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Models Structures
-Mean Field Model -G, , -Clustering: Components,
- Fixed degree sequence and Conductance, Modularity,
the Configuration Model Cliques, Stable Sets,(Colouring)
- Forbidden Substructure Techniques

- Stochastic Processes: : .
-Concentration Inequalities

-Differential Equation Method

-Regularity Lemma

Preferential Attachment &
Triangle-free Graph Process

-Brief Nod to Real World Networks .
-Switching Arguments



Connectivity & Component Size
NG,



The Threshold for
Connectivity of G,

G,p: For each H on 'V, ={vy,...,v,}, P(G, ,=H) is p!EHI (1 — p)(?)—IE(H)I



Simple Observations

Letting Y be the (random) number of components of G whose size is
between 1 and n/2. G is connected if and only if Y=0.

Letting Y be the number of components of size s, Zln/z] Y,



The Expected Number of Components
of Sizesin G, ,

Ys=number of components of size sin G, ,
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The Expected Number of Components
of Sizesin G, ,

Ys=number of components of size sin G, ,

Z. = number of components of size s in G, , inducing trees.

n,p
(Z)Ss_zps_l(l — p)=9) >E(Y,) = E(Z,) >
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The Expected Number of Components
of Sizesin G, ,

Ys=number of components of size sin G, ,

Z; = number of components of size s in G, , inducing trees.

(T)s*2ps~1(1 — p)(=9) >E(Y,) = E(Z) =
(1-p)(s-2)(s-1)/2 ("’;)55—2 s—1 (1 — p)(n—S)(S)

logn logn

Observation: For p= , E(Y,) =®(1), E(Y,)= 0O( ), and
E(Y,)=0(-) for 3<k< 2.
p= log f(n) ,J->00, f(n)<|ogn =>E(Y)=0(1). So P(G, , connected)=1-0(1)

n



Expectation and Concentration
of The Number of Isolated Vertices

Y= [{v s.t. d(v)=0}| E(Y;? )=n(1-p)™! +n(n-1)(1-p)2"3
E(Y,)=n(1-p)"i~ ePn-logn <E(Y,) +(1-p)2E(Y,)?
So for p=—g =@l

n

E(Y?)-E(Y4)"2 =o(E(Y, )?) and

P(Y,=0)< P(|Y-E(Y,)|= E(Y,))
=0(1)

logn—w(1)

This is w(1) when p=

n



Component Size in G,



The Components of G, jAre Usually

VERY BIG or ...



Expected Number of Components
of Sizesin G, ,

Ve>03A,, b, >0s.t. (i) ifp<(1-€)/n or p>(1+€)/n then a.s. no
components of G, , have size between A, log n and b,n.



When does G, , Have A
LARGE COMPONENT?



A Truncated Breadth First Search of G, |

At the start of iterationi E; is a set of Explored
Vertices & O; is a set of open vertices.0;=v; &

E,=0.
Fori:=1tot we:
choose v; in O; and expose the
set S, of vertices of V,.-O;-E;
joined to v; by an edge.
set O,; =0, +S;—v, E;,; =E; +v;
(*) if |O,,1|=0 we add a vertex of V-
O; 41-Eiy1 10 Oiy
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A Truncated Breadth First Search of G, |

At the start of iterationi E; is a set of Explored
Vertices & O; is a set of open vertices.0;=v; &

E,=0.
Fori:=1tot we:
choose v; in O; and expose the
set S, of vertices of V,.-O;-E;
joined to v; by an edge.
set O,; =0, +S;—v, E;,; =E; +v;
(*) if |O,,1|=0 we add a vertex of V-
O; 41-Eiy1 10 Oiy

lgnoring the vertices added in (*)_ the number of

vertices added in iteration i is Bin}n—l E.l-10i].p).

This lies between Bin(n,p) and Bin(n+1-i-|O_i|,p).
10

Hence, setting t=8—2 log n and n’=nt,
P(v, isin a component of size > A log n)<

P(Bin(n’,p)>t-1) {=o(.") if p="—)

H H 1 ] ! 144 ! ’
Setting e’=m|n(Z,£), t =% &n’'= (1—%)nt )

e'n

and terminating if |O_i| >
!

P(There is a component of size > %)>

P(Bin(n”,p)>€an) {=1-0(%) if p=%}



Random Graphs on a Fixed
Degree Sequence
& The Configuration Model



Configuration Model on D={d,,...,d }

C. ={v1ilv2i,..,vid 9

Take a random matching M on
i=1 Ci

Create H(D): The number of

edges between v; and v; is the
number of edges of M, between

C and C..
The number of loops on v;is the

number of edges of M within C.

If eachd,>0and X" ,d? < Bn
then the expected number of
loops and multiple edges in H(D)
is at most B2+B

So the probability there are more
than 2B2%+2B loops and multiple
edges is at most %.



A Switching Argument

Lemma: If ‘A and ‘B are families of Switch Delete {vw,xy} add {vx,wy}.
(multi)graphs such that there are

at least 0 switches from each i W
graph in 4 which result in a graph
in ‘B and at most A switches from
each graph in ‘B resulting in a ¥ V.

graph in 4 then
5
A <|B




Lower Bounding
The Probability A Random d-Regular Multigraph

Is Loopless
Let ‘D={d,d,d...,d} Hence, for large n,
Let A; be the set of matchings M Vjwith 1< j < 2d:
s.t. if My, =M then Hp, has i loops A 4]
> ——
2d . 1 0 dJ
A P(Hpin A) >=.
Zl—O ( D |) 2 So
By our switching argument: :
Y g © ) P(H, has 0 loops)> P(Hp has ] 100ps)
i(dn—-d?) D d2d
ALl = —5—I|Al 1
(z)n So, P(Hp has 0 loops)> AT Da



Bounding The Probability A Uniformly
Random 2-factor has a cycle of length> en

A, 2—facto§1with i cycles of length Expected number of cycles of length
between >y and en and at least one  exceeding en= |
cycle of length exceeding en. n n! (— 271 )
B; number of 2- faCt%%S with i cycles =lenl 2i(m-iyn [Tj=1(2n-2j+1)
of length between —and en and no
cycle of length exceedlng En. Which exceeds ¥ [gn] ~ In(1/€)/4
By a switching argument:
2
Al < 3222 = (1Ai1 | +]Bias]) Gives lower bound of eIn(1/¢)/4

Since |4; |=0 for i>Z This gives an
upper bound on P(Li-Al-)



