The Mixing Time of The
Giant Component H, ; of G,



The Main Result

For every € > 0, if p>(1+&)/n then for d=pn, the mixing time of the
uniform random walk on the giant component H, , of G,  is almost
surely
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The Lower Bounds
Long Induced Paths

P(d(v)=2) = (5 Jp?(1-p)n? ~ ce

So the probability that an edge goes to such
a vertex is 2ded and the expected number
of induced paths of length | ‘is dn(2ded)'.

For d>1 (2de) lies between e and e-9/
and we can show a.s. the giant component
O%S)n,p has induced path of length ()(In
n/d).

It follows G, , has mixing time Q((In n/d)?).
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Diameter
Letting Ni=Ni§v) be the size of the vertices
aNt distNanc)e i from v we see that E(|N;| given
1s:ey1Nj-1

=d | N;[ (]V-N1-Np-..-Ni1 | /n)<d | N;|

Furthermore while, as we see in the other
panel, |N;| can be far from its expectation
when |Ni;| is small simple concentration

results show

that a.s. for every vandis.t.
N1 |>log?n,|N; |<dZlog n.

So the diameter of the giant component of
G, pand hence its mixing time is (1(In n/In d)
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Letting ®(p) = mm{

d(S) = L d(M) = min{

! D(S), Trix= O(Ty_ 128 ™minl =1 p(24)-2)

S|£2) < n(S) <p,S connected

Inn,,

Ja .
They also proved that a.s. for p<(Lngn) np 2[ log min] -1 ®(29)2 = 0(lnn + (_) ).
The main result follows. For larger p the proof is easier and uses different technlques
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Conductance in H

1+¢ J{ln nn)p)

( n < p < n
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PB) = e reon®)
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The Core of The Proof(p<d—n° for constant d,)

The core C, , of H, , is its minimal subgraph of minimum degree 2.
This is the subdivision of a multigraph K, ; of minimum degree 3.

To obtain H, , from C, ,, we decorate it by adding a tree at each of its
vertices.

Prove results on conductance of C, ; via the configuration model.

Prove that number of vertices and total degree of a decorated piece is
not that different from that for the piece itself.



A General Bound on Mixing Time
From Conductance



The Bound
Letting @ (p) = mm{S‘g <n(S)<pS connected}q)(s)’
For time reversible chains:

-1 minl —1 S
Tnix= O(ZLlogn ! d(27) 2)-



A Different Mixing Time

A stopping rule I is a rule for stopping our walk where the probability
we stop at any time depends only on the sequence of states we have
seen so far. We focus on stopping rules where we stop in .

H(i,r) is the minimum expected time to stop for such a stopping rule
starting in i. H is the maximum of these values.

Theorem: For time-reversible Chains, H is O(Trix)
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Bounding H

Choose i, & a stopping rulingI' for WLOG: 0=y, <y, < - <y,

iy, S.1. the time it takes to stop is C.—component of G[U :; ;]
i J<t./]

H(i,t)=H. containing v,
x; = expected exits of i before we % nin { st
AN i*=min {i |7 (C;) >2}.
yim X; We bound:
- m@) Yic1 Ty p+2icg (@) (Vi-yir)

H=Y in 0 Xi =2 in @ T@Yi-
dh s.t. xp=y,=0
Claim 1:y; is maximized at i=ij



We bound'
17-[0)371*"'2 1”(’*)(3’1 YL

My=Yo=0. Z,={1}. m, m,1+¢(z;l1) ji=max {j| y; = my}, Z,=C;,.
L=max {i| m; <i*},
D=1 T[(i)yi*zyi*=<mL+1=Z%=1 mi'mi—fZ{f:llq,(Z;i_l)
Claim 2: (Z) > n(Zl- ) (1+‘D<ZTH))
—There are < ( 7
L+1__ 4 < Z[log”mm] 116 q)(z—j)—z

=1 oz;_y)



We bound'
1”(03’1*"'2 1”(’*)(3’1 YL

nyp=n, Sy=n

For i > 0,n;= min /7 ({j+1,...n)> 1(Si-1) A=) s=(n,...

L=min {i | nj;; <i*+1}
=1 T iyir )< Zk=0(ynk‘ynk+1)T[(?:S'k+1'nk+1)
Claim 3: (y, -V, ;) T(Sk41 Mk 41)< PG

SkS t 271 < 7T(Sk)< 27

4
By definition, th <
y definition, there are o))

=> S n) 0y ) < Shges < ST 12 (27



Proof of Claims



A Simple Observation

Observation 1: For all S not containing iy

T(S)=2i in s,j not in s T Pi;(Y;Yi)

Proof: The sum counts the number of times we enter S minus the
number of times we leave S. Since we stop in stationary the result
follows.

Corollorary (Claim 1): For every a, the graph induced by {i|y;= a} is
either empty or contains iy and is connected.

Proof: for any component S of this graph not containing ij the
summands in observation 1 are negative but the sum is positive.



Proof of Claim 2

By Observation 1 w(Zy) = X in z,.j not in z;, (0 Pi;{Y;~Yi)

Since Z, is a component of {i| y; <a} for some a
4

T(Zk) 2 Liezi)e 2k TOPYY) < Diezy)ezip PO Pij 575
0(5,0-5)

Letting Q(A,B) = X in 4, in (1) Pij SO D(S)= ) o We have:
4 _ _ 41 (Z)

Hence, Q(Z, & — Zi41) < Q(Zk, @ — Zy).
Since Q(Zx, @ — Zy)= Q(Zy, @ — Zy41) + Q(Zk, Zk 41 —Zk)
3 31(Z))D(Z
Q(ZkZrk+1 —Zk) 27, Q(Zk, O — Zy)= = ki <
Now, Q(Zy,Zr+1 —Z)) is the probability that in stationary we move into Z,,,-Z, from Z so:

M(Zisr — Zie) = I and 1(Z;,.0) 2(1+22 ) 1(Zy.)




We omit the proof of Claim 3 it can be found
in the references.
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