Random Models Of Complex Networks

Nice July 8-19, 2019

Topics

Models

- -Mean Field Model G_{n,p}
- Fixed degree sequence and the Configuration Model
- Forbidden Substructure
- Stochastic Processes:
 - Preferential Attachment & Triangle-free Graph Process
- -Brief Nod to Real World Networks

Structures

-Clustering: Components, Conductance, Modularity, Cliques, Stable Sets,(Colouring)

Techniques

- -Concentration Inequalities
- -Differential Equation Method
- -Regularity Lemma
- -Switching Arguments

Connectivity & Component Size in G_{n.p}

G_{n,p}: For each H on $\mathcal{V}_n = \{v_1, ..., v_n\}, P(G_{n,p} = H) \text{ is } p^{|E(H)|} (1-p)^{\binom{n}{2} - |E(H)|}$

The Threshold for Connectivity of $G_{n,p}$ $G_{n,p}$: For each H on $\mathcal{V}_n = \{v_1, \dots, v_n\}, P(G_{n,p} = H) \text{ is } p^{|E(H)|} (1-p)^{\binom{n}{2} - |E(H)|}$

Simple Observations

Letting Y be the (random) number of components of G whose size is between 1 and n/2. G is connected if and only if Y=0.

Letting Y_s be the number of components of size s, $Y = \sum_{s=1}^{\lfloor n/2 \rfloor} Y_s$

The Expected Number of Components of Size s in G_{n,p}

 Y_s =number of components of size s in $G_{n,p}$

$$\binom{n}{s}s^{s-2}p^{s-1}(1-p)^{(n-s)(s)} \geq \mathbf{E}(\mathbf{Y}_s) \geq$$

The Expected Number of Components of Size s in G_{n,p}

Y_s=number of components of size s in G_{n,p}

 Z_s = number of components of size s in $G_{n,p}$ inducing trees.

 $\binom{n}{s}s^{s-2}p^{s-1}(1-p)^{(n-s)(s)} \ge \mathbf{E}(\mathbf{Y}_{s}) \ge \mathbf{E}(\mathbf{Z}_{s}) \ge$

 $(1-p)^{(s-2)(s-1)/2} \binom{n}{s} s^{s-2} p^{s-1} (1-p)^{(n-s)(s)}$

The Expected Number of Components of Size s in G_{n,p}

Y_s=number of components of size s in G_{n,p}

 Z_s = number of components of size s in $G_{n,p}$ inducing trees.

 $\binom{n}{s}s^{s-2}p^{s-1}(1-p)^{(n-s)(s)} \geq \mathbf{E}(\mathbf{Y}_{s}) \geq \mathbf{E}(\mathbf{Z}_{s}) \geq$

 $(1-p)^{(s-2)(s-1)/2} \binom{n}{s} s^{s-2} p^{s-1} (1-p)^{(n-s)(s)}$

Observation: For $p = \frac{\log n}{n}$, $E(Y_1) = \Phi(1)$, $E(Y_2) = \Theta(\frac{\log n}{n})$, and $E(Y_k) = o(\frac{1}{n})$ for $3 < k \le \frac{n}{2}$. $p = \frac{\log n}{n} + \frac{f(n)}{n}$, $f \to \infty$, $f(n) < \log n = >E(Y) = o(1)$. So $P(G_{n,p} \text{ connected}) = 1 - o(1)$

Expectation and Concentration of The Number of Isolated Vertices

$$Y_1$$
= |{v s.t. d(v)=0}|
E(Y_1)=n(1-p)^{n-1}≈ e^{pn-\log n}

This is
$$\omega(1)$$
 when $p = \frac{\log n - \omega(1)}{n}$

 $E(Y_1^2) = n(1-p)^{n-1} + n(n-1)(1-p)^{2n-3}$ $\leq E(Y_1) + (1-p)^{-1}E(Y_1)^2$ So for $p = \frac{\log n - \omega(1)}{n}$ $E(Y_1^2) - E(Y_1)^{2} = o(E(Y_1)^2) \text{ and}$ $P(Y_1=0) \leq P(|Y_1-E(Y_1)| \geq E(Y_1))$ = o(1)

Component Size in G_{n,p}

The Components of $G_{n,p}$ Are Usually VERY BIG or very small

Expected Number of Components of Size s in G_{n,p}

 $\forall \varepsilon > 0 \exists A_{\varepsilon}, b_{\varepsilon} > 0$ s.t. (i) if $p < (1-\varepsilon)/n$ or $p > (1+\varepsilon)/n$ then a.s. no components of $G_{n,p}$ have size between $A_{\varepsilon} \log n$ and $b_{\varepsilon} n$.

When does G_{n,p} Have A LARGE COMPONENT?

 $\left|\frac{p}{n}-1\right| > \varepsilon$ for some positive ε .

```
At the start of iteration i E_i is a set of Explored Vertices & O_i is a set of open vertices.O_1=v_1 \& E_1=\emptyset.
```

For i:=1 to t we:

```
choose v_i in O_i and expose the
```

```
set S_i of vertices of \mathcal{V}_n-O_i-E_i
```

joined to v_i by an edge.

```
set O_{i+1} = O_i + S_i - v_i E_{i+1} = E_i + v_i
```

(*) if $|O_{i+1}|=0$ we add a vertex of \mathcal{V}_n -

```
O_{i \ +1}\text{-}E_{i+1} to O_{i+1}
```

At the start of iteration i E_i is a set of Explored Vertices & O_i is a set of open vertices. $O_1 = v_1 \& E_1 = \emptyset$.

For i:=1 to t we:

```
choose v_i in O_i and expose the
```

```
set S_i of vertices of \ \mathcal{V}_n\text{-}O_i\text{-}E_i
```

```
joined to v_i by an edge.
```

```
set O_{i+1} = O_i + S_i - v, E_{i+1} = E_i + v_i
```

```
(*) if |O_{i+1}|=0 we add a vertex of \mathcal{V}_n-
```

```
O_{i \ +1}\text{-}E_{i+1} to O_{i+1}
```

Ignoring the vertices added in (*)_ the number of vertices added in iteration i is $Bin(n-|E_i|-|O_{i|}|,p)$. This lies between Bin(n,p) and $Bin(n+1-i-|O_i|,p)$.

At the start of iteration i E_i is a set of Explored Vertices & O_i is a set of open vertices. $O_1=v_1 \& E_1=\emptyset$.

For i:=1 to t we:

```
choose v_i in O_i and expose the
```

```
set S_i of vertices of \ \mathcal{V}_n\text{-}O_i\text{-}E_i
```

joined to v_i by an edge.

```
set O_{i+1} = O_i + S_i - v, E_{i+1} = E_i + v_i
(*) if |O_{i+1}| = 0 we add a vertex of V_n-
```

 $O_{i +1}$ -E_{i+1} to O_{i+1}

Ignoring the vertices added in (*)_ the number of vertices added in iteration i is Bin(n-|E_i|-|O_{il}|,p). This lies between Bin(n,p) and Bin(n+1-i-|O_i|,p). Hence, setting $t=\frac{10}{\varepsilon^2} \log n$ and n'=nt, P(v₁ is in a component of size > A log n)< P(Bin(n',p)>t-1) {=o($\frac{1}{n}$) if $p=\frac{1-\epsilon}{n}$ }

At the start of iteration i E_i is a set of Explored Vertices & O_i is a set of open vertices. $O_1 = v_1 \& E_1 = \emptyset$.

For i:=1 to t we:

```
choose v_i in O_i and expose the
```

```
set S_i of vertices of \ \mathcal{V}_n\text{-}O_i\text{-}E_i
```

joined to v_i by an edge.

set $O_{i+1} = O_i + S_i - v$, $E_{i+1} = E_i + v_i$ (*) if $|O_{i+1}| = 0$ we add a vertex of V_n -

 $O_{i +1}$ -E_{i+1} to O_{i+1}

Ignoring the vertices added in (*) the number of vertices added in iteration i is $Bin(n-|E_i|-|O_{i|}|,p)$. This lies between Bin(n,p) and $Bin(n+1-i-|O_i|,p)$. Hence, setting $t = \frac{10}{c^2} \log n$ and n'=nt, $P(v_1 \text{ is in a component of size } > A \log n) <$ **P**(Bin(n',p)>t-1) $\{=o(\frac{1}{n}) \text{ if } p = \frac{1-\epsilon}{n}\}$ Setting $\varepsilon' = \min(\frac{1}{4}, \varepsilon)$, $t' = \frac{\varepsilon' n}{4} \& n'' = (1 - \frac{\varepsilon'}{2})nt'$, and terminating if $|O_i| > \frac{\varepsilon' n}{4}$ **P**(There is a component of size $> \frac{\varepsilon' n}{\epsilon}$)> $\mathbf{P}(\text{Bin}(n'',p) > \frac{\varepsilon' n}{4}) \{=1 - o(\frac{1}{n}) \text{ if } p = \frac{1+\epsilon}{n} \}$

Random Graphs on a Fixed Degree Sequence & The Configuration Model

Configuration Model on $\mathcal{D}=\{d_1,...,d_n\}$

 $C_{i} = \{v_{i}^{1}, v_{i}^{2}, ..., v_{i}^{d_{i}}\}$

Take a random matching M_D on $\bigcup_{i=1}^n C_i$

Create $H(\mathcal{D})$: The number of edges between v_i and v_j is the number of edges of $M_{\mathcal{D}}$ between C_i and C_j .

The number of loops on v_i is the number of edges of M_D within C_i .

If each $d_i >0$ and $\sum_{i=1}^n d_i^2 \le Bn$ then the expected number of loops and multiple edges in H(\mathcal{D}) is at most B²+B

So the probability there are more than 2B²+2B loops and multiple edges is at most ½.

A Switching Argument

Lemma: If \mathcal{A} and \mathcal{B} are families of (multi)graphs such that there are at least δ switches from each graph in \mathcal{A} which result in a graph in \mathcal{B} and at most Δ switches from each graph in \mathcal{B} resulting in a graph in \mathcal{A} then

 $\frac{\delta}{\Delta} \left| \mathcal{A} \right| \leq \left| \mathcal{B} \right|$

Switch Delete {vw,xy} add {vx,wy}.

Lower Bounding The Probability A Random d-Regular Multigraph Is Loopless

Let $\mathcal{D}=\{d,d,d...,d\}$

Let A_i be the set of matchings M s.t. if $\mathcal{M}_{\mathcal{D}}$ =M then $\mathcal{H}_{\mathcal{D}}$ has i loops

 $\sum_{i=0}^{2d} \mathbf{P}(\mathbf{H}_{\mathcal{D}} \text{ in } \mathbf{A}_{i}) > \frac{1}{2}.$

By our switching argument:

$$|\mathsf{A}_{\mathsf{i}-1}| \ge \frac{i(dn-d^2)}{\binom{d}{2}n} |\mathsf{A}_{\mathsf{i}}|$$

Hence, for large n,

 $\forall j \text{ with } 1 \leq j \leq 2d$: $|A_0| > \frac{|A_j|}{d^j}$

So

 $P(H_{\mathcal{D}} \text{ has 0 loops}) > \frac{P(H_{D} \text{ has } j \text{ loops})}{d^{2d}}$ So, $P(H_{\mathcal{D}} \text{ has 0 loops}) > \frac{1}{2(2d+1)d^{2d}}$

Bounding The Probability A Uniformly Random 2-factor has a cycle of length> ϵn

A_i 2-factors with i cycles of length between $\frac{\varepsilon n}{3}$ and εn and at least one cycle of length exceeding εn .

B_i number of 2-factors with i cycles of length between $\frac{\varepsilon n}{3}$ and εn and no cycle of length exceeding εn .

By a switching argument:

 $\begin{aligned} |\mathsf{A}_{\mathsf{i}}| &\leq \frac{n^2}{\varepsilon^2 n^2/8} \left(|\mathsf{A}_{\mathsf{i+1}}| + |\mathsf{B}_{\mathsf{i+1}}| \right) \\ \text{Since } |A_i| &= 0 \text{ for } \mathsf{i} > \frac{\varepsilon}{3} \text{ This gives an} \\ \text{upper bound on } \mathbf{P}(\bigcup_i^3 A_i) \end{aligned}$

Expected number of cycles of length exceeding ε n=

$$\sum_{i=\lceil \varepsilon n\rceil}^{n} \frac{n!}{2i((n-i)!)} \left(\frac{2^{i-1}}{\prod_{j=1}^{i}(2n-2j+1)} \right)$$

Which exceeds
$$\sum_{i=\lceil \epsilon n \rceil}^{n} \frac{1}{4i} \approx \ln(1/\epsilon)/4$$

Gives lower bound of $\varepsilon \ln(1/\varepsilon)/4$