
The Mixing Time of The 
Giant Component Hn,p of Gn,p



The Main Result

For every ! > 0, if p>(1+!)/' then for d=pn, the mixing time of the 
uniform random walk on the giant component Hn,p of Gn,p is almost 
surely 

Θ (max { )* +)* , ,()* +, )
.})

Fountoulakis and Reed 2008



The Lower Bounds
Long Induced Paths                           Diameter 

P(d(v)=2) = 
!
2 p2(1-p)n-2 ≈ d2e–d

So the probability that an edge goes to such 
a  vertex is 2de-d and the expected number 
of induced paths of length l  is dn(2de-d)l .
For d>1 (2de-d ) lies between e-d and e-d/4 

and we can show a.s. the giant component 
of Gn,p has  induced path of length Ω(ln 
n/d).
It follows Gn,p has mixing time Ω((ln n/d)2). 

Letting Ni=Ni(v) be the size of the vertices 
at distance i from v we see that E(|Ni| given 
N1,…,Ni-1 )
=d|Ni|(|V-N1-N2-..-Ni-1|/n)<d|Ni|

Furthermore while, as we see in the other 
panel, |Ni| can be far from its expectation 
when |Ni-1| is small simple concentration 
results show 
that a.s. for every v and i s.t.
|Ni-1|>log2 n ,|Ni |<d2log n.  
So the diameter of the giant component of 
Gn,p and hence its mixing time is Ω(ln n/ln d)
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Upper Bounding The Mixing Time Using 
Conductance

Φ(S) = 
"($)&',)
"(*) , Φ + = -./ 0 1 0 ≤ 3

4
Φ(0)

Jerrum and Sinclair won the Godel prize for proving:
For time-reversible lazy M, Tmix(M)= 5(Φ(6)74log (18$9))
For M the (lazy) uniform random walk on  (the giant component of) Gn,p

18$9 is Θ( 3
;|=(>?,@)|

) and Φ(G) is Θ( ;
AB 9 ).  So Tmix = O((AB 9; )

4ln(n)). 

Standing on the  shoulders of Kannan & Lovasz, Fountalakis &Reed  strengthened Jerrume and 
Sinclair’s result  to  show: 
Letting Φ C = -./ 0 &

4 ≤ 1 0 ≤ C, 0 DE//FDGFH Φ(0), Tmix= 5(∑$J3
AKL "M'? 73Φ(2-j)74). 

They also proved that  a.s. for the giant Hn,p in Gn,p: ∑$J3
AKL "M'? 73Φ(2-j)74 = 5( AB 9

AB ; + (
AB 9
; )

4). 
The main result follows.  
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4
≤ 1 0 ≤ C, 0 DE//FDGFH Φ(0), Tmix= 5(∑$J3
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9
Hn,p ∑$J3
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;
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The main result follows.  For larger p the proof is easier and uses different techniques. 



The Conductance of Hn,p



Conductance in Hn,p

(!"#
$
< & < {($ $ )

$
)

For eout(S)={xy,x ∈ +,y∉ ,S}  e(S)={xy| x,y ∈ +}, and d(S)= eout(S)+2e(S),  
Φ S = 1234(6)

71 6 "1234(6)
.  

Let 89: be the number of connected sets of size s with e(S) >a, and 
<9= be |{S s.t. S connected,|S|=s, d(S)≤|E(Hn,p)|, eout(S)< b}. 
Theorem 1: A.s. ∀@=o((ln n)2)  Y979 = 0, and ∃c > 1 s.t. a.s. ∀s,  89GH9=0
Theorem 2: ∃1 > I > 0 J > 0 s. t. a.s.  ∀s > O (PQ R)

H
<9SH9=0

Corollary: ∀ TUVVWTXWY + Φ + > Z
7|6|

& \O PR R
7H|] ^_,` |

< a(+)<  Z
7
=> Φ(S) > S

bG

∑deZ
Pfg hij_ kZΦ(2-j)k7 ≤ (7G)l Pfg(mHR)

Sl
+ ∑neZ

Pfg(\O (PR R)/H) Z
7(7p)"Z

= 0((ln n)+(PQ R)
l

Hl
)
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The Core of The Proof(p<!"# for constant d0)

The core Cn,p of Hn,p is its minimal subgraph of minimum degree 2.
This is the subdivision of a multigraph Kn,p of minimum degree 3.
To obtain Hn,p from Cn,p, we decorate it by adding a tree at each of its 
vertices.  
Prove results on conductance of Cn,p via the configuration model. 
Prove that  number of vertices  and total degree of a decorated piece is 
not that different from that for the piece itself.



A General Bound on Mixing Time 
From Conductance



The Bound

Letting Φ " = $%& ' (
) ≤ + ' ≤ ", ' -.&&/-0/1 Φ('), 

For time reversible chains: 

4567= 8(∑6:;
< =>? @ABC <;Φ(2-j)<)). 



A Different  Mixing Time

A stopping rule  Γ is a rule for stopping our walk where the probability 
we stop at any time depends only on the sequence of states we have 
seen so far. We focus on stopping rules where we stop in  ".
H(i,") is the minimum expected time to stop for such a stopping rule 

starting in i. H   is the maximum of these values.  
Theorem: For time-reversible Chains, H is Θ(Tmix) Aldous(1982)



Bounding H
Choose io & a stopping ruling Γ for 
i0, s.t. the time it takes to stop is 
H(i0,")=H.
xi = expected exits of i before we 
halt. 

yi=
#$
%(')

H=∑' '* + ,' =∑' '* + " - .'. 
∃ℎ 1. 3. ,4=.4=0 Lovasz & Winkler
yi is maximized at i=i0 Proof given 

WLOG: 0=y1 ≤ .6 ≤ ⋯ ≤ .*
Ci –component of G[⋃9:' .9] 
containing y1

i*=min {i |"(;') ><6}. 

We bound:
∑'=<* " - .'∗+∑'=<* "(-)(.'-.'∗ )
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We bound:
∑"#$% & ' ("∗+∑"#$% &(')(("-("∗ )

m0=y0=0.  Z0={1}.  mi =mi-1+ ,
-(./01)

,    ji =max {j| yj ≤ 3"}, Zi =45/ .

L=max {i|mi <i*}.A
∑"#$% & ' ("∗=("∗=<367$=∑"#$6 3"-3"8$=∑"#$67$ ,

-(./01)

Claim 2: &(Zi) ≥ &(:"8$) (1+-(./01)
,

)

ÞThere are ≤ ,
-(;0<)

:" s. t 2-j-1 ≤ &(:")≤ 2-j

Þ∑"#$67$ ,
-(./01)

.       ≤ ∑"#$
@AB CD/E 8$ 16 Φ( 285)8;



We bound:
∑"#$
% & ' ("∗+∑"#$

% &(')(("-("∗ )

n0=n,	S0=n	
For		' ≥ 0, 6"=	min	{j|	&({j,j+1,…,n})≥ &(@"A$)(1-

C(DEFG)
H

)		Si={ni,…,n}.
L=	min	{i |	ni+1 <	i*+1}
∑"#$
% &(')(("-("∗ )≤ ∑N#OP ((%Q-(%QRG)&(@NS$-6NS$)

Claim 3: ((%Q-(%QRG) &(@NS$-6NS$)≤ T
C(DQ)

By definition, there are ≤ H
C(UFV)

@N s. t 2-j-1 ≤ &(@N)≤ 2-j

=> ∑"#$% &(')(("-("∗ ) ≤ ∑N#$PS$ T
C(DQ)

.   ≤ ∑"#$
YZ[ \]E^ A$ 12 Φ( 2Aa)AU



Proof of Claims



A Simple Observation

Observation 1: For all S not containing i0, 

!(S)=∑# #$ %,' $() #$ % !(+)pi,j(yj-yi)
Proof: The sum counts the number of times we enter S minus the 
number of times we leave S. Since we stop in stationary the result 
follows.
Corollorary (Claim 1): For every -,  the graph induced by {i|yi≥ -} is 
either empty or contains i0 and is connected.
Proof: for any component S of this graph not containing i0 the 
summands in observation 1 are negative but the sum is positive. 



Proof of Claim 2

By Observation 1 ! "# = ∑& &' (),+ ',- &' () !(/)pi,j(yj−yi)

Since Zk is a component of {i| yi ≤a} for some a
! "# ≥ ∑& ∈ (),+ ∉ ()56 !(/)pi,j(yj−yi) ≤∑& ∈ (),+ ∉()56 ! / 7&,+ 8

9(() )
Letting Q(A,B)= ∑& &' :,+ &' ; !(/)pi,j so Φ(S)=

=(>,?@>)
A(>) , we have:

! "# ≥ B("#, Ω−"#EF)
8

9(() )
= B("#, Ω−"#EF)

8A(())
=((), ?@())

Hence, B("#, Ω−"#EF)≤ F
8 B("#, Ω−"#).

Since B("#, Ω−"#)= B("#, Ω−"#EF) + B("#,"#EF −"#) , 

B("#,"#EF −"#)≥ G
8 B("#, Ω−"#)=

GA(())9(())
8

Now, B("#,"#EF −"#) is the probability that in stationary we move into Zk+1-Zk from Zk so:

a! "#EF − "# ≥ GA(())9(())
8 and ! "#EF ≥(1+

G9(())
8 ) ! "#



We omit the proof of Claim 3 it can be found 
in the references. 
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