
The Global Structure of a Typical Graph
without H as an (induced) subgraph.

B. Reed

July 16, 2019

Abstract

1 An Overview

A graph is H-Free if it does not contain H as a subgraph and H-free if it does
not contain H as an induced subgraph. In these two lectures we will study
the structure of typical H-Free and H-free subgraphs.

An early result in this area was obtained by Erdos, Kleitman, and Roth-
schild over 35 years ago[ErKR76]. They characterized the structure of typical
graphs without a cycle of length three precisely. Obviously every bipartite
graph is triangle free. EKR showed the vertex set of almost all such C3-
Free(equivalently C3-free) graphs is bipartite.

In the same vein, every (t − 1)-partite graph is Kt-free, and in 1987
Kolatis, Prummel, and Rothschild (ref. missing sorry) showed that almost
every Kt-Free (equivalently Kt-free) graph is (t− 1)-partite.

Now, if H has chromatic number c then every (c − 1)-partite graph is
H-Free. In 1987 using the newly minted Regularity Lemma, Erdos, Frankl,
and Rodl showed that for such H, almost every H-Free graph can be made
c− 1 partite by the deletion of o(n2) edges.

Promel and Steger[PrS91, PrS92a, PrS92b, PrS93] adapted the approach
of EFR so that it could be applied to the study of H-free graphs. Using
this approach, they showed that almost every C4-free graph is a split graph,
i.e. its vertex set can be partitioned into a clique and a stable set.They also

1



showed that the vertex set of almost every C5-free graph can be partitioned
into either (i) a clique and the disjoint union of cliques or (ii) a stable set
and a complete multipartite graph. In addition, again following EFR, they
obtained, for all H, upper and lower bounds on the number of H-free graphs
on n vertices whose exponents differed by a multiplicative factor of 1 + o(1).

Recently, Balogh and Butterfield[BB11] proved that for k ≥ 4 almost
every C2k+1-free graph can be partitioned into k cliques while almost every
C7-free graph can be partitioned either into 3 cliques or a stable set and 2
cliques.

Reed and Scott (manuscript) have shown that almost every C6-free graph
is the disjoint union of a stable set and a graph containing no stable set of
size three and no induced matching with two edges. They obtained similar
results for longer even cycles, for cycles of length at least 12, the same results
were obtained independently by Kim et al.[KKOT15].

Theorem 1 For l > 5, almost every C2l-free graph can be partitioned into
l − 2 cliques and the complement of a graph which is the disjoint union of
stars and C3s.

We discuss these and further results and conjectures along these lines.
By ForbH we mean the family of H-Free graphs, and by ForbnH the family

of H-Free graphs on the vertex set {1, ..., n}, which we denote Vn. By IForbH
we mean the family of H-free graphs, and by IForbnH the family of H-free
graphs on the vertex set {1, ..., n}, which we denote Vn.

The witnessing partition number of H, denoted wpn(H), is the maximum
k such that for some pair (cH , sH) which sum to k, there is no partition of
V (H) into cH cliques and sH stable sets.

We define an H-freeness witnessing partition of a graph G to be a partition
of V (G) into sets S1, .., Swpn(H) such that (i) for any partition of V (H) into
X1, ..., Xwpn(H) there is an i such that H[Xi] is not an induced subgraph of
G[Si], and (ii) for all i, |Si| − n

wpn(H)
= o(n). (to make this definition precise

we should be more precise about the o(n) term, but we decline to do so).
The following conjecture made by Reed and Scott was disproven by Norine

in 2018.

Conjecture 2 For every H, falmost every graph G in IForbnH has an H-
freeness witnessing partition.
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The results discussed above suggest a conjecture along these lines. As we
show now, they prove it whenever H is a cycle or the complement of a cy-
cle. Reed and Yuditsky (manuscript,phd thesis) have verified the conjecture
whenever H is a tree or the complement of the tree. It would be interesting to
characterize those H for which it holds and to propose and prove weakenings
of it.

A cycle of length three can be partitioned into a clique, and into three
stable sets but not into two stable sets. Thus wpn(C3) is 2 and the set con-
sisting of two copies of the family of all stable sets is a C3-freeness witnessing
set. Thus, the result of Erdos, Kleitman, and Rothschild mentioned above
tells us that our conjecture holds when H is C3.

For l at least four, the cycle of length 2l+ 1 can be partitioned into three
stable sets, into two stable sets and a clique, into a stable stable of size 3
and l − 1 cliques, and into l + 1 cliques. However, it cannot be partitioned
into l cliques. So, wpn(C2l+1) is l and the multiset consisting of l copies of
the family of all cliques is a C2l+1-freeness witnessing set. Thus, a result of
Balogh and Butterfiled mentioned above tells us that our conjecture holds
when H is C2l+1.

The cycle of length 4 can be partitioned into two stable sets and into
two cliques, However, it cannot be partitioned into a clique and a stable set.
So, wpn(C4) is 2 and the family of all cliques together with the family of all
stable sets form a C4-freeness witnessing set. Thus a result of Promel and
Steger mentioned above tells us that our conjecture holds when H is C4.

The cycle of length 5 can be partitioned into three stable sets,into three
cliques, into two stable sets and a clique, and into two cliques and a stable
set, However, it cannot be partitioned into two stable sets. So, wpn(C5) is 2.
Furthermore, C5 cannot be partitioned into a clique and a graph containing
no P3. Thus the multiset consisting of the family of all cliques together with
the family of all disjoint unions of cliques form a C5-freeness witnessing set.
Since C5 is self-complementary so does the set consisting of the family of
all stable sets and the family of all stable sets and complete multipartite
graphs. Thus a result of Promel and Steger mentioned above tells us that
our conjecture holds when H is C5.

The cycle of length 7 can be partitioned into three stable sets,into four
cliques, into a stable set and three cliques, and into a clique and two stables
sets. However, it cannot be partitioned into three cliques or into two cliques
and a stable set. So, wpn(C7) is 3 and a result of Balogh and Butterfield
mentined above shows that our conjecture holds when H is C7.
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The cycle of length 6 can be partitioned into two stable sets,into three
cliques, and into a stable set and two cliques. However, it cannot be par-
titioned into two cliques. So, wpn(C6) is 2. Furthermore, C6 cannot be
partitioned into a stable set and the complement of a graph of girth 5.Thus
the results of Reed and Scott mentioned above shows that our conjecture
holds when H is C6.

For l > 5, the cycle of length 2l can be partitioned into two stable sets,
into l cliques, and into a stable set of size 4 and l − 2 cliques, However, it
cannot be partitioned into l− 1 cliques. So, wpn(C2l) is l− 1. Furthermore,
C2l cannot be partitioned into l − 2 cliques and a graph which has at most
3 vertices or which has at least four vertices and either has a disconnected
complement or contains C3. So Theorem 2 above, shows that our conjecture
holds when H is C2l.

Thus, our conjecture holds whenever H is a cycle. Reed and Yuditsky
have shown that it also holds whenever H is a tree, Since the complement
of a hereditary family is a hereditary family and the H-free graphs are pre-
cisely the complements of the H-free graphs, it also holds when H is the
complement of a cycle or the complement of a tree.

2 A Correct Weakening of the Conjecture

We prove the conjecture is true, if we permit a small exceptional set Z and
ask only for an H–freeness witnessing partition of G-Z. Our starting point is
a recent beautiful paper of Alon, Balogh, Bollobas, and Morris[AlBBM11].
Their discussion is in terms of partitions such that no part contain a specific
bipartite graph U(k) as a (not neccesarily induced) subgraph. Their Corol-
lary 8 (whose proof is only a few lines and will be discussed in the lecture)
is

Corollary 3 For every k there is a positive ε such that for every sufficiently
large l, the number of graphs with l vertices which are U(k)-Free is ≤ 2l

2−ε
.

The following is essentially an immediate corollary of their Theorem 1.

Corollary 4 For every H, sufficiently large k and positive δ which is suffi-
ciently small in terms of H and k, there are positive ε and b such that the
following holds:

4



For almost every H-free graph G on Vn there is a partition of Vn into
S1, ...Swpn(H), A1, ...., Awpn(H) such that for some set B of at most b vertices
the following holds:

(a) G[Si] is U(k)-free for every i between 1 and wpn(H),

(b) |A1 ∪ A2... ∪ Awpn(H)| ≤ n1−ε, and

(c) for every vertex v of Si∪Ai there is a vertex b of B such that |(N(v)−
N(b)) ∩ (Si ∪ AI)|+ |(N(b)−N(v)) ∩ (Si ∪ Ai)| is at most δn.

Proof. We only need to prove this result for δ sufficiently small as it then
follows for all δ. We essentially follow the ABBM proof of their Theorem 1
where the hereditary family P is ForbH and α is δ

3
. We omit the details,

simply sketching the very very minor modifications. We do not expect school
participants to read or understand this.

We note that their χc(P) is exactly wpn(H). We want to use the strength-
ening of their Lemma 23 obtained by replacing α = α(k,P) > 0 in its state-
ment with α > 0 sufficiently small in terms of k. Their proof of the lemma
actually proves this strengthening (without any modification whatsoever).

Now while following their (two paragraph) proof of their Theorem 1, we
again replace α = α(k,P) by α > 0 sufficiently small in terms of k. Then
we consider the adjustment S ′1, ..., S

′
r and exceptional set A they obtain and

set Ai = S ′i ∩ A, Si = S ′i − A. Now, in their proof, they consider a maximal
2α bad set B. They implicitly use the fact, which is a consequence of their
Lemmas 17 and 18, that for almost every graph in ForbnH , the size of B is
at most some constant c. We set b to be this c. Now, (a) is their Theorem
1(b), (b) is their Theorem 1 (a), and (c) follows immediately from the fact
that S ′1, S

′
wpn(H) is an α-adustment and the definition of γ-adjustment.

We show momentarily that we can strengthen this theorem in two ways.
In our strengthening we use Xi in place of Si and Zi in place of Ai to avoid
confusion. We will see that we can insist that every partition element has
approximately the same size. Secondly we can insist that X1, ..., Xn is an
H-freeness witnessing partition of G− Z.

Theorem 5 For every H, and δ > 0 sufficiently small in terms of H, there
are γ, b > 0 such that the following holds:

For almost every H-free graph G on Vn there is a partition of Vn into
X1, ...Xwpn(H), Z1, ...., Zwpn(H) such that for some set B of at most b vertices
the following hold:
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(I) X1, ..., Xwpn(H) is an H-freeness witnessing partition of G− Z1 − Z2 −
...,−Zwpn(H),

(II) |Z1 ∪ Z2... ∪ Zwpn(H)| ≤ n1−γ, and

(III) for every vertex v of Xi∪Zi there is a vertex b of B such that |(N(v)−
N(b)) ∩ (Xi ∪ ZI)|+ |(N(b)−N(v)) ∩ (Xi ∪ Zi)| is at most δn.

(IV) For every i, we have that |Zi ∪Xi| − n
wpn(H)

≤ n1− γ
2 .

Proof. Most particpants can skip the proof.
We choose k sufficiently large and then δ < 1

10wpn(H)
sufficiently small

in terms of H and k. We choose ε, b > 0 such that Corollary 4 holds for
this choice of k and δ and set γ = ε

10
. We consider n large enough to saisfy

certain implicit inequalities below. We know that for almost every graph
in ForbnH there is a set B of at most b vertices and a partition into Si and
Ai satisfying (a),(b), and (c) set out in that corollary. Since Si is U(k)-free
and n is large, Corollary 8 of [AlBBM11] tells us that there are only 2n

2−ε

choices for G[Si], . The number of choices for the edges out of each vertex
of Ai is 2n−1. So, since |Ai| has size at most n1−ε, we know there are at
most 2n

2−ε
choices for the edges out of Ai. It follows that there are at most

2O(n2−ε) choices for the partition S1, ..., Swpn(H), A1, .., Awpn(H) and the graphs
G[S1 ∪A1], ...., G[Swpn(H) ∪Awpn(H)]. This implies that we can actually show
that almost every graph in ForbnH has a partition satisfying (a),(b),(c) such
that in addition |Si ∪ Ai| − n

wpn(H)
is at most n1−γ. We will show that for

almost every graph in ForbnH with such a partition, we can obtain a partition
satisfying (I),(II),(III), and (IV).

For each i, we let Ji consist of those L which are induced subgraphs of H
such that there do not exist n1− ε

2 disjoint sets of vertices in Si which induce
L. For each L in Ji we choose a maximal family of disjoint induced copies of
L in Si. We let Zi be the union of Ai and all the vertices in all these copies
for all graphs in Ji. We let Xi = Si − Zi. We note that for some constant
CH which depends on H, Zi has at most CHn

1− ε
2 vertices. So, for large n,

(II) holds.
Now, Si ∪Ai = Xi ∪Zi. So we have that (IV) holds, and since (c) holds,

so does (III).
To complete the theorem we need only show that the proportion of graphs

with the property that X1, ..., Xwpn(H) is not an H-witnessing partition of
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G − Z! − ... − Zwpn(H) is o(|ForbnH |).In order to do so, we sum over all pos-
sible choices for (i) the original Si and Ai satisfying (a),(b),(c), (ii) the new
partition Xi, Zi of Si ∪Ai for each i, and (ii) the subgraphs G[Si ∪Ai] which
have the property of interest.

Clearly the number of choices for the partitions of Vn is at most (4wpn(H))n.
For each partition of interest,since (a) states that G[Si] contains no U(k),
Corollary 8 of the ABBM paper tells us that the number of choices for
G[Si] is at most n2−ε. Now, for each vertex v of Ai there are fewer than
2n choices for N(v) ∩ (Si ∪ Ai). So, the number of choices for G[Si ∪ Ai] is
at most 2n

2−ε
2|Ai|n. Applying (b) we obtain that the number of choices for

(G[S1 ∪ A1], ..., G[Swpn(H) ∪ Awpn(H)]) is at most 2(wpn(H)+1)n2−ε
.

We now count, for a specific choice of partition and (G[S1∪A1], ..., G[Swpn(H)∪
Awpn(H)]), the number ofG corresponding to this choice for whichX1, ..., Xwpn(H)

is not an H-freeness certifying partition of G−Z!−Z2−...−Zwpn(H). This im-
plies there is a partition Y1, ..., Ywpn(H) of V (H) such that H[Yi] is a subgraph
of G[Xi] and hence not in Ji. Thus, for each i, we can find n1− ε

2 disjoint sets
of vertices in Si which induce H[Yi]. We consider the complete wpn(H) par-
titite graph whose vertices are these sets and where two sets are joined if they
are in different Si A standard argument (reference to be filled in) tells us that

we can find (n1− ε2 )2

100
edge disjoint cliques in this graph. For each such clique,

there is one choice of edges between the sets corresponding to its vertices
such that if G makes this choice than G contains H as an induced subgraph.
It follows that for some γH which depends on H, the number of G corre-
sponding to our choice of partition and (G[S1 ∪A1], ..., G[Swpn(H) ∪Awpn(H)])

is at most 2(1− 1
r

)(n2)2−γH
(n

1− ε2 )2

100 . Summing over all choices of partitions and
subgraphs they induce the desired result follows

It is natural to ask for each H, for the slowest growing function fH which
can be used to bound the exceptional set Z. In particular we would like to
know when fH = 0, i.e. for which H the Reed-Scott conjecture holds.

3 The number of H-free and H-Free graphs.

If H is c-chromatic then by considering a fixed partition of Vn = 1, ..., n into

c− 1 parts each of size d n
c−1
e or b n

c−1
c there are more than 2(1− 1

c−1
)(n2) c− 1-

partite H-Free graphs. On the other hand, by the result of EFR, for almost
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every H-free graph G there is a set F of o(n2) edges of G such that G−F is

c− 1-partite. There are
(
n2

|F |

)
= 2o(n

2) choices for F , (c− 1)n = 2o(n
2) choices

for the partition of G-F, so it follows that the number of H-Free graphs is

2(1+ 1
c−1

+o(1))(n2).
By considering a fixed a partition of Vn into wpn(H) parts each of size

dn
t
e or bn

t
c we see there are more than 2(1− 1

wpn(H)
)(n2) H-free graphs which

can be partitioned into cH cliques and sH stable sets. Applying the results
of ABBM, we see that almost every H-free graph permits a partition into a
set Z of size o(n), and wpn(H) sets each of which is U(k)-Free. Since the
number of U(k)-Free graphs on n vertices is 2o(n

2), it follows that the number

of H-free graphs is 2(1+ 1
wpn(H)

+o(1))(n2).

4 Some Remarks on the structure of H-Free

graphs

The natural analog to the Reed-Scott Conjecture would be the following. As
discussed below it is known to be false.

Conjecture 6 For every H, almost every graph G in ForbnH can be parti-
tioned into X1, ..., Xχ(G)−1 such that for any partition of V (H) into Y1, ..., Yχ(G)−1

there is an i such that H[Yi] is not a subgraph of G[Xi].

Again a natural weakening of this conjecture would be to ask for the
slowest growing function fH , bounding the size of an exceptional set whose
deletion leaves a graph with the desired partition. However, work here seems
to have centered around obtaining partitions which do not guarantee the H-
Freeness of the partitioned graph. Specifically we let M(H) consist of those
graphs F such that H is a subgraph of the join of (i) the union of F and a
stable set with (ii) a χ(G)− 2- partite graph.

Ballogh, Bollobas, and Simonovits[BaBS09]have shown that for every H
there is a bH such that almost every H-Free graph can be partitioned into
χ(H) − 1 parts X1, ..., Xwpn(H) such that for every i G[Xi] contains no sub-
graph in M(H).

They also gave an example (Example 13 in [BaBS11] which shows that
this constant cannot always be zero, and also shows that Conjecture 6 is
false.
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In this example, H is obtained from a K2s,2s by adding a matching of size
s on the vertices on one side of the bipartition. Now χ(H) = 3, and if we
partition G into X1 and X2 such that neither G[X1] nor G[X2] contains an
element of M(H) then both G[X1] and G[X2] contain no matching of size s.
Thus each G[Xi] has a vertex cover of size at most 2s− 2 and at most s− 1
vertices of degree greater than 2s. We can choose such a graph by choosing
the 2s− 1 vertices in a cover in order so their degrees are nonincreasing then
choosing the neighbourhood of each vertex of the cover. We have at most
k2s−22(s−1)k(k2s)s+1 = 2(s−1+o(1))k choices for such a graph with k vertices.
So, the total number of graphs on n vertices which have such a partition is

at most 2n2(s−1+o(1))n+n2

4 .
On the other hand choosing s large and λ = 2s+ ds1/4e, we can partition

G into a stable set S of size λ, a stable set U of size dn−λ
2
e and a stable set

W of size bn−λ
2
c and then choose any set of edges between U and W , and for

each vertex v in V −S any choice of at most s−1 vertices of S as neighbours.
If such a graph were to contain a copy of H then every triangle of H has
to intersect each of S, U and W . This means that each of S, U,W contains
at least s vertices of the induced copy of H all lying in the same side of the
oriiginal bipartition of H. But then some vertex of V-S sees s vertices of S,
a contradiction.

Now, for a fixed partition into S, U,W each vertex of V−S has
∑s−1

i=0

(
λ
s

)
>

2λ−2 choices for its neighbourhood in S. so there are at least 2|U ||W |+(λ−2)n−n >

2
n2

4
+

(λ−6)n
2 > 2

n2

4
+(s+6)n. This is far greater than those permitting a partition

as discussed in the last paragraph.
it would be interesting to explore the situation here further. I warn the

reader that I am not as on top of the developments with respect to H-Free
graphs as I am those concerning H-free graphs and there may well be relevant
further results.

5 An Overview of Lecture 2

In the second lecture we will sketch the proof of a weakening of Theorem 5,
to illustrate the crucial role that Szemeredi’s Regularity Lemma plays in this
domain. We will then sketch how we can use Theorem 5 to almost prove
the Reed-Scott Conjecture for C4. Specifically we sketch how to replace the
bound on the size of the exceptional set by a constant. In the lecture we
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discussed how to complete the proof of the conjecture for C4 but we omit
those details here.

Our weakening of Theorem 5, relaxes the upper bound on the size of the
exceptional set Z to o(n) and removes any mention of the set B. I.e. we
show:

Theorem 7 For every H and δ > 0, the following holds:
For almost every H-free graph G on Vn there is a partition of Vn into

X1, ...Xwpn(H), Z1, ...., Zwpn(H) such that the following hold:

(I) X1, ..., Xwpn(H) is an H-freeness witnessing partition of G− Z1 − Z2 −
...,−Zwpn(H),

(II) |Z1 ∪ Z2... ∪ Zwpn(H)| ≤ δn, and

(III) For every i, we have that |Zi ∪Xi| − n
wpn(H)

≤ δn.

5.1 Some Prelimanaires

We begin with the following which is a strengthening of Exercise 15 from the
background notes and can be proved using the answers to Exercises 13 and
14:

Theorem 8 For all H and 1 > δ > 0 there is an ε = εH,δ <
δ
2

and nH,δ such
that if G contains sets {Pv, |v ∈ H} each of size at least nH,δ such that every
pair (Pu, Pv) is ε-regular and has density (i) at least δ if uv if as edge, and
(ii) at most 1− δ otherwise, then there is an induced copy of H in G where
the copy v′ of v is in Pv.

Proof. The proof is by induction on |V (H)|. For some v in H, we
choose a vertex v′ of Pv to be the copy of v. We insist that v′ has at least
δ|Pu|

2
neighbours in Pu if uv ∈ N(v) and at least δ|Pu|

2
nonneighbours in Pu

otherwise. Since ε < δ
2
,by our hypotheses on the density of the pairs and

Exercise 14, we can do so provided ε < 1
2|V (H)| . We let P ′u be P (u) ∩N(v) if

uv ∈ H and P ′u = Pu − N(v) otherwise. We now apply induction to H − v
and {P ′u|u ∈ V (H) − v}. For this technique to work we need to set εH,∆ to
be δ

2
min{εH−v, δ

2
|v ∈ V (H)} and nH,δ = 2

δ
max(nH−v, δ

2
|v ∈ V (H)).

We note also that we can strengthen Exercise 13 as follows, we omit the
details
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Theorem 9 For all epsilon < 1
2
, if we are given a set of wpn(H)+1 disjoint

subsets P1, .., Pwpn(H) of G, every two of which are ε2-regular, then for any
family of equipartitions of the Pi which splits each into at most 1

ε
subparts,

the following holds. If the pair of parts P and Q had density d then for
any subpart P ′ of P and subpart Q′ of Q, (P ′, Q′) is ε-regular with density
between d− ε and d+ ε.

5.2 The Under Card

The key to the proof of Theorem 7 is:

Theorem 10 For all H and 1 > δ > 0 there is an ε = εH,δ <
δ
2

and nH,δ
such that if G contains sets {P1, ..., Pwpn(H)+1} each of size at least nH,δ such
that every pair (Pu, Pv) is ε-regular and has density between δ and 1− δ then
there is an induced copy of H in G.

Proof. To prove Theorem 10, we apply Theorem 8 to a family of sub-
partitions of the partition given by the hypothesis of Theorem 10. The sub-
partition of a part Pi will be an ε′-regular partition of G[Pi] for some small
ε′ which is still much bigger than ε.We will specify our requirements as to
ε′ and the minimum number m of parts we want the subpartitions to have
(we will need this large in terms of |V (H)|). This determines the maximum
number of parts M we may require. Having done so we can choose ε < 1

M
to

ensure we obtain a partition into at most 1
ε

parts.
Now, in any subpartition of the part, we have a 3-colouring of the ”edges”

between the parts, where grey means ”not regular”, blue means regular with
density < 1

2
and red means regular with density at least 1

2
. Since only an

ε′ proportion of the edges are grey, by Ramsey theory if we choose m large
enough in terms of H we can find in each subpartition a clique Ki of subparts
of size |V (H)| whose edges are either all red or all blue. If we find the latter,
we say Pi is a clique part, otherwise it is a stable set part.

We count up the number c of clique parts and the number s = wpn(H) +
1 − c of stable set parts. We find a partition of V (H) into c cliques and s
stable sets (which must exist because of the definition of wpn(H)) and find
a bijection between these sets and the parts, where if Pi is a clique part it
corresponds to some clique Ci and otherwise it corresponds to some stable
set Si. We call Ci or Si, Ti so we can treat the cases together. We index
|Ti| parts of Ki with the elements of Ti and now apply Theorem 8 to prove
Theorem 10.
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Now, for a δ > 0, ε < δ and some constant number p of parts, we want
to count the number of graphs permitting an ε-regular equipartitions into
p > 1

ε
parts, where a proportion g of the pairs of parts are well-behaved, in

that they are ε-regular with density between 0 and 1. Having picked one of
the at most pN equipartitions, and specified which of the pairs of parts are

well-behaved,there are at most 2g(
n
2) choices for pairs of edges joining these

well behaved parts. For some α going to zero with δ there are at most 2α(
n
2)

choices for (i) the at most 2ε
(
n
2

)
edges within parts or between irregular parts,

(ii) the at most δ
(
n
2

)
edges between low-density part pairs, and (iii) the at

most δ
(
n
2

)
non-edges between high-density pairs.

It follows that for every β > 0 there is a δβ such that for all δ < δβ and
ε-regular partition for an ε sufficiently small in terms of δ, the proportion of
pairs of parts which are well-behaved must exceed (1− 1

wpn(H)
)− β.

Now, we combine Theorem 10 with this fact and an application of the
Erdos-Stone Stability Theorem to an auxiliary graph whose vertices are the
parts and where two vertices are joined by an edge if the corresponding pair of
parts is well-behaved. . We obtain that almost every H-free graph permits a
Szemeredi partition where this auxiliary graph can be made wpn(H)-partitite
by deleting a o(1) proportion of its edges. We let X1, .., Xwpn(H) be the
partition of G corresponding to this partition of the parts graph. For each
such partition we consider the possible sets {F1, ..., Fwpn(H)} of graphs where
Fi = G[Xi] for some H-free G for which our partition of the parts graph
yield this partition of V (G). We note that since almost all the edges of
the auxiliary graph go between the parts there are 2o(n

2) choices of such a
partition and corresponding set of subgraphs induced by the parts.

This implies that almost every H-free graph corresponds to a partition
X1, ..., Xwpn(H) and corresponding family of graph F1, ..., Fwpn(H) where there

are 2(1− 1
wpn(H)

+o(1))(n2) H-free graphs for which for all i, G[Xi] = Fi. Now, for
any Yi, ..Ywpn(H) such that Yi is a subgraph of Fi and there is a partition of
H into D1, ..., Dwpn(H) such that Yi = H[Di] there is a choice of the edges
between the Yi which yield an induced copy of H in D. Thus, if there is a
family of k such sets {Y1, ..., Ywpn(H)} for which no edge joins two parts Yi
and Yj of distinct sets of the family, then the total number of choices of edges
between the parts which yields an H-free graph is at most (1− 1

2(
|V (H)

2 )
)k.

This allows us to show that we can delete a set Z of o(n) vertices, such
that X1−Z, ..., Xwpn(H)−Z is an H-witnessing partition of G−Z. We omit
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the details.

5.3 The Main Event

We now apply Theorem 5 to prove that there is a constant c such that almost
every C4-free graph contains a set Z of at most c vertices such that G−Z is
split.

To begin we bound the number of split graphs on Vn from below. For
every partition (A,B) of Vn, there are 2|A||B| split graphs which yield this

partition. This tells us that there are Ω(2n+d
n
2 eb

n
2 c√

n
) partitions of a split graph

on Vn into a clique and a stable set whose size differs by at most 1. Now,
given one partition of a graph G into a clique C and a stable set S, any other
clique of G contains at most one vertex of S and any other stable set of G
contains at most one vertex of C. So, a split graph on Vn has fewer than n2

partitions and there are Ω(2n+d
n
2 eb

n
2 c

n3/2 ) split graphs on Vn.
Theorem 5 tells us that for every δ > 0 there is an α and a b such that

almost every C4-free graph on Vn has a partition into a clique X1, a stable
set X2 both of size at least n

2
−n1−α

2 , Z1 and Z2 with |Z1|+ |Z2| < n1−α such
that for some set B of at most b vertices, we have ∀v ∈ Yi = Xi∪Zi,∃w ∈ B
such that |((N(v)−N(w)) ∪ (N(w)−N(v))) ∩ Yi| ≤ δn.

We are now going to strenghten this corollary of Theorem 5, by showing
that we can assume |Z| = O(1). In order to do do so we let M be a maximum
matching in G[Y2], and N be a maximum matching in G[Y1]. We let K be
the clique Y1−V (N) and S be the stable set Y2−V (M). Since X1 is a clique
|N | < |Y1 −X1| = |Z1|. In the same vein |M | < |Z2|. Hence for sufficiently
large n, |K|, |S| > n

3
.

Now we can specify the edges within the Yi by specifying (i) the choices
for the neighbourhoods of the vertices of B on each side, (ii) the choices for
V (M) ∪ V (N), (iii) for each v in M a choice of a neighbourhood of a vertex
of B on Y2 whose symmetric difference with the neighbourhood of v on Y2

has size at most δn and this symmetric difference, and (iv) for each v in N a
choice of a neighbourhood of a vertex of B on Y1 whose symmetric difference
with the neighbourhood of v on Y1 has size at most δn and this symmetric
difference. So the number of choices for these edges is at most:

2bnn2|M |+2|N |(b2δn)2|M |+2|N |.

On the other hand we see that for every edge e of M and edge f of K
there is a choice of the edges from e to f which creates a C4. In the same

13



vein, for every non-edge x of N and pair y of vertices of S if we add all
the edges from x to y then we create a C4. Hence partitioning K into |K|

2

disjoint edges and S into |S|
2

pairs of nonadjacent vertices we see that, fror
sufficiently large k, the number of choices for the edges between Y1 and Y2

is at most 2|Y1||Y2|(15
16

)
|M||K|+|N||S|

2 < 2
n2

4 (15
16

)
(|M|+|N|)n

6 . We see that we can
strengthen Theorem 5, by replacing, for sufficiently small δ, our bound on
the size of Z by some constant c > b depending on δ.

I
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