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Some Applications of 
Clustering in 

Real World Netwroks



Looking for Clusters I: 
Epidemiological Networks
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Transmission Network Analysis
to complement routine TB   
contact analysis
McKenzie et al. AJPH 2007       
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Looking for Clusters II: 
Communication Networks
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Internet Mapping Project
Bell Laboratories 
May 3 1999 



Looking for Clusters III: 
Biological Networks
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Jonsson  et al. BMC Bioinformatics 2006 



Looking for Clusters IV: 
Social Networks
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Linked in Network of Johann Myrberger 



Looking for Clusters V: 
Euclidean 2-factors
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Is  there a c>0  s.t. the minimum cost 2-Factor for n uniformly  
chosen points almost surely contains a component with cn points,
Bill Cook, Private Communication 2014  



Looking for Clusters VI: 
Percolation



Random Networks as Controls

A common technique to analyze the properties of a single 
network is to use statistical randomization methods to create a 
reference network which is used for comparison purposes.

Mondragon and Zhou, 2012.



Factors Determining 
How Much Clustering Occurs



More Edges Means 
More Clustering

p=0.25 p=0.48

p=0.52 p=0.75



Degree Distributions Differ

Classic Erdős-Renyi Model

Lattice

Facebook 
Friends



Network Structure Affects Cluster Size



Our Focus:
Giant Components



Does a uniformly chosen graph on a given degree sequence 
have a giant component?
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Does a uniformly chosen graph on a given degree sequence 
have a giant component?

For a sequence D of nonzero degrees, G(D) is a 
uniformly chosen graph with degree sequence D.

Will assume D is non-decreasing and all degrees are positive. 



The First Answer
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A Heuristic Argument
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Giant Component if and only if

∑d(u)(d(u)-2) is positive??

u

uu

Change in number of open edges: 

d(w) ➖ 2

Probability pick w: 

d(w) / ∑d(u)

Expected change: 

∑d(u)(d(u) ➖ 2) / ∑d(u)



Molloy-Reed(1995) Result

Under considerable technical conditions including maximum 
degree at most n1/8:

u
∑ d(u)(d(u) ➖ 2) > ᶗn implies a giant component exists.

u
∑ d(u)(d(u) ➖ 2) < ➖ ᶗn implies no giant component exists.



Why Can't We Prove The Result For Graphs With High 
Degree Vertices?



Why Can't We Prove The Result For Graphs With High 
Degree Vertices?

Because it is false.
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Why Can't We Prove The Result For Graphs With High 
Degree Vertices?

Cannot translate results from the non-simple case.
Hard to prove concentration results.



A Fuller Answer



OUR QUESTION REVISITED

Does a uniformly chosen graph on a given degree sequence 
have a giant component?

For a sequence D of nonzero degrees, G(D) is a 
uniformly chosen graph with degree sequence D.

Will assume D is non-decreasing and  all degrees are positive. 



i

j=1
n

j
D

M is the sum of the degrees in D which are not 2.

D is f -well behaved if M is at least f (n) .

j
D
 = min (i   s.t.   ∑ d

j
(d

j
➖ 2) > 0, n)

R
D
= ∑d

j

Four Definitions
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One Crucial Observation

∑ d(u)(d(u)➖2) is at least R
D
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n

j=1

One Crucial Observation

∑ d(u)(d(u)➖2) is at least R
D

and for some Ɣ > 0 remains above R
D
/2 until the sum of the degrees of the 

vertices explored is at least ƔR
D
.

But goes negative once all the vertices with index > j
D
 are explored.



Theorem 1: For any f →∞ and b→0, if a well behaved degree 

distribution D satisfies R
D
 ≤ b(n)M then G(D) has no giant 

component

.

Two Theorems



Theorem 1: For any f →∞ and b→0, if a well behaved degree 

distribution D satisfies R
D
 ≤ b(n)M then G(D) has no giant 

component.

Theorem 2: For any f →∞ and ε > 0 if a well behaved degree 

distribution D satisfies  R
D
 ≥ εM  then G(D) has a giant 

component 

(Joos, Perarnau-Llobet, Rautenbach, Reed 2015)

Two Theorems



 Why we focus on M and not n

Bruce Reed
And edges not vertices
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What About Badly Behaved Graphs?
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Badly Behaved graphs do not have 0-1 Behaviour

For all 0<ε<1, the probability of a  component of size at 
least εn  lies between c and 1-c for some constant c 
between 0 and 1. 

If all vertices of degree 2 just taking a random 2-factor. 

If M is at most some constant b, with probability p(b)>0 all 
but εn/2 of the vertices lie in cyclic components. 



Theorem 1: For any f →∞ and b→0, if a well behaved degree 

distribution D satisfies R
D
 ≤ b(n)M then G(D) has no giant 

component.

Theorem 2: For any f →∞ and ε > 0 if a well behaved degree 

distribution D satisfies  R
D
 ≥ εM  then G(D) has a giant 

component 

(Joos, Perarnau-Llobet, Rautenbach, Reed 2015)

Two Theorems



Differences in the Proof 

Determine if there is  a component K of the multigraph   obtained by 
suppressing degree 2 vertices  satisfying: 

 
(*) |E(K)| > ε’M.

Use a combinatorial switching argument to obtain bounds on edge 
probabilities in this multigraph.



Differences in the Proof - When No Giant  Component Exists

Begin the random process with a large enough set of high degree vertices 
that our process has negative drift.



Differences in the Proof - When No Giant  Component Exists

Begin the random process with a large enough set of high degree vertices 
that our process has negative drift.

Show drift becomes more and more negative over time, if the process does 
not die out. 



Differences in the Proof - When A Giant  Component Exists

Focus on the set H = {v | d(v) > (√M)/log(M)}
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Differences in the Proof - When A Giant  Component Exists

Focus on the set H = {v | d(v) > (√M)/log(M)}

We can show, using our combinatorial switching argument,  that depending on 
the sum of the sizes of the components  intersecting H,  either

 (a) there is a  giant component containing all of H , or 
 (b) we can reduce to a problem with H empty.

Bruce Reed
For which the conditions ensuring that  a giant component exists hold.           .
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Thank you for your attention!


