The Structure of Typical H-free and \mathcal{H} -free Graphs I

Bruce Reed

Nice School on Complex Networks and Random Walks, July 16 2019

If $\chi(H) = c + 1$ and $\chi(G) \leq c$ then G is H-free.

If $\chi(H) = c + 1$ and $\chi(G) \leq c$ then G is H-free.

If G can be partitioned into s stable sets and c cliques while H cannot then G is \mathcal{H} -free.

If $\chi(H) = c + 1$ and $\chi(G) \leq c$ then G is H-free.

If G can be partitioned into s stable sets and c cliques while H cannot then G is \mathcal{H} -free.

wpn(H)- max t such that for some s+c=t, H cannot be partitioned into s stable sets and c cliques

• Almost every triangle free graph is bipartite. Erdos,Kleitman Rothchild,1976

- Almost every triangle free graph is bipartite. Erdos,Kleitman Rothchild,1976
- Almost every K_t free graph is (t-1) colourable Kolatis,Prumel,Rothschild 1987

- Almost every triangle free graph is bipartite. Erdos,Kleitman Rothchild,1976
- Almost every K_t free graph is (t-1) colourable Kolatis,Prumel,Rothschild 1987
- For k>3, a.e. C_{2k+1} -free graph is partitionable into k cliques. Balogh+Butterfield, 2011

• The vertex set of a.e. C₅-free graph can be partitioned into a stable set and a set inducing a complete multipartite graph or into a clique and a set inducing a disjoint union of cliques. Prumel & Steger 1991.

- The vertex set of a.e. C₅-free graph can be partitioned into a stable set and a set inducing a complete multipartite graph or into a clique and a set inducing a disjoint union of cliques. Prumel & Steger 1991.
- For k>5, the vertex set of almost every C_{2k}-free graph can be partioned into k-2 cliques and a set inducing a graph whose complement's components are triangles or stars. R. & Scott 201?

- The vertex set of a.e. C₅-free graph can be partitioned into a stable set and a set inducing a complete multipartite graph or into a clique and a set inducing a disjoint union of cliques. Prumel & Steger 1991.
- For k>5, the vertex set of almost every C_{2k}-free graph can be partioned into k-2 cliques and a set inducing a graph whose complement's components are triangles or stars. R. & Scott 201?
- The vertex set of almost every C₆-free graph can be partitioned into a stable set and a graph which induces the complement of a graph of girth 5. R. & Scott 201?

H-freeness witnessing partition OF V(G): into wpn(H) parts X₁ to X_{wpn(H)} all of size (1+o(1)) $\frac{n}{wpn(H)}$ s.t. for any partition of V(H) into wpn(H) parts S₁ to S_{wpn(h)} there is some i s. t. H[S_i] is not an induced subgraph of G[X_i].

H-freeness witnessing partition OF V(G): into wpn(H) parts X₁ to X_{wpn(H)} all of size (1+o(1)) $\frac{n}{wpn(H)}$ s.t. for any partition of V(H) into wpn(H) parts S₁ to S_{wpn(h)} there is some i s. t. H[S_i] is not an induced subgraph of G[X_i]. Conjecture: A.e \mathcal{H} -free G has a H-freeness witnessing partition. R. & Scott. 201?

H-freeness witnessing partition OF V(G): into wpn(H) parts X₁ to X_{wpn(H)} all of size (1+o(1)) $\frac{n}{wpn(H)}$ s.t. for any partition of V(H) into wpn(H) parts S₁ to S_{wpn(h)} there is some i s. t. H[S_i] is not an induced subgraph of G[X_i]. Conjecture: A.e \mathcal{H} -free G has a H-freeness witnessing partition. R. & Scott. 201?

Proven for H a tree by R. & Yuditsky 2017

H-freeness witnessing partition OF V(G): into wpn(H) parts X₁ to X_{wpn(H)} all of size (1+o(1)) $\frac{n}{wpn(H)}$ s.t. for any partition of V(H) into wpn(H) parts S₁ to S_{wpn(h)} there is some i s. t. H[S_i] is not an induced subgraph of G[X_i]. Comjecture: A.e \mathcal{H} -free G has a H-freeness witnessing partition. R. & Scott. 201?

Proven for H a tree by R. & Yuditsky 2017

Shown to be false by Sergei Norine 2018

- H-freeness witnessing partition OF V(G): into wpn(H) parts X₁ to X_{wpn(H)} all of size (1+o(1)) $\frac{n}{wpn(H)}$ s.t. for any partition of V(H) into wpn(H) parts S₁ to S_{wpn(h)} there is some i s. t. H[S_i] is not an induced subgraph of G[X_i]. Comjecture: A.e \mathcal{H} -free G has a H-freeness witnessing partition. R. & Scott. 201?
- Proven for H a tree by R. & Yuditsky 2017
- Shown to be false by Sergei Norine 2018
- Similar statement for H-free shown false by Balogh, Bollobas, and Simonovitz 2013.

Theorem: \forall H, large k & $\delta > 0 \exists \alpha > 0$ s.t. A.e G in $IForb_n^H$ contains a subset Z with. $|Z| \leq n^{1-\alpha}$ such that G-Z

has an H-freeness witnessing partition.

R. & Scott 2013

Theorem: \forall H, large k & $\delta > 0 \exists \alpha > 0$ s.t. A.e G in $IForb_n^H$ contains a subset Z with. $|Z| \leq n^{1-\alpha}$ such that G-Z

has an H-freeness witnessing partition.

R. & Scott 2013

Definition: U(k) is bipartite with vertex set $\{a_1,...,a_k\}\cup B=\{b_1,...,b_{2^k}\}$. Vertices of B have distinct neighbourhoods in A.

Theorem: \forall H, large k & $\delta > 0 \exists \alpha > 0$ s.t. A.e G in $IForb_n^H$ contains a subset Z with. $|Z| \leq n^{1-\alpha}$ such that G-Z

has an H-freeness witnessing partition.

R. & Scott 2013

Definition: U(k) is bipartite with vertex set $\{a_1,...,a_k\}\cup B=\{b_1,...,b_{2^k}\}.$ Vertices of B have distinct neighbourhoods in A. **Theorem:** $\forall H$, large k & $\delta \geq$ 0 $\exists \alpha > 0$ s.t. A.e G in *IForb*_h^H has a partition into $X_1, ..., X_{wpn(H)}, Z$ s.t. $|Z| \le n^{1-\alpha}$, each S_i is U[k]-free & has $(1+o(1)) \frac{n}{wpn(H)}$ vertices Alon, Balogh, Bollobas, Morris 2009

wpn(H)> max($\alpha(G) - 1, \chi(G) - 1$) $\geq \sqrt{|V(G)|} - 1$.

wpn(H)> max($\alpha(G) - 1, \chi(G) - 1$) $\geq \sqrt{|V(G)|} - 1$.

If $X_1, ..., X_{wpn(H)}$ is an H-freeness witnessing partition of G, then for some i, there are four induced subgraphs $F_1 F_2, F_3 F_4$ of H which are not induced subgraphs of $G[X_i]$ such that:

 $V(F_1)$ can be partitioned into a clique and an edge, $V(F_2)$ can be partitioned into a stable set & an edge $V(F_3)$ (resp. $V(F_4)$) can be partitioned into a clique (stable set) and a stable set of size two

wpn(H)> max($\alpha(G) - 1, \chi(G) - 1$) $\geq \sqrt{|V(G)|} - 1$.

If $X_1, ..., X_{wpn(H)}$ is an H-freeness witnessing partition of G, then for some i, there are four induced subgraphs $F_1 F_2, F_3 F_4$ of H which are not induced subgraphs of $G[X_i]$ such that:

 $V(F_1)$ can be partitioned into a clique and an edge, $V(F_2)$ can be partitioned into a stable set & an edge $V(F_3)$ (resp. $V(F_4)$) can be partitioned into a clique (stable set) and a stable set of size two

=> There is a k s.t. G is U_k -free.

Theorem: \forall H, large k & $\delta > 0 \exists \alpha > 0$ s.t. A.e G in $IForb_n^H$ contains a subset Z with. $|Z| \leq n^{1-\alpha}$ such that G-Z

has an H-freeness witnessing partition.

R. & Scott 2013

Definition: U(k) is bipartite with vertex set $\{a_1,...,a_k\}\cup B=\{b_1,...,b_{2^k}\}.$ Vertices of B have distinct neighbourhoods in A. **Theorem:** $\forall H$, large k & $\delta \geq$ 0 $\exists \alpha > 0$ s.t. A.e G in *IForb*_h^H has a partition into $X_1, ..., X_{wpn(H)}, Z$ s.t. $|Z| \le n^{1-\alpha}$, each S_i is U[k]-free & has $(1+o(1)) \frac{n}{wpn(H)}$ vertices Alon, Balogh, Bollobas, Morris 2009

The Structure of H-free Graphs

Let M(H) be the set of graphs F such that H is a subgraph of the join of (i) the disjoint union of F and a stable set with (ii) a χ (H)-2 partite graph.

Theorem: $\forall H, \exists B \text{ s.t. almost every H-free graph G contains a set Z of at most B vertices s.t. G-Z can be partitioned into <math>\chi(H)$ -1 parts each of which contains no subgraph in M(H).

Balogh, Bollobas, & Simonovits 2009.

An Example

Let H be obtained from a $K_{2s,2s}$ by adding a matching of size s on one side.

M(H) consists of those graphs with no matching of size s.

A graph which is M(H)-free has a cover of size at most 2s-2 and only s-1 vertices of degree $\geq 2s$.

There are at most
$$\binom{k}{2s-2} 2^{2s-2} \binom{k}{2s}^{s} 2^{(s-1)(k)} = 2^{(s-1)k+o(k)}$$
 such graphs on k vertices.

Consider graphs G with 2k vertices consisting of a stable set S of λ vertices, s.t. G-S has a bipartition (U,W) and at most s-1 edges from each vertex of V-S to S. Such graphs are H-free. An appropriate choice of s and I, show we cannot make B zero in the previous theorem. Balogh, Bollobas, Simonovits 2013

An Open Question

What is the slowest growing function f_H such that almost every G in $IForb_H^n$ contains a set Z of at most f(H) vertices s.t. G-Z has an Hfreeness witnessing partition.

Another Open Question

What is the slowest growing function f_H such that almost every G in $Forb_H^n$ contains a set Z of at most f(H) vertices s.t. G-Z can be partitioned into $X_1, ..., X_{\chi(G)-1}$ s.t.

(a) For any partition of V(H) into $\{S_1, ..., S_{\chi(G)-1}\}$ there is some i s.t. H $[S_i]$ is not a subgraph of G $[X_i]$, and

(b) for all i,
$$|X_i| = (1+o(1)) \frac{n}{wpn(H)}$$

Definiton For b_H^n : H-free graphs on $V_n = \{1, ..., n\}$ **Observation:** If $\chi(H) = c$ then:

$$Forb_{H}^{n}|>2^{\frac{c-2}{c-1}\binom{n}{2}}$$

Definiton For b_H^n : H-free graphs on $V_n = \{1, ..., n\}$ **Observation:** If $\chi(H) = c$ then:

$$Forb_{H}^{n}|>2^{\frac{c-2}{c-1}\binom{n}{2}}$$

Theorem: If $\chi(H) = c$ then:

 $|Forb_{H}^{n}| < 2^{\frac{c-2}{c-1}(1+o(1))\binom{n}{2}}$ Erdos, Frankl, Rodl, 1986

Definiton For b_H^n : H-free graphs on $V_n = \{1, ..., n\}$ **Observation:** If $\chi(H) = c$ then:

$$Forb_{H}^{n}|>2^{\frac{c-2}{c-1}\binom{n}{2}}$$

Theorem: If $\chi(H) = c$ then:

 $|Forb_{H}^{n}| < 2^{\frac{c-2}{c-1}(1+o(1))\binom{n}{2}}$ Erdos, Frankl, Rodl, 1986

Proof: For all $\varepsilon > 0$ there is an n_0 s. t. for $n > n_0$, every G in $Forb_H^n$ can be made c-1 chromatic by deleting at most εn^2 edges.

Definiton *IForb*^{*n*}_{*H*}: \mathcal{H} -free graphs on $V_n = \{1, ..., n\}$ **Observation:** If wpn(H) = *t* then:

$$|IForb_H^n| > 2^{\frac{t-1}{t}\binom{n}{2}}$$

Theorems: If wpn(H) = t then:

 $|IForb_{H}^{n}| < 2^{\frac{t-1}{t}(1+o(1))\binom{n}{2}}$ Prumel & Steger 1992

Definiton *IForb*^{*n*}_{*H*}: \mathcal{H} -free graphs on $V_n = \{1, ..., n\}$ **Observation:** If wpn(H) = *t* then:

$$IForb_{H}^{n}|>2^{\frac{t-1}{t}\binom{n}{2}}$$

Theorems: If wpn(H) = t then:

 $|IForb_{H}^{n}| < 2^{\frac{t-1}{t}(1+o(1))\binom{n}{2}} Prumel \& Steger 1992$ $\exists \alpha > 0 \ s.t. \ |IForb_{H}^{n}| < 2^{\frac{t-1}{t}\binom{n}{2}+n^{2-\alpha}} ABBM \ 2009$

A multiset \mathcal{F} of subsets of a ground set S *shatters* some subset D of S if: $\forall Z \subseteq D, \exists X \in \mathcal{F}$ s.t $X \cap D = Z$

A multiset \mathcal{F} of subsets of a ground set S *shatters* some subset D of S if: $\forall Z \subseteq D, \exists X \in \mathcal{F}$ s.t $X \cap D = Z$

The VC-Dimension of \mathcal{T} is the maximum cardinality of a subset of S it shatters.

A multiset \mathcal{F} of subsets of a ground set S *shatters* some subset D of S if:

 $\forall \mathsf{Z} \subseteq \mathsf{D}, \exists \mathsf{X} \in \mathcal{F} \text{ s.t } \mathsf{X} \cap \mathsf{D} = \mathsf{Z}$

The VC-Dimension of \mathcal{T} is the maximum cardinality of a subset of S it shatters.

Sauers Lemma: If \mathcal{F} has VCdimension d and S has size m then the number of distinct elements in \mathcal{F} is

$$\sum_{i=0}^{d} \binom{m}{d} < m^{d+1}$$

A multiset \mathcal{F} of subsets of a ground set S *shatters* some subset D of S if: $\forall Z \subseteq D, \exists X \in \mathcal{F}$ s.t $X \cap D = Z$

The VC-Dimension of \mathcal{F} is the maximum cardinality of a subset of S it shatters.

Sauers Lemma: If \mathcal{F} has VCdimension d and S has size m then the number of distinct elements in \mathcal{F} is

$$\sum_{i=0}^{d} \binom{m}{d} < m^{d+1}$$

Corollary: If G is U(K)-free then $\forall S \subseteq V$ of size m, the multiset $\{N(v) \cap S | v \text{ in } V-S\}$ has fewer than m^{d+1} distinct elements.

A multiset \mathcal{F} of subsets of a ground set S *shatters* some subset D of S if: $\forall Z \subseteq D, \exists X \in \mathcal{F}$ s.t $X \cap D = Z$

The VC-Dimension of \mathcal{F} is the maximum cardinality of a subset of S it shatters.

Sauers Lemma: If \mathcal{F} has VCdimension d and S has size m then the number of distinct elements in \mathcal{F} is

$$\sum_{i=0}^{d} \binom{m}{d} < m^{d+1}$$

Corollary: If G is U(K)-free then $\forall S \subseteq V$ of size m, the multiset $\{N(v) \cap S | v \text{ in } V-S\}$ has fewer than m^{d+1} distinct elements.

=> $\forall k \exists \alpha > 0 \ s.t$ the number of U(k) free graphs on {1,...,n}=O(2^{n^{2-\alpha}}).

Theorem: \forall H, large k & $\delta > 0$ $\exists \alpha > 0$ & b s.t. a.e G \in *IForb*^H_n contains a subset Z with $|Z| \leq n^{1-\alpha}$, a set B with $|B| \leq$ b such that G-Z has an Hfreenesswitnessing partition $\{S_1, ..., S_{wpn(H)}\}$ and Z has a partition $\{Z_1, ..., Z_{wpn(H)}\}$ for which: $\forall v \in S_i \cup Z_i$, $\exists w \in B$ s.t.

 $|(N(v)\Delta N(w))\cap (S_i \cup Z_i)| < \delta n$ R. & Scott 2013

Theorem: \forall H,large k & $\delta > 0$ $\exists \alpha > 0 \& b s.t. a.e G in$ $IForb_{h}^{H}$ has a partition into $X_1, ..., X_{wpn(H)}, Z_1, ..., Z_{wpn(H)}$ and a set B of \leq b vertices s.t. $|\bigcup_{i=1}^{wpn(H)} Z_i| \le n^{1-\alpha}$ each X_i is U[k]-free & has (1+o(1)) $\frac{n}{wpn(H)}$ vertices and for which: $\forall v \text{ in } S_i \cup Z_i, \exists w \text{ in } B \text{ s.t.}$ $|(N(v)\Delta N(w)) \cap (S_i \cup Z_i)| < \delta n$

ABBM 2009

Thank You For Your Attention!

