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Some Applications of
Clustering in
Real World Netwroks



Looking for Clusters I:
Epidemiological Networks

Transmission Network Analysis
to complement routine TB
contact analysis
McKenzie et al. AJPH 2007
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Looking for Clusters Il:

Communication Networks

Internet Mapping Project
Bell Laboratories
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Looking for Clusters Ill:
Biological Networks v

Vascular endothelial
growth factors VEGF

Jonsson et al. BMC Bioinformatics 2006
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Looking for Clusters IV:
Social Networks s
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Looking for Clusters V: Is there a c>0 s.t. the minimum cost 2-Factor for n uniformly

Euclid 2-f chosen points almost surely contains a component with cn points,
ucliadean 2-tactors Bill Cook, Private Communication 2014



Bruce Reed
Is  there a c>0  s.t. the minimum cost 2-Factor for n uniformly  
chosen points almost surely contains a component with cn points,
Bill Cook, Private Communication 2014  


Looking for Clusters VI:
Percolation




Random Networks as Controls

A common technique to analyze the properties of a single
network is to use statistical randomization methods to create a
reference network which is used for comparison purposes.

Mondragon and Zhou, 2012.



Factors Determining
How Much Clustering Occurs
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Network Structure Affects Cluster Size
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Our Focus:
Glant Components



Does a uniformly chosen graph on a given degree sequence
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For a sequence D of nonzero degrees, G(D) is a
uniformly chosen graph with degree sequence D.

Will assume D is non-decreasing and all degrees are positive.
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A Heuristic Argument

Change in number of open edges:
diw) — 2

Probability pick w:

v d(W)/%d(U)

Expected change:
%d(U)(d(U) - 2)/uZd(U)

Giant Component if and only if
> d(u)(d(u)-2) is positive??
u




Molloy-Reed(1995) Result

Under considerable technical conditions including maximum

degree at most n'/:

Z d(u)(d(u) — 2) > en implies a giant component exists.
u

Z d(u)(d(u) — 2) < — &n  implies no giant component exists.
u



Why Can't We Prove The Result For Graphs With High

Degree Vertices? -\ -\ I /
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Why Can't We Prove The Result For Graphs With High

Degree Vertices? -\ -\ I /
|

// \\'/ %
I/ %'

Cannot translate results from the non-simple case.
Hard to prove concentration results.
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OUR QUESTION REVISITED

Does a uniformly chosen graph on a given degree sequence
have a giant component?

For a sequence D of nonzero degrees, G(D) is a
uniformly chosen graph with degree sequence D.

Will assume D is non-decreasing and all degrees are positive.



Four Definitions

M is the sum of the degrees in D which are not 2.
D is f-well behaved if M is at least f(n).

jy=min (2 s.t. éd}(d}— 2) >0, n)

J=1

n
Rp= Yd
J



One Crucial Observation

S d(u)(d(u)-2) is at least R_
J=
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One Crucial Observation

f d(u)(d(u)-2) is at least R |
J=1

and for some Y > 0 remains above RD/Z until the sum of the degrees of the
vertices explored is at least YR_..



One Crucial Observation

f d(u)(d(u)-2) is at least R |
J=1

and for some Y > 0 remains above RD/Z until the sum of the degrees of the
vertices explored is at least YR_..

But goes negative once all the vertices with index > j _ are explored.
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Theorem 1: For any f —o and b—0, if a well behaved degree
distribution D satisfies R < b(n)M then G(D) has no giant
component



Two Theorems

Theorem 1: For any f —o and b—0, if a well behaved degree
distribution D satisfies R < b(n)M then G(D) has no giant
component.

Theorem 2: For any f —o0 and ¢ > 0 if a well behaved degree
distribution D satisfies R_>¢&M then G(D) has a giant
component

(Joos, Perarnau-Llobet, Rautenbach, Reed 2015)



Why we focus on M and not n

And edges not vertices

——eo
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What About Badly Behaved Graphs?
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Badly Behaved graphs do not have 0-1 Behaviour

For all 0<e<1, the probability of a component of size at
least en lies between ¢ and 1-c for some constant ¢
between 0 and 1.

If all vertices of degree 2 just taking a random 2-factor.

If M is at most some constant b, with probability p(b)>0 all
but en/2 of the vertices lie in cyclic components.



Two Theorems

Theorem 1: For any f —o and b—0, if a well behaved degree
distribution D satisfies R < b(n)M then G(D) has no giant
component.

Theorem 2: For any f —o0 and ¢ > 0 if a well behaved degree
distribution D satisfies R_>¢&M then G(D) has a giant
component

(Joos, Perarnau-Llobet, Rautenbach, Reed 2015)



Differences in the Proof

Determine if there is a component K of the multigraph obtained by
suppressing degree 2 vertices satisfying:

(*) 1E(K)| >&'M.

Use a combinatorial switching argument to obtain bounds on edge
probabilities in this multigraph.



Differences in the Proof - when No Giant Component Exists

Begin the random process with a large enough set of high degree vertices
that our process has negative drift.



Differences in the Proof - when No Giant Component Exists

Begin the random process with a large enough set of high degree vertices
that our process has negative drift.

Show drift becomes more and more negative over time, if the process does
not die out.



Differences in the Proof - when A Giant Component Exists

Focus on the set H={v | d(v) > YM)/log(M)}
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Differences in the Proof - when A Giant Component Exists

Focus on the set H = {v | d(v) > YM)/log(M)}

We can show, using our combinatorial switching argument, that depending on
the sum of the sizes of the components intersecting H, either

(a) thereis a giant component containing all of H, or

(b) we can reduce to a problem with H empty.

For which the conditions ensuring that
a giant component exists hold.
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Thank you ﬁ)r your attention!



