, ..., wt−1} Claim 1(ii) yields:

Σw∈V−St−1d(w)(d(w)− 2) 6 2X ′0 − (t− 1).

Combining this bound with Claim 6 yields:

E[d(wt)− 2] 6
(1 + 9ω1/5)(2X ′0 − (t− 1)) + 18ω1/5n1

Mt−1
.

Now, n1 6M,X ′0 6
ω1/5M

2
, and Mt−1 = M −X ′t−1 − 2t, so we obtain:

E[d(w)− 2] 6
1− t
M

+
9ω1/5ω1/5M + 18ω1/5M

(1− ω1/5 − 2ω1/9)M
6
−t
M

+ 19ω1/5.

This completes the proof of Claim 3, it remains to prove Claim 6.

Proof of Claim 6: We can and do assume Xt−1 > 0 as otherwise Prob(wt = w) =
d(w)
Mt−1

. For any vertex w of V −St−1, we let Aw be the set of extensions of the choices
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we have made for the random object we have made so far for which w = wt and

Bw be those for which w 6= wt. We switch between our random objects much as we

switch between graphs, with all non switched edges maintaining their positions in

the ordered adjacency lists and the new edges taking the positions of the old edges.

Proof of (a): To switch from Aw to Bw we must swap the edge vtw with some

oriented edge xy with x ∈ V −St−1 to obtain vtx and wy. There are at most |Mt−1|
such switchings. To swap from Bw to Aw we must swap vtwt with the oriented edge

wy. We can only do so, if w is not already a neighbour of vt and y is not a neigbour

of wt. Now, we know n1 > M
4

so since t 6 ω1/9M
2

and X ′0 6 7ω1/4M we know that the

number n′1 of vertices of degree 1 in V − St−1 is at least M
4
− ω1/9M

2
− 7ω1/4M > M

5
.

We can split the random objects extending what we have exposed so far into equiv-

alence classes where two objects are in the same equivalence classes if they can be

obtained from each other via a permutation of the labels on the vertices of degree

1 in V − St−1. it is not hard to see that there are n′1! elements in each equivalence

class. So, we can thing of selecting an element of Bw uniformly by first choosing an

equivalence class uniformly and then assigning labels to the vertices of degree one.

Now, vt has at most RD 6 ωM neighbours and wt has at most ω−1/4 neighbours

each with at most ωM neighbours. So, for any equivalence class, there are at most

2ω3/4M vertices which are a neighbour of vt or a neighbour of a neighbour of wt.

it follows that for any equivalence class, the proportion of elements for which we

cannot switch the edge wy with vtwt is less than 10ω3/4. Thus we have:

Mt−1|Aw| > (1− ω1/5)|Bw|.

I.e. |Bw| 6 |Aw| Mt−1

1−ω1/5 . So,

P [w = wt] =
|Aw|

|AW |+ |Bw|
>

1

1 +Mt−1(1− ω1/5)−1
.

Now since Mt−1 = M −X ′t−1 > (1− ω1/5 − 2ω1/9)M , it is large and (a) follows.

Proof of (b): For a switching from Bw to Aw, we have to switch vtwt with wy for

some neighbour y of w. Therefore, there are at most d such switches. For a switching

from Aw to Bw, we must switch the edge vtw with some (oriented) edge yz such

that y ∈ V − St−1 − N(vt) and z is not a neighbour of w. Now there are at most

ωM neighbours of vt in V − St−1 each incident to at most ω−1/4 edges and w has

at most ω−1/4 neighbours each incident to at most ωM edges. So, there are at least

Mt−1 − 2ω3/4M such swaps. Since Mt−1 > (1 − 7ω1/4 − 2ω1/9)M it follows that

|AW | 6 d
(1−ω1/5)Mt−1

|BW |. So,

P [w = wt] =
|Aw|

|AW |+ |Bw|
6
|AW |
|BW |

6
(1 + 9ω1/5)d

Mt−1
.
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