
Giant Components in GD

Recall: 
0<d1 ≤ d2 ≤ … ≤dn

jD =min{n,min{j|∑$%&'( )$()$-2) >0}}
RD = ∑$%'(+ )$
We assume ∄ i s.t. di=2. 
So M= ∑$%&+ )$ .

Theorem 1: For all  sufficiently 
small / > 0, if RD</M then:
a.s every  component of  GD has 
less than /

8
9 : edges.

Theorem 2: ∀ ? >0  ∃A>0 s.t. if 
RD >BM then a.s GD has a 

component with more than  An 
edges. 



Handling The High  Degree Vertices

Threshold for H(igh) degree is di > !/log M. 
Subcritical Case( RD =o(M)) : We start our exploration from a set of 
vertices  including all the high degree vertices, eliminating the 
problems they cause. 
Supercritical Case( RD >"M for some ">0) : We need:
Lemma: If the union of the components containing the vertices in H
contains "M/100 vertices then it is one component and we are done.
Otherwise deleting the vertices in the component we are still in the 
supercritical case, and no longer have any high degree vertices. 
Proof: Switching. 



A Sample Lemma

Lemma: If u and v are in H then the probability that u is in a component of 
size M2/3 not containing v is o(M1/4)

Proof: Let A be the graphs with degree distribution D where u and v are in 
the same component. Let B be the graphs with degree distribution D where 
u is in a component of size M2/3 not containing v.
We consider swaps from  B to A where we swap an edge vw wih an edge xy
such that . is at least as close to u as y. There are at  least 

a( "
#$% ")'

(/* such swaps. xv and wv are the only possibilities for the edges 
leaving v in the resultant graphs which are on a shortest uv path.. So each 
graph in A arises via at most 2M such switches. 



The Random Object We Explore/Construct

GD and a uniformly random permutation of each adjacency list. 



The Exploration Process

Start with a set S0 of vertices. In iteration t, we add a vertex wt to St-1 to 
obtain St.   We expose the edges from wt to St-1 and their position on the 
adjacency lists of their endpoints. 
In iteration t,

(i) if there are no edges from St-1 to V-St-1 then P(wt=w)= !(#)
∑& ∉()*+ !(,)

(ii) Otherwise, vt is the lowest indexed vertex of St-1 with edges to      V-St-1 
and we expose the vertex wt of V-St-1 appearing first on its adjacency list. 

Xt is |E(St,V-St)|. -./ =(∑, 01 2) 3(4))-2t. 



The Subcritical Case

Lemma 3: For every sufficiently small ω > 0, and every degree 

sequence D  s.t. no di=2 & RD ≤ &M, the probability a vertex v lies in 

a component of G(D) with more than &
(
)* edges is o(

+
,). 

Proof: Let S be the  smallest set of vertices {vi,vi+1,…,vn} such that 

∑./01 d. > 5ω
(
4M. Note that S contains vj for j≥ 67. Set S0=S∪ 9 .

Lemma 4: 

P(∃< ≤ &+/>M s.t Xt=0 and ?@A ≤ &
(
B*) =1-o(+,).

=> Lemma 3 => Theorem 1. 



Lemma	4:	For	S0=S	∪ / ,

Prob (∃5 ≤ 78/:M s.t Xt=0 & ;<= ≤ 7
>

?@)=1-o(A
B

).

Claim 1:∃ C DE F G. 5 I(C) ≤ 7K8/L, hence ∀ v in V-S0 d(v)≤ 7
K
>

N.

Further,  ;O
=
≤ 778/LM and∑R ST< US VW I X (I X − 2) ≤ -478/LM

We let Yt =d([<)-2-E[d([<)-2]

Claim 2: P(∃ t such that ∑
<\]<

^<\ ≥ Ma/b) =o(
8

c
)

We let  d= min {t | Xt=0 or  ∑
<\]<

^<\ ≥ M
e

f or t =
h>/ic

a

Claim 3: for any t ≤ τ, E(d(wt)-2)≤
K<

c
+1978/k



!= min {t | Xt=0 or  ∑#$%# &#$ ≥ M
)
* or t = /0/23

4
Claim 3: for any t ≤ τ, E(d(wt)-2)≤ 7#

3
+1989/:

Proof: 
Claim 6: If t ≤ 89/;M, X=> ≤ ω9/:M and @#$>0 for all t’<t, then:

(a) If w in V-St-1 and d(w)=1. then P[wt=w] ≥ 97;/0/A

3

(b) If w in V-St-1, then P[wt=w] ≤ 9B;/0/A

3
Claim 7: For any sequence a1,…,aj of positive integers none of which 

are two, for any nonnegative  l s.t ∑CD9
E FC ≥ 2j − l we have: ∑CD9

E FC (FC
-2)≥ j − 2l.



Future Directions

Determining size of components of GD
Determining the conditions ensuring P(GD is (not) connected)=1-o(1) 
Determining the mixing time of (the giant component of) GD.


