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There are 5 exercises for Wednesday afternoon on pages 3-7.

1 Introduction

We will be interested in minor-closed classes and related structured classes
of graphs. The development will be set in a natural general context. Let
G be a class of graphs (closed under isomorphism), for example the class
P of planar graphs. We use Gn to denote the set of graphs in G on vertex
set [n] := {1, . . . , n}. The notation Rn ∈u G means that Rn is a random
graph sampled uniformly from the set Gn (assumed non-empty). We are
interested in typical properties of Rn. For example does Rn usually have a
giant component? How likely is Rn to be connected?

For a class G of graphs, the exponential generating function (egf ) is

G(x) =
∑
n

|Gn|xn/n!.

We use ρG, ρG (and ρ(G), ρ(G)) to denote the radius of convergence. For
suitable classes G, we can relate the egfs (or two variable versions) of all
graphs, connected graphs, 2-connected graphs and 3-connected graphs. If
we know enough about the 3-connected graphs (as we do for planar graphs,
thanks to Tutte and others) then we may be able to extend to all graphs.
We aim to proceed in greater generality.

A graph H is a minor of a graph G if H can be obtained from a subgraph
of G by edge-contractions, see for example [18]. A class G of graphs is minor-
closed if

G ∈ G, H a minor of G ⇒ H ∈ G.

Here are some examples.
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1. forests, series-parallel graphs, and more generally graphs of treewidth
≤ k;

2. outerplanar graphs, planar graphs, and more generally graphs embed-
dable in a given surface;

3. graphs with at most k vertex disjoint cycles.

We use Ex(H) to denote the class of graphs with no minor (isomorphic
to) H. Similarly, Ex(H) denotes the class of graphs with no minor a graph in
H. For example: forests = Ex(C3), series-parallel graphs = Ex(K4), planar
graphs = Ex({K5,K3,3}), graphs with no two disjoint cycles = Ex(2C3).

It is easy to see that: G is minor-closed iff G = Ex(H) for some class H.
Robertson and Seymour’s graph minors theorem (once Wagner’s conjecture)
says that if G is minor-closed then G = Ex(H) for some finite class H. The
unique minimal such H consists of the excluded minors for G.

For any fixed graph H there is a polynomial time algorithm to test if an
input graph G has a minor H. Thus for any minor-closed class there exists
a polynomial time algorithm to test if an input graph G is in the class.

Mostly we shall assume that G is minor-closed and proper (that is, not
empty and not all graphs). For such G, a result of Mader says that there
is a c = c(G) such that the average degree of each graph in G is at most c.
Thus our graphs are sparse. For Ex(Kt) the maximum average degree is of
order t

√
log t (Kostochka, Thomason).

Recall that ρ(G) denotes the radius of convergence of the egf of G. We call
G small if ρ(G) > 0; that is, there exists a constant c such that |Gn| ≤ cnn!
for all n (sufficiently large). We shall be interested here only in small graph
classes. Norine, Seymour, Thomas and Wollan [28] and then Dvorák and
Norine [10] showed the following result, see also Lemma 12 below.

Lemma 1. Each proper minor-closed graph class is small.

2 Connectivity and bridge-addability

In the subsections below we introduce some useful basic properties that a
graph class G may possess, and present corresponding results on connectivity
and components for random graphs Rn ∈u G.
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2.1 Decomposable, bridge-addable and addable classes

When a graph is in G if and only if each component is, we call G decompos-
able. For example the class of planar graphs is decomposable but the class
of graphs embeddable on the torus is not.

Exercise 1 (a) A minor-closed class is decomposable iff each excluded
minor is connected.

Following [25] we say a graph class G is bridge-addable if whenever G ∈ G
and u and v are in different components of G then G + uv ∈ G. (Here
G+ uv denotes the graph obtained by adding the edge uv to G.) The class
G is addable if it is both decomposable and bridge-addable. The class P
of planar graphs is addable, and as we noted P = Ex(K5,K3,3). The class
GS of graphs embeddable on the surface S is bridge-addable, but it is not
decomposable and so not addable, except in the planar case.

Exercise 1 (b) A minor-closed class G is addable iff each excluded minor
is 2-connected.

2.2 Connectedness and number of components

It is perhaps natural to expect that a typical graph in a bridge-addable class
does not have many components, as there are many possible ways to join
components together. In fact we have the following non-asymptotic bounds,
from 2005. Let κ(G) denote the number of components of G.

Theorem 2. ([25]) If the class G of graphs is bridge-addable and Rn ∈u G
then

P(Rn is connected) > 1/e, E[κ(Rn)] < 2 and κ(Rn) ≤s 1 + Po(1).

The last part above means that for each k, P(κ(Rn) ≥ k+1) ≤ P(X ≥ k),
where X has the Poisson distribution with mean 1. Since for k = 1, 2, .. we
have

P(Po(1) ≥ k) = e−1
∑
j≥k

1

j!
=

1

ek!
(1 +

1

k+1
+ · · · ) < 1

k!

it follows from Theorem 2 that

P(κ(Rn) ≥ k + 1) <
1

k!
for each k = 1, 2, . . . . (1)
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Exercise 2 is to prove the first part of the above theorem. Let the class
G of graphs be bridge-addable and letRn ∈u G. Prove that P(Rn is connected) >
1/e, after showing a preliminary result in part (a).
(a) Given a graph G, let Bridge(G) denote the set of bridges, and let
Cross(G) denote the set of ‘non-edges’ or ‘possible edges’ between compo-
nents. Show that if the graph G has n vertices, then |Bridge(G)| ≤ n−κ(G);
and if κ(G) = k + 1 for some positive integer k then |Cross(G)| ≥ k(n− k).
(b) Complete the proof, as follows (or otherwise). Let Gkn be the set of
graphs G ∈ Gn with k components. Show that |Gk+1

n | ≤ 1
k |G

k
n|, by compar-

ing the set of pairs (G, e) such that G ∈ Gk+1
n and e ∈ Cross(G) with the set

of pairs (G, e) such that G ∈ Gkn and e ∈ Bridge(G).

For trees T and forests F , |Tn| = nn−2 and |Fn| ∼ e
1
2nn−2, see [30].

Thus for Fn ∈u F ,

P(Fn is connected) ∼ e−
1
2 . (2)

Forests have the fewest edges of all bridge-addable classes: perhaps they are
the ‘least likely to be connected’? It was conjectured in 2006 [26] that, if
the class G of graphs is bridge-addable and Rn ∈u G, then

P(Rn is connected) ≥ e−
1
2

+o(1). (3)

Balister, Bollobás and Gerke [2, 3] improved on the lower bound e−1; and
Addario-Berry, McDiarmid and Reed [1], and Kang and Panagiotou [17]
independently proved the conjectured inequality (3) in the special case when
we assume that G is also closed under deleting bridges. Recently Chapuy
and Perarnau (to appear in JCTB) established the full conjecture.

Theorem 3. [9] If the class G of graphs is bridge-addable and Rn ∈u G,
then

P(Rn is connected) ≥ e−
1
2

+o(1).

Here is a natural possible strengthening of this result.

Conjecture 1. [3] If the class G of graphs is bridge-addable, Rn ∈u G and
Fn ∈u F (where F is the class of forests), then

P(Rn is connected) ≥ P(Fn is connected).
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2.3 The fragment

The big component Big(G) of a graph G is the component with most vertices,
with ties broken in some way (for example, we take the lex first component
with the maximum number of vertices). The fragment ‘left over’, Frag(G), is
the subgraph induced on the vertices not in the big component (which could
be the empty graph). We think of Frag(G) as an unlabelled graph. Write
frag(G) for v(Frag(G)). The next result shows that, for a bridge-addable
class, Big(Rn) is giant!

Theorem 4 ([21]). If the class G of graphs is bridge-addable and Rn ∈u G
then E[frag(Rn)] < 2.

Exercise 3 is to prove this theorem, after a preliminary result.
(a) Show that, if the graph G has n vertices, then |Cross(G)| ≥ (n/2) ·
frag(G).
(b) Now prove Theorem 4 .

3 Growth constant

In order to deduce results about a class G of graphs, we need to know that
the numbers |G1|, |G2|, |G3|, . . . do not behave too erratically. Recall that
ρ = ρ(G) denotes the radius of convergence of the corresponding egf: thus
0 ≤ ρ ≤ ∞ and ρ−1 = lim supn→∞(|Gn|/n!)1/n. We say that G has growth
constant γ if 0 < γ <∞, and

(|Gn|/n!)1/n → γ as n→∞

that is
|Gn| = (γ + o(1))n n!.

In this case clearly ρ−1 = γ.

Many of the graph classes in which we are interested are decomposable,
but not all. For example, consider the class GS of graphs embeddable on
a given surface S, where S is not the sphere, say S is the torus. For each
graph G ∈ GS , each component certainly must be in GS . But given two
disjoint graphs in GS it does not follow that their union is: for example, we
cannot embed two disjoint copies of K5 in the torus.
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Exercise 4 Let us call a class G of graphs down-decomposable if each
component of each graph in G is also in G. Of course, any hereditary family
has this property, and in particular any minor-closed family.

Suppose that G is down-decomposable, let C be the class of connected
graphs in G, and suppose that C has growth constant γ. Show that G also has
growth constant γ. (Hint: you may want to use the ‘exponential formula’.)

Exercise 5 A graph is called apex if by deleting a vertex we may obtain a
planar graph. More generally, given a class G of graphs, the corresponding
apex class, ApexG, consists of all graphs G such that we may obtain a graph
in G by deleting at most one ‘apex’ vertex from G. It is easy to check that if
G is minor-closed then so is ApexG. Show that, if G has growth constant γ,
then ApexG has growth constant 2γ.

Observe that if G contains all paths then |Gn| ≥ 1
2n! and so ρ(G) ≤ 1.

Bernardi, Noy and Welsh [6] showed in 2010 that, if G is monotone (closed
under deleting edges) and does not contain all paths then ρ(G) =∞.

3.1 When is there a growth constant?

We need ‘Fekete’s lemma’, which is widely useful in combinatorics, in its
supermultiplicative form: see for example [32].

Lemma 5. Let f : N→ R≥0 be a function satisfying f(m+ n) ≥ f(m)f(n)
for all m,n ∈ N, and such that f(n) > 0 for n sufficiently large. Then

f(n)1/n → sup
m
f(m)1/m ≤ ∞ as n→∞.

Now we can prove the following lemma, which is a crucial first step in
investigating suitable graph classes.

Lemma 6 ([25]). Let the non-empty class G of graphs be small and addable.
Then G has a growth constant.

Proof. Since G is bridge-addable, by Theorem 2

P(Rn is connected) =
|Cn|
|Gn|

≥ 1

e
.
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Also, since G is decomposable, the disjoint union G of a graph in Ca and one
in Cb is in Ga+b. If a = b, as well as G consider G plus an arbitrary edge e
between the components. Then

|Ga+b| ≥
(
a+ b

a

)
|Ca||Cb| ≥

(a+ b)!

a! b!

|Ga|
e

|Gb|
e
.

It follows that f(n) = |Gn|
e2n!

satisfies f(a + b) ≥ f(a) · f(b) for all positive
integers a, b (that is, f is supermultiplicative). Now we can use ‘Fekete’s
lemma’, Lemma 5, gives

f(n)1/n → γ := sup
k
f(k)1/k > 0,

where γ <∞ since G is small. Thus G has growth constant γ.

By Lemmas 1 and 6 we have

Theorem 7. Every proper addable minor-closed class G of graphs has a
growth constant.

In particular the class P of planar graphs has a growth constant. For
any surface S other than the plane, the class GS of graphs embeddable in
S is bridge-addable but not addable. However, we can still see [19] that GS
has a growth constant, since it is ‘not much bigger’ than P, and in fact has
the same growth constant as P. We now know much more, as we will see
later.

By a result of Bernardi, Noy and Welsh (2010)) mentioned earlier, a
minor-closed class G of graphs has ρ(G) <∞ iff it contains all paths.

Conjecture 2 ([6]). Every proper minor-closed class G of graphs with ρ(G) <
∞ has a growth constant; and indeed the class C of connected graphs in G
has the same growth constant.

3.2 Pendant Appearances Theorem

Perhaps the most striking result we can deduce when a class has a growth
constant is the ‘Pendant Appearances Theorem’, from [25, 26]. We shall
want a slight extension of this result.

Given a connected graph H, let us say that a graph G has a pendant
copy of H if ‘G has a bridge with H at one end’; that is, if G has a bridge
e such that one component of G− e is a copy of H.
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It is convenient to ask for more. Let H be a connected h-vertex graph
with vertex set V (H) ⊂ N, and let G be a graph on vertex set {1, . . . , n}
where n > h. Let W be an h-set of vertices of G, and let the ‘root’ rW
be the least element in W . We say that H has a pendant appearance at W
in G if (a) the increasing bijection from V (H) to W gives an isomorphism
between H and the induced subgraph G[W ] of G; and (b) there is exactly
one edge in G between W and the rest of G, and this edge is incident with
the root rW .

Call a connected rooted graph H attachable to G if whenever we have
a graph G in G and a disjoint copy of H, and we add an edge between a
vertex in G and the root of H, then the resulting graph (which has a pendant
copy of H) must be in G. For an addable minor-closed class G, the class of
attachable graphs is the class of all connected rooted graphs in G. For GS ,
the class of attachable graphs is the class of connected rooted planar graphs.

In the standard version of the Pendant Appearances Theorem, we assume
that G has a growth constant, and can then often deduce that Rn ∈u G
has a linear numbers of vertices of each degree, has exponentially many
automorphisms, and so on. We give a slight generalisation of the theorem,
where we do not assume the existence of a growth constant.

Theorem 8. Let G be a class of graphs with 0 < ρ(G) < ∞, and let the
connected rooted graph H be attachable to G. Then there exists α > 0 such
that the following holds. Let H denote the class of graphs G in G with at
most α v(G) pendant appearances of H. Then ρ(H) > ρ(G).

If G has a growth constant we quickly obtain the usual version.

Corollary 9. (Pendant Appearances Theorem [25, 26]) Let the class G of
graphs have a growth constant, and let the connected rooted graph H be
attachable to G. Then there exists α > 0 such that for Rn ∈u G

P(Rn has ≤ αn pendant appearances of H) = e−Ω(n).

Proof of Corollary 9. LetH be as in Theorem 8. Then the above probability
equals

|Hn|
|Gn|

≤ (ρ(H)−1 + o(1))n

(ρ(G)−1 + o(1))n
= e−Ω(n),

as required.
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Sketch of proof of Theorem 8. Of course ρ(H) ≥ ρ(G). The idea of the proof
is to show that, if ρ(H) = ρ(G), and |Hn| is close to ρ(H)−nn! for some
large n, then we can construct “too many” graphs in G on (1 + δ)n vertices.
Essentially this is done by attaching linearly many copies of H to each graph
G in Hn: the fact that G has ‘few’ appearances of H limits the amount of
double-counting involved.

3.3 Applications of the Pendant Appearances Theorem

In this section we present a few applications of Corollary 9. We shall meet
more applications later.

Vertex degrees

By applying Corollary 9 to particular graphs H, for example to a star
on k vertices, we can learn about vertex degrees.

Proposition 10 ([25]). Let the class G of graphs have a growth constant,
and let Rn ∈u G. Let k ≥ 1 and suppose that the star with k − 1 edges,
rooted at its centre, is attachable to G. Then there exists a constant α > 0
such that

P(Rn has < αn vertices of degree k) = e−Ω(n).

Symmetries

The next result follows immediately from the fact that a graph with
linearly many vertices that are connected to at least two leaves has expo-
nentially many automorphisms.

Proposition 11. Let the class G of graphs have a growth constant, and
suppose that the 3-vertex path, rooted at its centre, can be attached to G.
Then there is a constant α > 0 such that, for Rn ∈u G,

P(Rn has < 2αn automorphisms ) = e−Ω(n).

This result is in contrast to what happens with classical random graphs:
for example, the Erdős-Rényi random graph Gn, 1

2
has whp only the trivial

automorphism; and indeed the probability that Gn, 1
2

has a non-trivial auto-

morphism is 2−(1+o(1))n. We will use Proposition 11 in the next section on
unlabelled graphs.
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Distinct growth constants

Consider two distinct proper addable minor-closed classes of graphs A
and B, where A ⊂ B. By Theorem 7, they have growth constant γA and γB
respectively. Let us see that γA < γB (as was shown in [6]).

For let G be a connected graph in B and not in A. Then by the Pendant
Appearances Theorem, there is a constant δ > 0 such that the propor-
tion of graphs in Bn with no pendant appearances of G is O(e−δn). Hence
|An|/|Bn| = O(e−δn), and so γA ≤ γB e−δ.

Colouring

There is a fast expected-time colouring algorithm for random planar
graphs, as follows. Let Rn ∈u P, where P is the class of planar graphs.
Since with very high probability Rn has linearly many pendant copies of K4,
we may check if Rn has a pendant copy of K4 in constant expected time.
If there is one, then we apply the quadratic time algorithm to four-colour
planar graphs, which follows from the proof of the four-colour theorem,
see [31]. If there is no pendant copy of K4, which happen with probability
e−Ω(n), we colour the graph optimally in subexponential time O(c

√
n) by

using the
√
n-separator theorem. It follows that we can colour a random

planar graph Rn optimally in quadratic expected time. This observation is
due to Anusch Taraz and Michael Krivelevich, see [25]. Further, we see that
we can determine χ(Rn) in constant expected time.

Hadwiger’s Conjecture is one of the major conjectures of graph theory.
It says that, for each positive integer k, if χ(G) ≥ k then G has a minor Kk;
and this is known to be true for k ≤ 6. Hadwiger’s Conjecture being false
says that for some k, there is a graphG ∈ Ex(Kk) with χ(G) ≥ k. But in this
case, Corollary 9 then implies that all but an exponentially small proportion
of graphs G in (Ex(Kk))n have χ(G) ≥ k and so are counterexamples.

3.4 Unlabelled graphs

For unlabelled graphs we can follow some of the steps which worked for
labelled graphs. We think of an unlabelled graph as an equivalence class of
labelled graphs. Thus the set Gn of (labelled) graphs is partitioned into a set
of unlabelled graphs, which we denote by G̃n; and similarly we write G̃ for
the set of unlabelled graphs in G, and write ρ̃G for the radius of convergence
of the generating function G̃(x) =

∑
n≥0 |G̃n|xn.

Let G be a class of graphs such that Gn is non-empty for n sufficiently
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large. Observe that ρ̃G ≤ 1. We say that G (and the corresponding set G̃
of unlabelled graphs) has unlabelled growth constant γ̃ = γ̃G if |G̃n|1/n → γ̃
as n → ∞. In this case γ̃ must ρ̃−1

G . We shall see that the class P of
planar graphs has an unlabelled growth constant, and indeed this holds
more generally. Lemma 1 was stated in terms of labelled graph classes, but
in fact the ‘smallness’ result of Dvorák and Norine [10] is for unlabelled
graph classes.

Lemma 12 ([10]). For each proper minor-closed class G of graphs there is
a constant c such that |G̃n| ≤ cn for each n.

This result immediately implies Lemma 1, since |Gn| ≤ n! · |G̃n|. We may
now prove the main result of this section.

Theorem 13. Let G be a proper addable minor-closed class of graphs, and
let C be the class of connected graphs in G. Then G and C have an unlabelled
growth constant, and γ̃G = γ̃C > γG (= γC).

For example, the class F of forests has unlabelled growth constant γ̃F ≈
2.956 > γF = e ≈ 2.718, see Otter [29]. Thus we must have γ̃G ≥ γ̃F ≈ 2.956
for each class G as above.

Proof. Let C̃• denote the set of (vertex-) rooted graphs in C̃. Then f(n) =
|C̃•n| is supermultiplicative; that is, for positive integers a and b

|C̃•a+b| ≥ |C̃•a| · |C̃•b |. (4)

To see this, note first that we may assume that a ≤ b. We may form a graph
H in C̃•a+b from disjoint copies of graphs Ha ∈ C̃•a with root ra and Hb ∈ C̃•b
with root rb, by adding the edge rarb and making ra the new root r∗. There
is no double counting, since there is a unique bridge e in H incident with
r∗ such that at least half the vertices are in the component of H \ e not
containing r∗. Thus (4) holds, as required.

Since f(n) is supermultiplicative, by Fekete’s Lemma (Lemma 5), as
n→∞

|C̃•n|1/n → γ̃ := sup
k
|C̃•k |1/k > 1;

and γ̃ <∞ by Lemma 12.

We have now seen that C̃• has unlabelled growth constant γ̃, and so
this holds also for C̃, since |C̃n| ≤ |C̃•n| ≤ n |C̃n|. It follows that G̃ also has
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unlabelled growth constant γ̃, for example by noting that |C̃n| ≤ |G̃n| ≤
|C̃•n+1|.

It remains to show that γ̃G > γG . Recall that the isomorphism class
of a graph G in Gn has size n!/aut(G). Thus by Proposition 11, with the
constant α > 0 introduced there, the number of graphs in Gn which are in
isomorphism classes of size > 2−αnn! is at most 2−Ω(n)|Gn|, which is at most
1
2 |Gn| for n sufficiently large. But then

|G̃n| ≥
1

2
|Gn|/(2−αnn!),

that is
|Gn|/n! ≤ 21−αn|G̃n|;

and it follows that γG ≤ 2−αγ̃G .

By the last theorem, the class P of planar graphs has unlabelled growth
constant γ̃P > γP . (This was first shown in [25].) We know γP precisely
– from Giménez and Noy [13, 14] in 2009 we have γ ≈ 27.226878 – but
this is not the case for γ̃P . The best known bounds are γP < γ̃P ≤ 30.061,
see [7, 25]. (We do not know an asymptotic counting formula or even smooth-
ness for P̃.) We noted that, for each fixed surface S, the class GS of graphs
embeddable in S has growth constant the planar growth constant γP . Sim-
ilarly, GS has unlabelled growth constant γ̃P .

There is a natural conjecture corresponding to Conjecture 2 for the la-
belled case.

Conjecture 3. Each proper minor-closed class G has an unlabelled growth
constant γ̃.

Connectivity

We could adapt the first part of the proof of Theorem 13 above to prove
the key result Lemma 6 on the existence of growth constants for labelled
graphs. The proof we gave for Lemma 6 relied on the connectivity lower
bound for a (labelled) bridge-addable class given in Theorem 2. We do
not know any corresponding result for a bridge-addable class of unlabelled
graphs.

Conjecture 4. There is a δ > 0 such that, if the graph class A is bridge-
addable, An 6= ∅, and R̃n ∈u Ã, then

P(R̃n is connected) ≥ δ for each n. (5)
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For trees and forests we have

|T̃n|/|F̃n| → τ ≈ e−0.5226 ≈ 0.5930 as n→∞,

4 Smoothness and the fragment

In this section we introduce the concept of smoothness for a graph class, and
we see that each proper addable minor-closed proper graph class G is smooth
(we saw in Theorem 7 that G has a growth constant); and each surface class
GS is smooth (we saw that it has growth constant γP). Next we introduce
the Boltzmann Poisson random graph BP (G, ρ), and see that, under suitable
conditions, the unlabelled fragment of the random graph Rn converges in
distribution to a Boltzmann Poisson random graph. These results tell us
for example about the limiting probability that Rn is connected. Finally we
sketch a fuller picture for the addable case.

Let us define smoothness. Let G be any class of graphs with 0 < ρ =
ρ(G) <∞. Let gn = |Gn| and let rn = ngn−1/gn. As an aside, observe that
if isolated vertices can be freely added to or removed from graphs in G, then
rn is the expected number of isolated vertices in Rn ∈u G. It is easy to see
that

lim inf
n→∞

rn ≤ ρ ≤ lim sup
n→∞

rn. (6)

Thus if rn tends to a limit as n→∞ then that limit must be ρ. We call G
smooth if rn → ρ as n→∞.

In this case, G must have growth constant ρ−1. For suppose that G is
smooth and let 0 < ε < 1. Then there is a k such that gn > 0 for n ≥ k and
ρ/(1 + ε) < rn < ρ/(1− ε) for n ≥ k + 1. Thus

(1− ε)ρ−1 <
gn

ngn−1
< (1 + ε)ρ−1

and so for n > k

((1− ε)ρ−1)n−k
gk
k!
<
gn
n!

< ((1 + ε)ρ−1)n−k
gk
k!
.

But now

((1−ε)−kρk gk
k!

)
1
n (1−ε)ρ−1 <

(gn
n!

) 1
n
< ((1+ε)−kρk

gk
k!

)
1
n (1+ε)ρ−1

and we see that (gn/n!)1/n → ρ−1 as n→∞, as required.
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For example, for the class F of forests,

rn = n|Fn−1|/|Fn| → e−1 as n→∞

so F is smooth. Indeed all the classes for which we know an asymptotic
counting formula are smooth, including (as well as the forests) series-parallel
graphs, P, GS . Showing smoothness is often a crucial step in proving results
about Rn ∈u G.

Smoothness for addable classes and for GS

We know that GS has growth constant γ, where γ = γP is the planar
graph growth constant. Further, the asymptotic counting formula for |Pn|
given by Giménez and Noy [13] shows that P is smooth. Bender, Canfield
and Richmond [4] in 2008 show that the surface class GS is smooth for any
surface S. Their proof does not involve an asymptotic counting formula
(and indeed none was then known). Such a formula was given in 2011 by
Chapuy, Fusy, Giménez, Mohar and Noy [8], and by Bender and Gao [5].

The composition method used by Bender, Canfield and Richmond will
tell us more. The key idea in the proof is to consider the core. The core
of G, core(G), is the unique maximal subgraph H such that the minimum
degree δ(H) ≥ 2 (and is empty if G is a forest). Let Gδ≥2 denote the class
of graphs in G with minimum degree δ ≥ 2. The idea is that if Gδ≥2 grows
reasonably smoothly then rooting trees at vertices in the core leads to the
class G being smooth.

Theorem 14. ([4, 20]) Let G either be a proper addable minor-closed class
of graphs, or be the class GS of graphs embeddable in a given surface S; and
let C be the class of connected graphs in G. Then G and C are both smooth.

Perhaps more is true?

Conjecture 5. Every proper minor-closed class is smooth.

Sketch proof of smoothness for addable case

Let G be an addable minor-closed class, not F . Let us sketch why G
is smooth. Note that F ⊆ G, and C3 is attachable to G. Hence, by the
Pendant Appearances Theorem, ρ(G) < ρ(F) (= 1/e).

We shall use the product and the composition of graph classes from the
symbolic method – see [11]. Let G− be the class of graphs G ∈ G with no
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tree components. We may think of G as the product of G− and F . But
ρ(G−) < ρ(F), so it suffices to show that G− is smooth.

Gδ≥2 is addable and small, so by Lemma 6 it has a growth constant. Call
this class B. Graphs G in G− are obtained by starting with a graph in B
and rooting a tree at each vertex. Then G− is the composition of B with
the class T • of rooted trees, so

G−(x) = B(T •(x)).

Now

|G−n |/n! = [xn]G−(x) = [xn]

n∑
k=0

|Bk| (T •(x))k/k!

∼ [xn]
∑

k:|k−αn|<εn

|Bk|/k! (T •(x))k,

where α = 1− ρ(Gδ≥2), 0 < α < 1. This last ‘concentration’ result is a key
step in the proof, see [4], and see also [22]. We have

|G−n |
n!
∼

∑
k:|k−αn|<εn

|Bk|/k! [xn]T •(x)k

and
|G−n+1|

(n+ 1)!
∼

∑
k:|k−αn|<εn

|Bk|/k! [xn+1]T •(x)k.

Each individual ratio

[xn+1]T •(x)k/ [xn]T •(x)k

is close to ρ−1
G . Hence

|G−n+1|
(n+ 1)|G−n |

∼ ρ−1
G .

This completes our sketch proof of smoothness, but what will smoothness
yield?
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4.1 Boltzmann Poisson random graph

Let G be a non-empty class of graphs, and let G̃ denote the set of unlabelled
graphs in G. Fix ρ > 0 such that G(ρ) is finite; and let

µ(H) =
ρv(H)

aut(H)
for each H ∈ G̃ (7)

(where aut(φ) = 1 and so µ(φ) = 1, if the empty graph φ is in G̃). We will
normalise these quantities to give probabilities. Since each graph H ∈ G̃
consists of v(H)!

aut(H)
isomorphic graphs G ∈ G, we have

zv(H)

aut(H)
=
∑
G∈H

aut(H)

v(H)!

zv(H)

aut(H)
=
∑
G∈H

zv(G)

v(G)!
.

Therefore

G(z) =
∑
H∈G̃

∑
G∈H

zv(G)

v(G)!
=
∑
H∈G̃

zv(H)

aut(H)
.

Thus
G(ρ) =

∑
H∈G̃

µ(H). (8)

Now assume that G is decomposable. By convention, the empty graph
φ is in G. The Boltzmann Poisson random graph R = BP(G, ρ) takes values
in G̃, with

P(R = H) =
µ(H)

G(ρ)
for each H ∈ G̃.

Let C denote the class of connected graphs in G. Observe that P(R =
∅) = G(ρ)−1 = e−C(ρ). Also, if the one-vertex graph K1 is in G, then
P(R = K1) = ρe−C(ρ). For each H ∈ C̃ let κ(G,H) denote the number of
components of G isomorphic to H.

Proposition 15. The random variables κ(R,H) for H ∈ C̃ are independent,
with κ(R,H) ∼ Po(µ(H)).

Proof. Each sum and product below is over all H in C̃. Let the unlabelled
graph G consist of nH components isomorphic to H for each H ∈ G̃, where
0 ≤

∑
H nH <∞. Then

ρv(G) =
∏
H

ρv(H)nH

16



and
aut(G) =

∏
H

aut(H)nHnH !.

Also since
∑

H µ(H) = C(ρ) by (8) applied to C,
1

G(ρ)
= e−C(ρ) =

∏
H

e−µ(H).

Hence

P(R = G) = e−C(ρ) ρ
v(G)

aut(G)

=
∏
H

e−µ(H)µ(H)nH

nH !

=
∏
H

P(Po(µ(H)) = nH).

Thus the probability factors appropriately, and the random variables κ(R,H)
for H ∈ C̃ satisfy

P(κ(R,H) = nH ∀H ∈ C̃) =
∏
H

P(κ(R,H) = nH).

This completes the proof.

4.2 Fragments for addable classes and surface classes

Recall that the fragment Frag(G) of a graph G is the graph remaining when
we discard the largest component (breaking ties in some way): we view it
as an unlabelled graph. Recall also that for a decomposable graph class G,
the Boltzmann Poisson random graph BP (G, ρ) is well defined when 0 <
G(ρ) < ∞, and takes values in G̃. Here is the Fragments Theorem for
addable minor-closed classes and surface classes G (there are more general
versions).

Theorem 16. (Fragments Theorem)

(a) Let G be a proper addable minor-closed class and let ρ = ρ(G). Then
0 < G(ρ) < ∞; and for Rn ∈u G, the fragment converges in distribution to
BP (G, ρ).

(b) Let S be a given surface, let G be GS, and let ρ = ρ(P) (where P
is the class of planar graphs). Then 0 < G(ρ) < ∞; and for Rn ∈u G, the
fragment converges in distribution to BP (P, ρ).
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In the addable case (a) above, let C be the class of connected graphs in
G, and in the surface case (b), let C be the class of connected graphs in P.
Then

P(Rn is connected )→ P(R is connected ) = e−C(ρ).

Consider the classes T of trees and F of forests, which have radius of con-
vergence ρ = e−1. For Rn ∈u F , since T (ρ) = 1

2 we have

P(Rn is connected ) =
|Tn|
|Fn|

→ e−T (ρ) = e−
1
2 as n→∞,

as we already saw in (2).

Fragments theorem - proof idea (assuming smoothness)

Call a graph H freely addable to G when a graph G is in G if and only
if the disjoint union G ∪ H is in G. Observe that G is decomposable if
and only if each graph H ∈ G is freely addable to G. Also, for a surface
class GS , the freely addable graphs are precisely the planar graphs. Recall
that µ(H) = ρv(H)/aut(H), and rn = n|Gn−1|/|Gn|. The following lemma is
essentially Lemma 5.1 in [19].

Lemma 17. Let G be any class of graphs and let ρ > 0. Let H1, . . . ,Hm

be pairwise non-isomorphic connected graphs, each freely addable to G. Let
k1, . . . , km be non-negative integers, and let K =

∑m
i=1 kiv(Hi). Then for

Rn ∈u G,

E

[
m∏
i=1

(κ(Rn, Hi))ki

]
=

m∏
i=1

µ(Hi)
ki

K∏
j=1

(rn−j+1/ρ).

Proof. Let vi = v(Hi) for i = 1, . . . ,m. We may construct a graph G in
Gn with at least ki components isomorphic to Hi as follows: choose the
vertex sets for the different components (listing the vertex sets in order);
then insert appropriate copies of Hi on the vertices of each component; and
finally choose any graph in G of order n−K on the remaining n−K vertices.
Since the number of ways of putting a copy of Hi on a given set of v(Hi)
vertices is v(Hi)!/aut(Hi), the total number of constructions is

m∏
i=1

ki∏
j=1

((
n−

∑i−1
s=1 ksvs − (j − 1)vi

vi

)
· vi!

aut(Hi)

)
· |Gn−K |

= (n)K

m∏
i=1

(aut(Hi))
−ki · |Gn−K |.
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Now observe that each graphG ∈ Gn is constructed exactly
∏m
i=1(κ(G,Hi))ki

times; and so the last expression above equals∑
G∈Gn

m∏
i=1

(κ(G,Hi))ki .

But by definition E [
∏m
i=1(κ(Rn, Hi))ki ] is this last quantity divided by |Gn|.

Hence

E

[
m∏
i=1

(κ(Rn, Hi))ki

]
= (n)K

h∏
i=1

(aut(Hi))
−ki · |Gn−K |/|Gn|

=
h∏
i=1

µ(Hi)
ki ·

K∏
j=1

(
ρ−1(n−j+1)

|Gn−j |
|Gn−j+1|

)

=
h∏
i=1

µ(Hi)
ki ·

K∏
j=1

(rn−j+1/ρ)

as required.

When we add the assumption that G is smooth, we find convergence of
distributions.

Lemma 18. Let the graph class G be smooth, and let ρ = ρ(G). Let
H1, . . . ,Hm be a fixed family of pairwise non-isomorphic connected graphs,
each freely addable to G. Then as n→∞ the joint distribution of the random
variables κ(Rn, H1), . . . , κ(Rn, Hm) converges in total variation distance to
the product distribution Po(µ(H1))⊗ · · · ⊗ Po(µ(Hm)).

Proof. Since rn → ρ as n→∞, by the last lemma

E

[
m∏
i=1

(κ(Rn, Hi))ki

]
→

m∏
i=1

µ(Hi)
ki

as n → ∞, for all non-negative integers k1, . . . , km. A standard result on
the Poisson distribution now shows that the joint distribution of the random
variables κ(Rn, H1), . . . , κ(Rn, Hm) tends to that of independent random
variables Po(µ(H1)), . . . ,Po(µ(Hm)), see for example Lemma 5.4 of McDi-
armid, Steger and Welsh [25] or see Janson,  Luczak and Ruciński [16]. Thus
for each m-tuple of non-negative integers (t1, . . . , tm)

P[κ(Rn, Hi) = ti ∀i]→
∏
i

P[κ(Rn, Hi) = ti] as n→∞;
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and so we have pointwise convergence of probabilities, which is equivalent
to convergence in total variation.

Putting the last lemma together with

E[v(Frag(Rn))] < 2

(which shows that we need not worry about large components H) will yield
the Fragments Theorem.

4.3 Fuller story for addable minor-closed classes

Recall that the core (or 2-core) core(G) of a graph G is the unique maximal
subgraph with minimum degree at least 2, and it is empty if G is a forest.
Thus core(G) is the graph obtained by repeatedly trimming off (deleting)
leaves until none remain, and then deleting any isolated vertices. The core is
at the heart of all our proofs, and should appear naturally in the theorems.
Given a class G of graphs, we let Gδ≥2 denote the class of graphs in G with
minimum degree at least two. The first two parts of the next result collect
together results mentioned above, in Theorems 14 and 16 (a), for the addable
case. Part (d) corresponds to the concentration result in the sketch proof of
smoothness for the addable case.

Theorem 19. Let G be a proper addable minor-closed class of graphs, and
let C be the class of connected graphs in G. Then the following statements
hold.

(a) Both G and C are smooth, with the same radius of convergence ρ0.

(b) G(ρ0) < ∞; and for Rn ∈u G, the fragment of Rn converges in distri-
bution to BP (G, ρ0). In particular,

P(Rn is connected )→ e−C(ρ0) as n→∞.

Now suppose that G is not just the class of forests. Then ρ0 < 1/e, and
the following statements hold.

(c) Both Gδ≥2 and Cδ≥2 are smooth, with radius of convergence ρ2, where
ρ2 is the unique root x in (0, 1) to xe−x = ρ0 (and ρ2 = T •(ρ0)).
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(d) Given ε > 0, for Rn ∈u G or Rn ∈u C,

P(|v(core(Rn))− (1− ρ2)n| > εn) = e−Ω(n). (9)

(e) Gδ≥2(ρ2) <∞; and both the core of the unlabelled fragment of Rn ∈u G,
and the unlabelled fragment of Rn ∈u Gδ≥2, converge in distribution to
BP (Gδ≥2, ρ2).

We may see easily that, when G is not just the class of forests, with high
probability the number of vertices in the core of Rn ∈u G tends to infinity.
Also, given that the core has vertex set W , the core is uniformly distributed
on the graphs in Gδ≥2 on W . Hence the result that the core of the fragment
of Rn ∈u G has limiting distribution BP (Gδ≥2, ρ2) is implied easily by the
corresponding result for the fragment of Rn ∈u Gδ≥2.

It is possible to extend the above picture to encompass also graphs on
surfaces – but not here!
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[17] M. Kang and K. Panagiotou, On the connectivity of random graphs from
addable classes, J. Combinatorial Theory B 103 (2013), 306 – 312.

[18] L. Lovász. Graph Minor Theory. Bull. Amer. Math. Soc., 43, (2006), 75–86.

[19] C. McDiarmid. Random graphs on surfaces. J. Combin. Theory Ser. B 98
(2008), 778–797.

[20] C. McDiarmid. Random graphs from a minor-closed class. Combin. Probab.
Comput. 18 (2009), 583–599.

[21] C. McDiarmid. Connectivity for random graphs from a weighted bridge-
addable class, Electronic J Combinatorics 19(4) (2012) P53.

[22] C. McDiarmid. Random graphs from a weighted minor-closed class, Electronic
J Combinatorics 20 (2) (2013) P52, 39 pages.

[23] C. McDiarmid. Connectivity for bridge-alterable graph classes, European J.
Comb. 56 (2016) 33 – 39.

[24] C. McDiarmid, B. Reed. On the maximum degree of a random planar graph.
Combin. Probab. Comput. 17 (2008) 591– 601.

[25] C. McDiarmid, A. Steger, D. J. A. Welsh. Random planar graphs. J. Combin.
Theory Ser. B 93 (2005), 187–205.

[26] C. McDiarmid, A. Steger, D. J. A. Welsh. Random graphs from planar and
other addable classes. Topics in discrete mathematics, 231–246, Algorithms
Combin., 26, Springer, Berlin, 2006.

22



[27] C. McDiarmid, K. Weller. Bridge-addability, edge-expansion and connectivity.
Combin. Probab. Comput. to appear.

[28] S. Norine, P. Seymour, R. Thomas, P. Wollan, Proper minor-closed families
are small, J. Combin. Theory Ser. B 96 (2006), 754–757.

[29] R. Otter. The number of trees. Annals Math. 49 (1948), 583–599.
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