
Lecture notes on the differential equation
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Dieter Mitsche

The idea of the differential equation method is to approximate the trajectory of a random process
by solutions of (deterministic) differential equations (whose behavior is easier to understand).

Example 1 : Let c > 0, suppose cn balls are thrown sequentially u.a.r. into one of n bins
(assuming n → ∞). Let X(i) be the random variable counting the number of empty bins after i
balls have been thrown. Clearly, X(0) = n. The sequence (X(i))i is Markovian, and we have

X(i+ 1) = X(i)− δEi+1
,

where δEi+1
= 1 if the (i+ 1)-st ball is thrown in an empty bin, and 0 otherwise. We have

P(δEi+1
= 1) =

X(i)

n
,

and hence

P(X(i+ 1)−X(i) = −1) =
X(i)

n
, P(X(i+ 1) = X(i)) = 1− X(i)

n
,

and thus

E(X(i+ 1)−X(i)) = −X(i)

n
.

The idea is now to convert this difference equation (X(i) is always integer) into a differential
equation. Let x(t) model the behavior of 1

nX(tn). That is, x(t) can be interpreted as the scaled
number of empty bins when tn balls have been thrown; or in other words, it is also the probability
of a random bin to be empty after a total of tn balls being thrown. We have x(0) = 1 and

x(t+
1

n
)− x(t) = −δEtn+1

.

For n→∞, assuming the change of the function equal to the expected changes, we have

dx/dt = −x.

We point out that this differential equation is only suggested, and the steps are not independent.
The differential equation can be solved by separation of variables: we have −dx/x = dt, and we
obtain x(t) = Ce−t for some constant C ∈ R. Since x(0) = 1, we obtain C = 1. Thus, at time t
around an e−t-fraction of bins are empty. Concentration can be shown using martingales: suppose
T balls to be thrown in total. For j ≥ 0, define the random variables Zj = E(X(T ) | Fj), with Fj to
be the σ-algebra of measurable events after j balls have been thrown. Then (Zj)j is a martingale,

and we have |Zj−Zj−1| ≤ 1. Then, by Azuma’s inequality, P(|X(T )−E(X(T ))| >
√
αT ) ≤ 2e−α/2.

Example 2 : Let G0 be the empty graph on n vertices and let Gt the graph obtained as follows:
choose a vertex u of minimum degree in Gt−1 (arbitrarily among such vertices) and choose u.a.r. a
vertex v not yet adjacent to u, and set Gt = Gt−1 ∪ {u, v}. How the degrees of the vertices of Gt
evolve? In order to analyze this, first define Yi(t) to be the random variable counting the number
of vertices of degree i in Gt. We split the analysis into phases: we are in phase k, if the minimum
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degree in Gt is k (that is, we are in phase k, if k is the smallest integer with Yk(t) > 0).

We look at Phase 0 in more detail. In phase 0, u has degree 0, and vertex v has probability Yi(t)
n−1

to have degree i, i ≥ 0. Clearly, Y0(t) decreases by either 1 or 2, and Y1(t) increases by two (if
deg(v) = 0), by one (if deg(v) ≥ 2), or it stays the same (if deg(v) = 1). Similarly, the behavior
can be obtained for Yi(t) with i ≥ 2. More precisely, define Xi to be the indicator random variable
to be 1 if v has degree i, and 0 otherwise. We have

Y0(t+ 1) = Y0(t)− 1−X0, Y1(t+ 1) = Y1(t) + 1 +X0−X1, Yi(t+ 1) = Yi(t) +Xi−1−Xi for i ≥ 2.

Hence

E(Yi(t+ 1)− Yi(t) | Gt) = −1i=0 + 1i=1 +
Yi−1(t)− Yi(t)

n− 1
,

with Y−1(t) = 0 for all t. Now put zi(x) = 1
nYi(xn). Again, assuming suggested changes equal to

expected changes, and taking the limit as n→∞, we get

z′i(x) = −1i=0 + 1i=1 + zi−1(x)− zi(x),

with z−1(t) = 0 for all t. We have z0(0) = 1, zi(0) = 0 for all i > 0. Solving iteratively, we obtain
z′0(x) = −1 − z0(x), which can be solved by separation of variables and yields z0(x) = 2e−x + 1.

This can be used to obtain z1(x) = 2xe−x, and more generally, zi(x) = 2xi

i!ex for any i ≥ 1. As
before, we can use Azuma’s inequality to obtain concentration. Later phases are solved similarly
(although the process is not Markovian, since some edges are forbidden because the original vertex
u already has some neighbors, but as long as there are not too many forbidden edges, the analysis
still works out fine to obtain the first order terms).

General setup. The idea is the following: suppose we have

E(Y (i+ 1)− Y (i) | Y (i)) = F (i/n, Y (i)/n) + o(1)

for some deterministic well-behaved function F and suppose that |Y (i + 1) − Y (i)| is never too
big. Then we could expect to have Y (tn) = y(t)n + o(n), where y(t) is the deterministic function
being the unique solution to y′(t) = F (t, y(t)) and y(0) = Y (0)/n. The motivation behind this
comes from stability of differential equations that shows that functions with similar initial values
and similar derivatives remain close (recall that a real function F (x1, x2) is L-Lipschitz-continuous,
if F (x1, x2) − F (x′1, x

′
2) ≤ Lmax{|x1 − x′1|, |x2 − x′2|} holds). We will use the following inequality

of Gronwall :

Theorem 0.1. Given a continuous function x(t) defined on [0, T ], assume that there is L ≥ 0 such

that x(t) ≤ C + L
∫ t
0
x(s)ds for t ∈ [0, T ), for some C ∈ R. Then x(t) ≤ CeLT for t ∈ [0, T ].

Proof. Let y(t) = L
∫ t
0
x(s)ds. We have

(y(t)e−Lt)′ = (y′(t)− Ly(t))e−Lt = L(x(t)− y(t))e−Lt ≤ LCe−Lt.

Integration gives
y(t)e−Lt ≤ −Ce−Lt + C

and thus x(t) ≤ C + y(t) ≤ CeLt.

We then have the following lemma regarding stability:
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Lemma 0.1. Let y(t) and z(t) two real, differentiable functions defined on [0, T ] for some T ∈ R,
with y(0) = ŷ, and let λ, δ > 0. Suppose that for all t ∈ [0, T ], y′(t) = F (t, y(t)), |z(0) − ŷ| ≤ λ,
|z′(t) − F (t, z(t))| ≤ δ with F being L-Lipschitz-continuous on some bounded domain D ⊆ R2.
Let σ ∈ [0, T ) be such that (t, y(t)) and (t, z(t)) are in D for all [0, σ]. Then, for all t ∈ [0, σ],
|z(t)− y(t)| ≤ (λ+ δσ)eLσ.

Proof. We have

|z(t)− y(t)| ≤|z(0)− y(0)|+
∫ t

0

|z′(s)− y′(s)|ds

≤λ+ δt+

∫ t

0

|F (s, z(s))− F (s, y(s))|ds.

By Lipschitz-continuity of F , and since (t, y(t)) and (t, z(t)) are in D for all t ∈ [0, σ], for all such t,

|z(t)− y(t)| ≤ (λ+ δσ) + L

∫ t

0

|z(s)− y(s)|ds.

By Gronwall’s inequality, for all such t,

|z(t)− y(t)| ≤ (λ+ δσ)eLσ.

We can now state the main theorem, known as the differential equation method :

Theorem 0.2. Given n ≥ 1, a bounded domain D ⊆ R2, a function F with F : D → R, and
σ-algebras F0 ⊆ F1 ⊆ . . ., suppose that the random variables (Y (i))i are Fi-measurable for i ≥ 0.
Suppose also that for all i ≥ 0, the following holds whenever (i/n, Y (i)/n) ∈ D:

1. |E(Y (i+ 1)− Y (i) | Fi)− F (i/n, Y (i)/n)| ≤ δ for some δ ≥ 0, with F being L-Lipschitz
continuous for L ∈ R.

2. |Y (i+ 1)− Y (i)| ≤ β for some β > 0,

3. |Y (0)− ŷn| ≤ λn for some λ > 0, for some (0, ŷ) ∈ D.

Then there are R = R(D,F,L) ∈ [1,∞) and T ∈ (0,∞) such that for λ ≥ δmin{T, 1/L}+R/n, so

that with probability at least 1− 2e−nλ
2/(8Tβ2) we have

max
0≤i≤σn

|Y (i)− y(i/n)n| ≤ 3eLTλn,

where y(t) is the unique solution to y′(t) = F (t, y(t)), y(0) = ŷ, and σ = σ(ŷ) is any choice of
σ ≥ 0 such that (t, y(t)) has `∞-distance at least 3eLTλ from the boundary of D for all t ∈ [0, σ).

Idea of proof : We will not give the proof of this theorem but give some intuition: By the first
two conditions and Azuma’s inequality, with high probability,

Y (j)− Y (0) ≈
∑

0≤i<j

E(Y (i+ 1)− Y (i) | Fi) =
∑

0≤i<j

F (
i

n
,
Y (i)

n
± δ)
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and
y(j/n)n− y(0)n =

∑
0≤i<j

(y((i+ 1)/n)− y(i/n))n ≈
∑

0≤i<j

F (i/n, y(i/n)).

Comparing these expressions, we can bound |Y (i)−y(i/n)n| using (a discrete variant) of Gronwall’s
inequality, yielding the desired conclusion (taking also into account the third condition).

Remark : The theorem can be extended to a system of differential equations. Also, large one-step
changes are allowed, as long as they occur with small probability.
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Exercises
1. Consider the process of randomly adding edges (one after the other, one edge at each step) to

an initially empty graph on n vertices subject to the condition that every vertex has degree
at most 2. Analyze the number of degree 0 vertices at the t-th step of the algorithm, for t
such that n−t√

n
→∞.

2. Given the following randomized algorithm for obtaining a maximum independent set in a
random r-regular graph G ∈ Gn,r:
given V = {v1, . . . , vn} vertices from a Gn,r and r
let S = ∅ and Z = V
while Z 6= ∅ repeat
choose u.a.r. a vertex v ∈ Z and add it to S
expose all the r edges from v to other vertices
remove from Z: v and all w s.t. vw has been exposed
end while
output α = |S|

Calculate the expected value of α and show concentration around its expected value.

3. A k-SAT formula is a conjunction of clauses, where a clause is a disjunction of exactly k
Boolean variables that appear either negatively or positively. For example, given Boolean
variables x1, x2, x3, x4, a 3-SAT formula with 4 clauses is ϕ = (x1 ∨ x̄2 ∨x3)∧ (x̄1 ∨x4 ∨x2)∧
(x̄1 ∨ x̄3 ∨ x̄2) ∧ (x1 ∨ x2 ∨ x4). A random k-SAT formula is such that among all formulas on
x1, . . . , xn with m clauses one chooses uniformly at random one such formula (one way to do
it is to choose for each clause the following: for each of the k variables to appear in the clause,
choose one uniformly at random, and then flip an unbiased coin to decide whether it appears
positively or negatively; note that this might yield multiformulas with repeated variables in
one clause or repeated clauses, but for m = cn with c > 0, and k constant, there is a positive
probability for this not to happen.) A k-SAT formula is satisfiable if there exists an (Boolean)
assignment to the variables x1, . . . , xn such that in each clause there is at least one satisfied
variable: that is, if xi is assigned 1, all clauses with xi appearing positively are satisfied, and
if xi is 0, all clauses with xi appearing negatively are satsfied. (Clearly, the bigger m, the
harder it is to satisfy all clauses, and one might assume that for each k there is a threshold
value of m = m(k) in terms of satisfiability.

• A pure literal is a literal (that is, a variable or the negation of a variable) whose com-
plement does not appear in the formula. Given a random k-SAT formula with m = cn,
consider the following pure literal rule elimination algorithm:
given ϕ = {c1, . . . , cm} and variables x1, . . . , xn
while there is a pure literal available
choose uniformly at random one of them
assign the variable of the chosen literal accordingly (assign it 1 if the
literal appears positively, and 0 if it appears negatively)
remove all clauses containing this literal
end while
if clauses left then fail
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Analyze the previous algorithm and find out the value of m = cn (note that c depends
on k) until which the algorithm succeeds in finding a satisfying assignment.

• (You might restrict yourself to 3-SAT). Come up with different rules that can be analyzed
using differential equations and yield an improved behavior (that is, they work even for
a higher clause density).
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