Random Models Of Complex Networks

Nice July 8-19, 2019

Topics

Models

-Mean Field Model - $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

- Fixed degree sequence and the Configuration Model
- Forbidden Substructure
- Stochastic Processes:

Preferential Attachment \&
Triangle-free Graph Process
-Brief Nod to Real World Networks

Structures

-Clustering: Components, Conductance, Modularity, Cliques, Stable Sets,(Colouring)

Techniques

-Concentration Inequalities
-Differential Equation Method
-Regularity Lemma
-Switching Arguments

Connectivity \& Component Size in $G_{n . p}$

$G_{n, p}$: For each H on $V_{n}=\left\{v_{1}, \ldots, v_{n}\right\}, P\left(G_{n, p}=H\right)$ is $p^{|E(H)|}(1-p)^{\binom{n}{2}-|E(H)|}$

The Threshold for Connectivity of $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

$\mathrm{G}_{\mathrm{n}, \mathrm{p}}$: For each H on $\mathcal{V}_{\mathrm{n}}=\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}, \mathbf{P}\left(\mathrm{G}_{\mathrm{n}, \mathrm{p}}=\mathrm{H}\right)$ is $\mathrm{p}^{|E(H)|}(1-p)^{\binom{n}{2}-|E(H)|}$

Simple Observations

Letting Y be the (random) number of components of G whose size is between 1 and $\mathrm{n} / 2$. G is connected if and only if $\mathrm{Y}=0$.

Letting Y_{S} be the number of components of size s, $\mathrm{Y}=\sum_{s=1}^{\lfloor n / 2\rfloor} Y_{s}$

The Expected Number of Components of Size s in $G_{n, p}$

$Y_{s}=$ number of components of size s in $G_{n, p}$

$$
\binom{n}{s} s^{s-2} p^{s-1}(1-p)^{(n-s)(s)} \geq \mathbf{E}\left(Y_{s}\right) \geq
$$

The Expected Number of Components of Size s in $G_{n, p}$

$Y_{s}=$ number of components of size s in $G_{n, p}$
$Z_{s}=$ number of components of size s in $G_{n, p}$ inducing trees.

$$
\binom{n}{s} s^{s-2} p^{s-1}(1-p)^{(n-s)(s)} \geq \mathbf{E}\left(\mathrm{Y}_{s}\right) \geq \mathbf{E}\left(Z_{s}\right) \geq
$$

$$
(1-p)^{(s-2)(s-1) / 2}\binom{n}{s} s^{s-2} p^{s-1} \quad(1-p)^{(n-s)(s)}
$$

The Expected Number of Components of Size s in $G_{n, p}$

$Y_{s}=$ number of components of size s in $G_{n, p}$
$Z_{s}=$ number of components of size s in $G_{n, p}$ inducing trees.

$$
\binom{n}{s} s^{s-2} p^{s-1}(1-p)^{(n-s)(s)} \geq \mathbf{E}\left(\mathrm{Y}_{s}\right) \geq \mathbf{E}\left(Z_{s}\right) \geq
$$

$(1-\mathrm{p})^{(s-2)(s-1) / 2}\binom{n}{s} s^{s-2} p^{s-1}(1-p)^{(n-s)(s)}$
Observation: For $p=\frac{\log n}{n}, E\left(Y_{1}\right)=\Phi(1), E\left(Y_{2}\right)=\Theta\left(\frac{\log n}{n}\right)$, and $E\left(Y_{k}\right)=O\left(\frac{1}{n}\right)$ for $3<k \leq \frac{n}{2}$.
$\mathrm{p}=\frac{\log n}{n}+\frac{f(n)}{n}, f->\infty, \mathrm{f}(\mathrm{n})<\log \mathrm{n}=>\mathrm{E}(\mathrm{Y})=\mathrm{o}(1)$. So $\mathrm{P}\left(\mathrm{G}_{\mathrm{n}, \mathrm{p}}\right.$ connected $)=1-\mathrm{o}(1)$

Expectation and Concentration of The Number of Isolated Vertices

$$
\begin{aligned}
& Y_{1}=\mid\{\mathrm{v} \text { s.t. } \mathrm{d}(\mathrm{v})=0\} \mid \\
& E\left(\mathrm{Y}_{1}\right)=\mathrm{n}(1-\mathrm{p})^{\mathrm{n}-1} \approx e^{p n-\log n} \\
& \text { This is } \omega(1) \text { when } \mathrm{p}=\frac{\log n-\omega(1)}{n}
\end{aligned}
$$

$$
E\left(Y_{1}^{2}\right)=n(1-p)^{n-1}+n(n-1)(1-p)^{2 n-3}
$$

$$
\leq E\left(Y_{1}\right)+(1-p)^{-1} E\left(Y_{1}\right)^{2}
$$

$$
\text { So for } \mathrm{p}=\frac{\log n-\omega(1)}{n}
$$

$$
\begin{aligned}
& E\left(Y_{1}^{2}\right)-E\left(Y_{1}\right)^{\wedge 2}=O\left(E\left(Y_{1}\right)^{2}\right) \text { and } \\
& P\left(Y_{1}=0\right) \leq P\left(\left|Y_{1}-E\left(Y_{1}\right)\right| \geq E\left(Y_{1}\right)\right) \\
& =O(1)
\end{aligned}
$$

Component Size in $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

The Components of $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$ Are Usually VERY BIG or very small

Expected Number of Components of Size s in $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

$\forall \varepsilon>0 \exists A_{\varepsilon}, b_{\varepsilon}>0$ s.t. (i) if $\mathrm{p}<(1-\varepsilon) / \mathrm{n}$ or $\mathrm{p}>(1+\varepsilon) / \mathrm{n}$ then a.s. no components of $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$ have size between $A_{\varepsilon} \log \mathrm{n}$ and $b_{\varepsilon} \mathrm{n}$.

When does $G_{n, p}$ Have A LARGE COMPONENT?

$\left|\frac{p}{n}-1\right|>\varepsilon$ for some positive ε.

A Truncated Breadth First Search of $G_{n, p}$

At the start of iteration $i \quad E_{i}$ is a set of Explored Vertices \& O_{i} is a set of open vertices. $\mathrm{O}_{1}=\mathrm{v}_{1}$ \& $\mathrm{E}_{1}=\varnothing$.

For $i:=1$ to t we:
choose v_{i} in O_{i} and expose the
set S_{i} of vertices of $\mathcal{V}_{\mathrm{n}}-\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}$
joined to v_{i} by an edge.
set $\mathrm{O}_{\mathrm{i}+1}=\mathrm{O}_{\mathrm{i}}+\mathrm{S}_{\mathrm{i}}-\mathrm{v}, \mathrm{E}_{\mathrm{i}+1}=\mathrm{E}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}}$
$\left(^{*}\right)$ if $\left|O_{i+1}\right|=0$ we add a vertex of $\mathcal{V}_{n}{ }^{-}$
$\mathrm{O}_{\mathrm{i}+1}-\mathrm{E}_{\mathrm{i}+1}$ to $\mathrm{O}_{\mathrm{i}+1}$

A Truncated Breadth First Search of $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

At the start of iteration $i \quad E_{i}$ is a set of Explored Vertices \& O_{i} is a set of open vertices. $\mathrm{O}_{1}=\mathrm{v}_{1}$ \& $\mathrm{E}_{1}=\emptyset$.

For $\mathrm{i}=1$ to t we:
choose v_{i} in O_{i} and expose the
set S_{i} of vertices of $\mathcal{V}_{n}-\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}$
joined to v_{i} by an edge.
set $\mathrm{O}_{\mathrm{i}+1}=\mathrm{O}_{\mathrm{i}}+\mathrm{S}_{\mathrm{i}}-\mathrm{v}, \mathrm{E}_{\mathrm{i}+1}=\mathrm{E}_{\mathrm{i}}+\mathrm{v}_{\mathrm{i}}$
$\left(^{*}\right)$ if $\left|O_{i+1}\right|=0$ we add a vertex of $\mathcal{V}_{n}{ }^{-}$
$\mathrm{O}_{\mathrm{i}+1}-\mathrm{E}_{\mathrm{i}+1}$ to $\mathrm{O}_{\mathrm{i}+1}$

Ignoring the vertices added in $\left(^{*}\right.$) the number of vertices added in iteration i is $\operatorname{Bin}\left(n-\left|E_{i}\right|-\left|O_{i \mid}\right|, p\right)$. This lies between $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$ and $\operatorname{Bin}\left(\mathrm{n}+1-\mathrm{i}-\left|\mathrm{O}_{-} \mathrm{i}\right|, \mathrm{p}\right)$.

A Truncated Breadth First Search of $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

At the start of iteration $i \quad E_{i}$ is a set of Explored Vertices \& O_{i} is a set of open vertices. $\mathrm{O}_{1}=\mathrm{v}_{1}$ \& $E_{1}=\emptyset$.
For $\mathrm{i}=1$ to t we:
choose v_{i} in O_{i} and expose the set S_{i} of vertices of $\mathcal{V}_{n}-\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}$
joined to v_{i} by an edge.
set $O_{i+1}=O_{i}+S_{i}-v, E_{i+1}=E_{i}+v_{i}$
$\left(^{*}\right)$ if $\left|O_{i+1}\right|=0$ we add a vertex of $\mathcal{V}_{n^{-}}$
$\mathrm{O}_{\mathrm{i}+1}-\mathrm{E}_{\mathrm{i}+1}$ to $\mathrm{O}_{\mathrm{i}+1}$

Ignoring the vertices added in $\left(^{*}\right.$) the number of vertices added in iteration i is $\operatorname{Bin}\left(n-\left|E_{i}\right|-\left|O_{i \mid}\right|, p\right)$. This lies between $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$ and $\operatorname{Bin}\left(\mathrm{n}+1-\mathrm{i}-\left|\mathrm{O}_{-} \mathrm{i}\right|, \mathrm{p}\right)$.
Hence, setting $t=\frac{10}{\varepsilon^{2}} \log n$ and $n^{\prime}=n t$,
$\mathbf{P}\left(\mathrm{v}_{1}\right.$ is in a component of size $\left.>\mathrm{A} \log \mathrm{n}\right)<$ $\mathbf{P}\left(\operatorname{Bin}\left(\mathrm{n}^{\prime}, \mathrm{p}\right)>\mathrm{t}-1\right)\left\{=\mathrm{o}\left(\frac{1}{n}\right)\right.$ if $\left.\mathrm{p}=\frac{1-\epsilon}{n}\right\}$

A Truncated Breadth First Search of $\mathrm{G}_{\mathrm{n}, \mathrm{p}}$

At the start of iteration $i \quad E_{i}$ is a set of Explored Vertices \& O_{i} is a set of open vertices. $\mathrm{O}_{1}=\mathrm{v}_{1}$ \& $E_{1}=\emptyset$.
For $\mathrm{i}=1$ to t we:
choose v_{i} in O_{i} and expose the set S_{i} of vertices of $\mathcal{V}_{n}-\mathrm{O}_{\mathrm{i}}-\mathrm{E}_{\mathrm{i}}$
joined to v_{i} by an edge.
set $O_{i+1}=O_{i}+S_{i}-v, E_{i+1}=E_{i}+v_{i}$
$\left(^{*}\right)$ if $\left|O_{i+1}\right|=0$ we add a vertex of \mathcal{V}_{n} -
$\mathrm{O}_{\mathrm{i}+1}-\mathrm{E}_{\mathrm{i}+1}$ to $\mathrm{O}_{\mathrm{i}+1}$

Ignoring the vertices added in $\left(^{*}\right.$) the number of vertices added in iteration i is $\operatorname{Bin}\left(n-\left|E_{i}\right|-\left|O_{i \mid}\right|, p\right)$. This lies between $\operatorname{Bin}(\mathrm{n}, \mathrm{p})$ and $\operatorname{Bin}\left(\mathrm{n}+1-\mathrm{i}-\left|\mathrm{O}_{-}\right|, \mathrm{p}\right)$.
Hence, setting $t=\frac{10}{\varepsilon^{2}} \log n$ and $n^{\prime}=n t$,
$\mathbf{P}\left(\mathrm{v}_{1}\right.$ is in a component of size $\left.>\mathrm{A} \log \mathrm{n}\right)<$
$\mathbf{P}\left(\operatorname{Bin}\left(\mathrm{n}^{\prime}, \mathrm{p}\right)>\mathrm{t}-1\right)\left\{=\mathrm{o}\left(\frac{1}{n}\right)\right.$ if $\left.\mathrm{p}=\frac{1-\epsilon}{n}\right\}$
Setting $\varepsilon^{\prime}=\min \left(\frac{1}{4}, \varepsilon\right), \mathrm{t}^{\prime}=\frac{\varepsilon^{\prime} n}{4} \& \mathrm{n}^{\prime \prime}=\left(1-\frac{\varepsilon^{\prime}}{2}\right) n \mathrm{t}^{\prime}$,
and terminating if \mid O_i $\left\lvert\,>\frac{\varepsilon^{\prime} n}{4}\right.$
\mathbf{P} (There is a component of size $\left.>\frac{\varepsilon^{\prime} n}{4}\right)>$ $\mathbf{P}\left(\operatorname{Bin}\left(\mathrm{n}^{\prime \prime}, \mathrm{p}\right)>\frac{\varepsilon^{\prime} n}{4}\right)\left\{=1-\mathrm{o}\left(\frac{1}{n}\right)\right.$ if $\left.\mathrm{p}=\frac{1+\epsilon}{n}\right\}$

Random Graphs on a Fixed Degree Sequence \& The Configuration Model

Configuration Model on $\mathcal{D}=\left\{\mathrm{d}_{1}, \ldots, \mathrm{~d}_{\mathrm{n}}\right\}$

$\mathrm{C}_{\mathrm{i}}=\left\{\mathrm{v}^{1}{ }_{\mathrm{i}} \mathrm{V}^{2}{ }_{\mathrm{i}}, . ., v_{i}^{d_{i}}\right\}$
Take a random matching $\mathrm{M}_{\mathcal{D}}$ on $\mathrm{U}_{i=1}^{n} C_{i}$
Create $\mathrm{H}(\mathcal{D})$: The number of edges between v_{i} and v_{j} is the number of edges of $M_{\mathcal{D}}$ between C_{i} and C_{j}.
The number of loops on v_{i} is the number of edges of $\mathrm{M}_{\mathcal{D}}$ within C_{i}.

If each $\mathrm{d}_{\mathrm{i}}>0$ and $\sum_{i=1}^{n} d_{i}^{2} \leq B n$ then the expected number of loops and multiple edges in $\mathrm{H}(\mathcal{D})$ is at most $B^{2}+B$

So the probability there are more than $2 \mathrm{~B}^{2}+2 \mathrm{~B}$ loops and multiple edges is at most $1 / 2$.

A Switching Argument

Lemma: If \mathcal{A} and \mathcal{B} are families of Switch Delete $\{v w, x y\}$ add $\{v x, w y\}$. (multi)graphs such that there are at least δ switches from each graph in \mathcal{A} which result in a graph in \mathcal{B} and at most Δ switches from each graph in \mathcal{B} resulting in a graph in \mathfrak{A} then

$\frac{\delta}{\Delta}|\mathcal{A}| \leq|\mathcal{B}|$

Lower Bounding

The Probability A Random d-Regular Multigraph Is Loopless

Let $\mathcal{D}=\{d, d, d . . ., d\}$
Let A_{i} be the set of matchings M s.t. if $\mathcal{M}_{\mathcal{D}}=\mathrm{M}$ then $\mathcal{H}_{\mathcal{D}}$ has iloops $\sum_{i=0}^{2 d} \mathbf{P}\left(\mathrm{H}_{\mathcal{D}}\right.$ in $\left.\mathrm{A}_{\mathrm{i}}\right)>\frac{1}{2}$.
By our switching argument:

$$
\left|\mathrm{A}_{i-1}\right| \geq \frac{i\left(d n-d^{2}\right)}{\binom{d}{2}^{n}}\left|\mathrm{~A}_{\mathrm{i}}\right|
$$

Hence, for large n, $\forall \mathrm{j}$ with $1 \leq j \leq 2 d$:

$$
\left|\mathrm{A}_{0}\right|>\frac{\left|A_{j}\right|}{d^{j}}
$$

So
$\mathbf{P}\left(\mathrm{H}_{\mathcal{D}}\right.$ has 0 loops $)>\frac{\mathbf{P}\left(H_{D} \text { has } \text { j loops }\right)}{d^{2 d}}$
So, $\mathbf{P}\left(\mathrm{H}_{\mathcal{D}}\right.$ has 0 loops $)>\frac{1}{2(2 d+1) d^{2 d}}$

Bounding The Probability A Uniformly Random 2-factor has a cycle of length> $\boldsymbol{\varepsilon n}$

$A_{i} 2$-factors with i cycles of length between $\frac{\varepsilon n}{3}$ and εn and at least one cycle of length exceeding εn.
B_{i} number of 2-factors with i cycles of length between $\frac{\varepsilon n}{3}$ and εn and no cycle of length exceeding εn.
By a switching argument:

$$
\left|\mathrm{A}_{\mathrm{i}}\right| \leq \frac{n^{2}}{\varepsilon^{2} n^{2} / 8}\left(\left|\mathrm{~A}_{\mathrm{i}+1}\right|+\left|\mathrm{B}_{\mathrm{i}+1}\right|\right)
$$

Since $\left|A_{i}\right|=0$ for $\mathrm{i}>\frac{\varepsilon}{\frac{\varepsilon}{3}}$ This gives an upper bound on $\mathbf{P}\left(\cup_{i}^{3} A_{i}\right)$

Expected number of cycles of length exceeding $\varepsilon n=$

$$
\sum_{i=\lceil\varepsilon n\rceil}^{n} \frac{n!}{2 i((n-i)!)}\left(\frac{2^{i-1}}{\prod_{j=1}^{i}(2 n-2 j+1)}\right)
$$

Which exceeds $\sum_{i=[\varepsilon n]}^{n} \frac{1}{4 i} \approx \ln (1 / \varepsilon) / 4$
Gives lower bound of $\varepsilon \ln (1 / \varepsilon) / 4$

