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Question

Let G be a class of (simple) graphs closed under isomorphism, eg the class
P of planar graphs.

Gn is the set of graphs in G on vertices 1, . . . , n.

Rn ∈u G means that Rn is picked uniformly at random from Gn.

What are typical properties of Rn?

usually a giant component? probability of being connected?
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Generating functions

For a class G of graphs, the exponential generating function (egf) is

G (x) =
∑
n

|Gn|xn/n!.

ρG or ρG is the radius of convergence (where 0 ≤ ρG ≤ ∞).

For suitable classes, we can relate the egfs (or two variable versions) of all
graphs, connected graphs, 2-connected graphs and 3-connected graphs.

If we know enough about the 3-connected graphs (as we do for planar
graphs, thanks to Tutte and others) then we may be able to extend to all
graphs.

We aim to proceed in greater generality.
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Minors

H is a minor of G if H can be obtained from a subgraph of G by
edge-contractions. G is minor-closed if

G ∈ G, H a minor of G ⇒ H ∈ G

Examples:

forests, series-parallel graphs, and more generally graphs of treewidth ≤ k ;

outerplanar graphs, planar graphs, and more generally graphs embeddable
on a given surface;

graphs with at most k (vertex) disjoint cycles.
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Minors

Ex(H) is the class of graphs with no minor a graph in H. For example:
series-parallel graphs = Ex(K4), planar graphs = Ex({K5,K3,3}), graphs
with no two disjoint cycles = Ex(2C3).

Easy to see: G is minor-closed iff G = Ex(H) for some class H.

By Robertson and Seymour’s graph minors theorem (once Wagner’s
conjecture), if G is minor-closed then it is Ex(H) for some finite class H.

The unique minimal such H consists of the excluded minors for G.
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Minors

Mostly we shall assume that G is minor-closed and proper (that is, not
empty and not all graphs).

For such G, there is a c = c(G) such that the average degree of each
graph in G is at most c (Mader). Thus our graphs are sparse. For Ex(Kt)
the maximum average degree is of order t

√
log t (Kostochka, Thomason).

By definition, the radius of convergence ρG is > 0 if and only if ∃c such
that |Gn| ≤ cnn! .

Norine, Seymour, Thomas and Wollan (2006), and Dvorák and Norine
(2010), showed that each proper minor-closed graph class G has ρG > 0.
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Decomposable

If a graph is in G if and only if each component is, then we call G
decomposable.

For example the class of planar graphs is decomposable but the class of
graphs embeddable on the torus is not.

A minor-closed class is decomposable iff each excluded minor is connected
(Exercise 1(a)).
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Bridge-addable and addable

G is bridge-addable if whenever G ∈ G and u and v are in different
components of G then G + uv ∈ G.

G is addable if it is decomposable and bridge-addable.

A minor-closed class G is addable iff each excluded minor is 2-connected
(Exercise 1(b)).

Given a surface S , let GS denote the class of graphs embeddable in S .
GS is bridge-addable but not decomposable except in the planar case.
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Bridge-addability and being connected

McD, Steger and Welsh (2005) used double counting to show:

Lemma

If G is bridge-addable and Rn ∈u G then

P(Rn is connected) > 1/e ≈ 0.3679.

Proof: Exercise 2.

For trees T and forests F , |Tn| = nn−2 and |Fn| ∼ e
1
2 nn−2. Thus for

Fn ∈u F ,
P(Fn is connected) ∼ e−

1
2 ≈ 0.6065.
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Bridge-addability and being connected

McD, Steger and Welsh (2006) conjectured that, if G is bridge-addable,
then

P(Rn is connected) ≥ e−
1
2

+o(1). (1)

Balister, Bollobás and Gerke (2008, 2010) improved the lower bound.
Under the extra condition that G is also closed under deleting bridges,
Addario-Berry, McD and Reed (2012), and Kang and Panagiotou (2013)
proved the conjecture (1).

The full conjecture was recently proved by Chapuy and Perarnau (JCTB to
appear).
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Big component

The big component Big(G ) of a graph G is the (lex first) component with
most vertices.

The fragment ‘left over’, Frag(G ), is the subgraph induced on the vertices
not in the big component.

Theorem

If G is bridge-addable then E[v(Frag(Rn))] < 2.

Proof: Exercise 3.
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Growth constant

To go further, we need to know that the numbers |Gn| do not jump around
too much. G has a growth constant if 0 < ρG <∞, and

(|Gn|/n!)1/n → ρ−1
G as n→∞,

that is, if
|Gn| = (1 + o(1))nρ−nG n!.

If G contains arbitrarily long paths then clearly ρG ≤ 1.

Bernardi, Noy and Welsh 2010: if G is monotone and does not contain all
paths then ρG =∞.
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When is there a growth constant?
minor-closed and addable – and GS

McD, Steger and Welsh (2005), McD (2009):

Theorem

Each addable proper minor-closed class G has a growth constant.

This follows from supermultiplicativity, together with ρG > 0.

In particular the class P of planar graphs has a growth constant. Indeed,
each surface class GS has a growth constant, the same as for P (McD
2008).

Bernardi, Noy and Welsh (2010) asked:
does every proper minor-closed class of graphs have a growth constant?
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Having a growth constant yields ..
Pendant appearances theorem - introduction

Let H be a connected graph.
G has a pendant appearance of H if G has a bridge e with H at one end.

H is attachable to G if whenever we have a graph G in A and a disjoint
copy of H, and we add an edge between a vertex in G and the root of H,
then the resulting graph must be in G.

For an addable minor-closed class G, the attachable graphs are the
connected graphs in G.

For GS , the attachable graphs are the connected planar graphs.
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Pendant Appearances Theorem

McD, Steger and Welsh (2005), (amended 2014+):

Theorem

Let the connected graph H be attachable to G, where 0 < ρG <∞.
Then there exists α > 0 such that, if H is the set of G ∈ G with less than
α v(G ) pendant appearances of H, then ρH > ρG .

Proof idea. From G ∈ Hn, by adding δn pendant appearances of H we
may construct many graphs G ′ in Gn′ , where n′ = n + v(H)δn; and since
each G had few pendant appearances of H, each graph G ′ is not
constructed very often, so if Hn is big we get too many graphs in Gn′ .
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Pendant Appearances Theorem

Theorem

Let the connected graph H be attachable to G, where 0 < ρG <∞.
Then there exists α > 0 such that, letting H be the set of G ∈ G with less
than α v(G ) pendant appearances of H, we have ρH > ρG .

Corollary

If G has a growth constant, then for Rn ∈u G

Pr (Rn has < αn pendant appearances of H) = e−Ω(n).

For
|Hn|
|Gn|

≤
(ρ−1
H + o(1))n

(ρ−1
G + o(1))n

= e−Ω(n).
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Pendant Appearances Theorem - an application

Suppose that G has a growth constant.

If the 3-vertex star (cherry) is attachable to G, then whp there are at least
αn pendant cherries, and thus at least 2αn automorphisms.

This can be used to show that the unlabelled planar graphs have strictly
bigger (unlabelled) growth constant than the labelled planar graphs P.
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Unlabelled graphs

Think of an unlabelled graph as an equivalence class of labelled graphs.
Write G̃ for the set of unlabelled graphs in G,

We say that G (or G̃) has unlabelled growth constant γ̃ = γ̃G if
|G̃n|1/n → γ̃ as n→∞.

The earlier result showing that minor-closed classes are small was stated in
terms of labelled graph classes, but in fact the ‘smallness’ result of Dvorák
and Norine is for unlabelled graph classes.
For each proper minor-closed class G of graphs there is a constant c such
that |G̃n| ≤ cn for each n.

This result immediately implies the earlier upper bound, since
|Gn| ≤ n! · |G̃n|.
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Unlabelled graphs: growth constant

Theorem

Let G be a proper addable minor-closed class of graphs, and let C be the
class of connected graphs in G. Then G and C have an unlabelled growth
constant, and γ̃G = γ̃C > γG (= γC).

Idea of proof. Let C̃• denote the set of (vertex-) rooted graphs in C̃. Then
f (n) = |C̃•n | is supermultiplicative; that is, for positive integers a and b

|C̃•a+b| ≥ |C̃•a | · |C̃•b |. (2)

Now use Fekete’s Lemma and ‘smallness’ to show that C̃• has unlabelled
growth constant. Hence C̃ and G̃ have the same unlabelled growth
constant.
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Unlabelled graphs: showing γ̃G > γG

The appearances theorem gives α > 0 such that: ≥ 1
2 of G ∈ Gn have

≥ 2αn automorphisms, and thus are in isomorphism classes G̃ of size
≤ 2−αnn!.

Hence

|G̃n| ≥
1

2
|Gn|/2−αnn!

and so
γG ≤ 2−αγ̃G .
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Smoothness

Given G let rn = n|Gn−1|
|Gn| . Call G smooth if rn → ρG as n→∞.

All the classes for which we know an asymptotic counting formula are
smooth, for example forests, series-parallel graphs, P, GS , .. (apart from
cubic planar graphs,..).

Showing smoothness is often a crucial step in proving results about
Rn ∈u G.
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When is G smooth?

Bender, Canfield and Richmond (2008):

Theorem

GS is smooth for any surface S .

The proof did not involve an asymptotic counting formula, and indeed
none was then known.

We knew at that time that GS has growth constant ρ−1
P ≈ 27.226878.

Counting GS was greatly improved in 2011 by Chapuy, Fusy, Giménez,
Mohar and Noy, and by Bender and Gao, to give an asymptotic formula
for |GSn |.
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Idea of proof of smoothness

The key is to consider the core (2-core).

The core of G , core(G ), is the unique maximal subgraph H such that the
minimum degree δ(H) ≥ 2. We obtain the core by repeatedly trimming off
leaves.

Let Gδ≥2 denote the class of graphs in G with minimum degree δ ≥ 2.

The idea is that if Gδ≥2 grows reasonably smoothly then rooting trees in
the core leads to a smooth class G.
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Addable minor-closed classes

The proof method yields further results. In particular (McD 2009):

Theorem

Let G be a proper addable minor-closed class of graphs and let C be the
class of connected graphs in G. Then G and C are smooth.
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Sketch proof: A is smooth (1/3)

Let A 6= F be an addable minor-closed class. Let us show that A is
smooth.

Note that F ⊆ A, and C3 is attachable to A. Hence by the Pendant
Appearances Theorem ρ(A) < ρ(F) (= 1/e).

Let A− be the class of graphs G ∈ A with no tree components. We may
think of A as A− ×F . But ρ(A−) < ρ(F), so it suffices to show that A−
is smooth.

Aδ≥2 is addable and small, and so it has a growth constant.
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Sketch proof: A is smooth (2/3)

Denote Aδ≥2 by B, and let T • denote the class of rooted trees. Graphs G
in A− are obtained by starting with a graph in B and rooting a tree at
each vertex. Then

A−(x) = B(T •(x)).

Now

|A−n |/n! = [xn]A−(x) = [xn]
n∑

k=0

|Bk | (T •(x))k/k!

∼ [xn]
∑

k:|k−αn|<εn

|Bk |/k! (T •(x))k ,

where α = 1− ρ2, 0 < α < 1. (Recall that ρ2 = ρ(Gδ≥2).)
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Sketch proof: A is smooth (3/3)

We have
|A−n |
n!
∼

∑
k:|k−αn|<εn

|Bk |/k! [xn]T •(x)k

and
|A−n+1|

(n + 1)!
∼

∑
k:|k−αn|<εn

|Bk |/k! [xn+1]T •(x)k .

Each term
[xn+1]T •(x)k/ [xn]T •(x)k

is close to ρ−1
A . Hence

|A−n+1|
(n + 1)|A−n |

∼ ρ−1
A .
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Addable minor-closed classes

We have now shown:

Theorem

Let G be a proper addable minor-closed class of graphs and let C be the
class of connected graphs in G. Then G and C are smooth.

Conjecture: is every proper minor-closed class smooth?

What do we get from smoothness?
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Boltzmann Poisson random graph

Let G be decomposable.

Fix ρ > 0 such that G (ρ) is finite; and let

µ(H) =
ρv(H)

aut(H)
for each H ∈ G̃.

Here G̃ denotes the unlabelled graphs in G. Easy to check:

G (ρ) =
∑
H∈G̃

µ(H).
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Boltzmann Poisson random graph

The Boltzmann Poisson random graph R = BP(G, ρ) takes values in G̃,
with

P[R = H] =
µ(H)

G (ρ)
for each H ∈ G̃.

Let C denote the class of connected graphs in G. For each H ∈ C̃ let
κ(G ,H) denote the number of components of G isomorphic to H.

Proposition

The random variables κ(R,H) for H ∈ C̃ are independent, with
κ(R,H) ∼ Po(µ(H)). In particular

P(R = ∅) = e−C(ρ).
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Fragments theorem for an addable minor-closed class

Recall that the fragment Frag(G ) of a graph G is the subgraph remaining
when you discard the largest component.

Theorem

Let G be a proper addable minor-closed class.

Then 0 < ρG <∞ and G (ρG) is finite;

and for Rn ∈u G, the random unlabelled fragment converges in distribution
to BP(G, ρG).

We may deduce that

P(Rn is connected )→ e−C(ρG).
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Fragments theorem - proof idea (1/3)

Recall µ(H) = ρv(H)/aut(H) for H ∈ G̃, and rn = n|Gn−1|/|Gn|.

Lemma

Let G be a decomposable class of graphs and let ρ > 0. Let H1, . . . ,Hm be
pairwise non-isomorphic connected graphs in G. Let k1, . . . , km be
non-negative integers, and let K =

∑m
i=1 kiv(Hi ). Then for Rn ∈u Gn,

E

[
m∏
i=1

(κ(Rn,Hi ))ki

]
=

m∏
i=1

µ(Hi )
ki

K∏
j=1

(rn−j+1/ρ).
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Fragments theorem - proof idea (2/3)

Lemma

Let G be decomposable and smooth, and let ρ = ρG . Let H1, . . . ,Hm be
pairwise non-isomorphic connected graphs in G. Then the m-tuple
κ(Rn,H1), . . . , κ(Rn,Hm) converges in distribution to
Po(µ(H1))⊗ · · · ⊗ Po(µ(Hm)).

Proof.

Since rn → ρ as n→∞, by the last lemma

E

[
m∏
i=1

(κ(Rn,Hi ))ki

]
→

m∏
i=1

µ(Hi )
ki ,

for all non-negative integers k1, . . . , km. Now we may use a standard result
in the method of moments.
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Fragments theorem - proof idea (3/3)

Lemma

Let G be decomposable and smooth, and let ρ = ρG . Let H1, . . . ,Hm be
pairwise non-isomorphic connected graphs in G. Then the m-tuple
κ(Rn,H1), . . . , κ(Rn,Hm) converges in distribution to
Po(µ(H1))⊗ · · · ⊗ Po(µ(Hm)).

Putting this lemma together with

E[v(Frag(Rn))] < 2

yields the fragments theorem.
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More on Gδ≥2

We saw earlier that, if G is a proper addable minor-closed class of graphs,
and C is the class of connected graphs in G, then G and C are smooth.

We can go further if G is not just the forests F .

Theorem

Let G 6= F be a proper addable minor-closed class of graphs, and let C be
the class of connected graphs in G. Then Gδ≥2 and Cδ≥2 are smooth.

Further, let ρ2 be the radius of convergence of Gδ≥2. Then
G δ≥2(ρ2) <∞; and both the core of the unlabelled fragment of Rn ∈u G,
and the unlabelled fragment of Rn ∈u Gδ≥2, converge in distribution to
BP(Gδ≥2, ρ2).
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Idea of proof that Gδ≥2 is smooth

Observe that C3 is freely attachable to Gδ≥2 (that is, G ∈ Gδ≥2 iff
G ′ ∈ Gδ≥2, where G ′ is G plus a pendant copy of C3).

Let D be the class of graphs in Gδ≥2 with no pendant C3 and no
component C3. Given a graph G , the inner core icore(G ) is the unique
maximal subgraph of G in D.

Now argue roughly as before (to show that G is smooth) but with core
replaced by inner core.
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Like GS and P

We can also generalise (and thus better understand?) the relationship
between GS and P.

Call G trimmable when for any graphs G and H

G ∈ G and core(H) = core(G ) =⇒ H ∈ G.

If a trimmable class contains a forest then it must contain all forests; and
each surface class GS is trimmable. Also a minor-closed class of graphs is
trimmable if and only if each excluded minor has minimum degree at least
two.

Let D be the diamond (C4 plus a chord). Then Ex(D) is addable and
minor-closed. Let G(k) be the graphs with at most k edge-disjoint
subgraphs contractible to D. Then G(k) is trimmable and
ρ(G(k)) = ρ(Ex(D)).
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Like GS and P

Theorem

Let A 6= F be a proper addable minor-closed class of graphs; let G be a
trimmable class of graphs with G ⊇ A and ρG = ρA; and let C be the
connected graphs in G. Then:

(a) G and C are smooth.

(b) Gδ≥2 and Cδ≥2 have radius of convergence ρ2 := ρ(Aδ≥2); and for
Rn ∈u G or for Rn ∈u C

P(|v(core(Rn))− (1− ρ2)n| > εn) = e−Ω(n).

(c) If some cycle is freely attachable to G, then Gδ≥2 and Cδ≥2 are smooth.
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That’s it

Thanks for your attention!
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