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A note on the notes

Quite a lot of these notes come from previous talks. You will notice the
notes get more technical later on, and there may be a little repetition.

The notes are also incomplete at some points, including the parts we
discussed on the board.

The exercises are included at the end.



The Plan:

Lecture 1: Introduction to the triangle-free process, and a discussion of
Bohman’s result from 2008

Lecture 2: How to go further and achieve a result which is best possible
(asymptotically).



Ramsey Theory

Ramsey Theory is the theory of inevitable structure.

Let R(k, `) be the least n such that every graph on n vertices contains
either a clique on k vertices or an independent set of ` vertices.

The diagonal Ramsey numbers satisfy:

(
√

2)k 6 R(k , k) 6 4k

Our focus will be on the off-diagonal Ramsey numbers R(3, k)



Upper bounds on R(3, k)

Easy: R(3, k) 6 k2

Proof: If there is a vertex of degree at least k , we either obtain a triangle
or an independent set of size k , as required. If not then can construct an
independent set of size k inductively.

Ajtai, Komlos and Szemerédi (1980): R(3, k) 6 100k2/ log k

Shearer (1983): R(3, k) 6 (1 + o(1))k2/ log k



Lower bounds on Ramsey numbers

Erdős proved the lower bound

R(k , k) > 2k/2

on the diagonal Ramsey number.

The idea: consider a random graph

How about R(3, k)?



Lower bounds on R(3, k)

Either:

Generate a random graph and then remove the triangles........

Erdős (1961): R(3, k) > ck2/(log k)2

Or:

Consider a random graph process that never contains a triangle in the
first place

Kim (1995) and Bohman (2008): R(3, k) > ck2/ log k



The triangle-free process

The process starts with G0 being the empty graph on n vertices.

At each step thereafter Gm+1 is obtained from Gm by adding an edge
selected uniformly at random from those which would not create a
triangle.

Let Gn,4 denote the (random) final graph obtained by this process.



An instance of the triangle-free process
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Natural Questions:

1) How many edges does Gn,4 have?

2) What does Gm look like?

3) How large are the independent sets of Gn,4?



Bohman’s Results

Theorem 1: The triangle-free process runs for at least cn3/2
√

log n steps
with high probability.

Theorem 2: α(Gn,4) 6 Cn1/2
√

log n with high probability.

Let us focus first on Theorem 1.

Challenges:

Going beyond the usual time scale of the differential equations method

Tracking a large family of random variables (processes)



What must we track?

Let Gm be the graph after m steps. We write Q(m) for the number (and
the set of) open edges in Gm. We use a time scaling t = mn−3/2.

Why should we expect Q(m) to be approximately
(
n
2

)
e−4t2

? (We will set

q = q(m) = e−4t2

.)

Let us define for each open edge uv ∈ Q(m) the values Xu,v (m) and
Yu,v (m) as the number of open edges incident to uv in which the third
side is open/an edge respectively.

What should be the behaviour of Xu,v (m) and Yu,v (m)?

Can we formalise our guesses in terms of differential equations?



Relations between Xu,v ,Yu,v and Q

E [Q(m + 1)− Q(m)|Gm] = − 1

Q(m)

∑
f∈Q(m)

Yf (m) .

E [Yu,v (m + 1)− Yu,v (m)|Gm] =
1

Q(m)

Xu,v (m) −
∑

f∈Yu,v (m)

Yf (m)

 .

E [Xu,v (m + 1)− Xu,v (m)|Gm] = 1
1

Q(m)

∑
f∈Xu,v (m)

Yf (m) .

We see that these random variables form a closed system and one may
check that the differential equations method would suggest that they
track

Q̃(m) =

(
n

2

)
e−4t2

, Ỹ = 4tn1/2e−4t2

and X̃ = 2ne−8t2

.

But how we do we even think about proving this?



Error terms and martingales

We may use Freedman’s inequality, or a special case which Bohman uses,
if a supermartingale Mi may decrease by at most c− and increase by at
most c+ then

P (Mm −M0 > α) 6 exp

(
−α2

2c−c+m

)
.

One may prove that the values c− = (log n)2 and c+ = 4/n may be used
in this case.



Error terms and martingales
We use the error terms:

fq(m) = Q̃(m)n−1/6t−1e41t2+40t , fy (m) = Ỹ (m)n−1/6e41t2+40t and

qx(m) = X̃ (m)n−1/6e37t2+40t .

For example, one may verify that

Yu,v (m) − Ỹ (m) − fy (m)

is a supermartingale. (Ok, really we should consider a stopped version,
and all starting times b.)

One may prove that the values c− = (log n)2 and c+ = 4/n may be used
in this case.

Therefore a deviation of the size of fy (m) has probability at most

exp

(
−fy (m)2

n1/2(log n)3

)
� exp(−n1/10)

provided m is at most a small multiple of n3/2(log n)1/2.



Independent sets in Gm

The idea is to track the number of open edges in sets of size
k = Cn1/2(log n)1/2.

Problem: Sometimes big shifts can occur.

Ideas?



Lecture 2: The triangle-free process all the way.....

We have already seen Bohman’s analysis of the triangle-free process

How long should the process last?

We guess until m ≈ (2
√

2)−1n3/2
√

log n.



Results
Theorem 1: With high probability the triangle-free process lasts for

(1 + o(1))

2
√

2
n3/2

√
log n

steps.

Theorem 2: With high probability the final graph has

α(Gn,4) 6 (
√

2 + ε)
√

n log n .

Corollary: The Ramsey number R(3, k) satisfies:

1− o(1)

4

k2

log k
6 R(3, k) 6 (1 + o(1))

k2

log k
.

Joint with Gonzalo Fiz Pontiveros and Rob Morris. Independently by
Tom Bohman and Peter Keevash.



Ideas involved in proof of Theorem

Theorem 1: With high probability the triangle-free process lasts for

(1 + o(1))

2
√

2
n3/2

√
log n

steps.

Naturally, we must prove that Q(m) stays close to the function

Q̃(m) =
(
n
2

)
e−4t2

.

For that we need stability!

Not just stability, but STABILITY!



Stability in Dynamical Systems

Consider the trajectory x(t) : t > 0 (in Rd) obtained when x(t) starts at
an initial position x(0) ∈ Rd and evolves according to some rule, e.g.,
according to a system of differential equations.

A point z is called as equilibrium point if

x(0) = z ⇒ x(t) = z for all t > 0 .

Stable equilibrium: An equilibrium z is said to be stable if the
implication

‖x(0)− z‖ 6 ε ⇒ x(t)→ z as t →∞

holds for some ε > 0.

A stronger notion of stability would be that x(t)→ z whatever the start
point x(0).



Examples

(
ẋ
ẏ

)
=

(
0 1
−1 −2

)(
x
y

)
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=
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=
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=
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(
ẋ
ẏ

)
=

(
−1 0
0 −1

)(
x
y

)



There is a theorem about stability in dynamical systems like these.

Theorem
Let A be a d × d matrix with real entries. Then the origin is a stable
point of the vector field on Rd defined by ẋ = Ax if and only if all
eigenvalues of A have negative real part.

Remark: Rotation in R2, where both eigenvalues are pure imaginary, is a
boundary case. The origin is not stable, yet the trajectory does not
diverge. This system contains periodic orbits.

We do note give a proof of the theorem. You can get an intuitive idea by
looking at the examples. The proof of stability in the case that all
eigenvalues have negative real part depends on defining a Lyapunov
function.



Applications

Many stochastic processes are best understood as dynamical systems.

Random processes with re-inforcement including random walks with
re-inforcement and generalised Pólya urns.

Benäım proved that if the “randomness” of a stochastic process
X (0),X (1), . . . is diminishing sufficiently quickly then the process
converges to a trajectory in a dynamical system.

In fact the assumption is that

E [∆X (m)] =
F (X (m))

n
± R(m)

for a summable sequence R(m), and there exists a constant K such that

Var∆X (m) 6
K

n2
for all m > 1 .



Summary

Stability

1-dimensional stability is simply self-correction.

A simple case of stability is that of conditional self-correction in every
co-ordinate.



Back to the triangle-free process

We want to discuss the evolution of Q(m). We have

E [Q(m + 1)− Q(m)|Gm] = −Ȳ (m)

where Ȳ (m) is the average of Yf (m) over f ∈ Q(m).

E
[
Ȳ (m + 1)− Ȳ (m)|Gm

]
≈ −Ȳ (m)2 + X̄ (m) − 2VarYe(m)

Q(m)
.

Let us ignore (for a moment) the X̄ and variance terms. We have

E
[
Ȳ (m + 1)− Ȳ (m)|Gm

]
≈ −Ȳ (m)2

Q(m)
.

The relationship between Q and Ȳ may be described by the following
vector field.



Stable!



Define
g(t) := n−1/4e2t2

(log n)2 .

We prove that
Q(m) ∈ (1± g(t))Q̃(m)

and
Ȳ (m) ∈ (1± g(t))Ỹ (m)

throughout the process.
Define Q∗(m) and Y ∗(m) by

Q(m) = (1 + g(t)Q∗(m))Q̃(m)

and
Ȳ (m) = (1 + g(t)Y ∗(m))Ỹ (m) .

The evolution of Q∗(m) and Y ∗(m) is described by:

E
[

∆

(
Q̇∗

Ẏ ∗

)]
=

4t

n3/2

(
1 −2
2 −3

)(
x∗

y∗

)
(up to terms that we are assuming are small)



Stable!
And using martingales we may prove that the probability of deviations in
such a system is very small.



So, does that complete the proof??

No!

We must also prove that Var(Ye(m)) = o(Ȳ (m)2) until
m = (1/2

√
2− ε)n3/2

√
log n.

Define gy (t) := n−1/4(log n)4e2t2

.

It suffices to prove that Ye(m) ∈ (1± gy (t))Ỹ for every open edge e.



Proof that Ye(m) ∈ (1± gy (t))Ỹ for every open edge e
Idea (as always): Self-correction!

In general, for σ ∈ {L,R}|σ|, we may define V σ
e to be the average of Yf ,

over f that may be reached by a σ-walk from e in the Y -graph.
Counting with multiplicity of course.

We can control V σ
e provided we can control (even more tightly) V σL

e and
V σR
e . But we cannot carry on like that forever.

Let k = d3ε−1e. Say σ is k-short if σ contains no LLLL . . . L, no
RRRR . . .R, and no subsequence L . . .R . . . L . . . . . .R.

We only claim we can track V σ
e if σ is k-short.



We must prove that if σ is (for example) LRLRLR . . . LR, then taking a
σ-walk from e we arrive at an (approximately) uniform random open
edge f .
Indeed this would imply that |V σ

e − Ȳ | = o(gy Ȳ ).

e

f



Tracking everything

Definition: A graph structure F has edges E (F ) and open edges O(F ).

For each graph structure F we will claim we can track the number of
copies of F in G (m).

Well, actually we require that E (F ) contains no triangle and there is no
triangle in F using two edges and one open. If F contains no such
triangles we say F is permissible.

Definition: A graph structure pair (F ,A) consists of a graph structure F
and a subset A ⊂ V (F ) which contains no edges or open edges.

Definition: A graph structure triple (F ,A, φ) consists of a graph
structure pair (F ,A) and an injective function φ : A→ V (G ).



The function φ : A→ V (G ) is called faithful if F ∪ E (Gm[φ(A)]) is
permissible.



Examples:
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A
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A



Tracking everything

Definition The tracking function of a graph structure pair (F ,A) is

Ñ(F ,A) = nV (F )−|A|pe(F )qo(F ) ,

where p = 2m/n2 and q = e−4t2

= e−4m2/n3

.

Definition The tracking time of a graph structure pair (F ,A) is the
minimum t such that

Ñ(F ′,A) = 1

for some substructure F ′ ⊆ F .



Recall: A graph structure triple (F ,A, φ) consists of a graph structure
pair (F ,A) and an injective function φ : A→ V (G ). We denote by tA(F )
its tracking time.

Theorem: With high probability the following holds simultaneously for
all? graph structure triples (F ,A, φ).

(i) If n3/2 < m 6 tA(F )n3/2, then

Nφ(F )(m) ∈
(
1± o(1)

)
ÑA(F )(m).

(ii) If m > tA(F )n3/2, then

Nφ(F )(m) 6 (log n)∆(F ,H,A)ÑH(F )(m),

where A ( H ⊆ F is minimal such that t < tH(F ).

Example: Xe counts (twice)

A



Theorem: With high probability, for all
n3/2 < m 6 (1/2

√
2− ε)n3/2

√
log n we have

Xe(m) ∈ (1± gx(m))X̃ (m)

for all pairs e open in Gm, where

X̃ (m) := 2ne−8t2

and
gx(m) := 10n−1/4e2t2

(log n)4 = 10gy .

Observe that

E [∆Xe(m)] ∈ − 2

Q(m)

∑
f∈Xe(m)

(
Yf (m)± (log n)3

)
.

Set

X ∗e (m) :=
X (m)− X̃ (m)

gx(m)X̃ (m)
.

(and assume Y ∗e (m) and Q∗(m) similarly defined) With this
re-normalisation

E [∆X ∗e (m)] ∈ 4t

n3/2

(
− X ∗e (m)± 1

10

)
,

assuming everything else is still tracking.



Proof that Xe(m) ∈ (1± gx(m))X̃ (m)
Let us bound for all b, s the probability of an escape (|X ∗e (m)| > 1) after
b + s steps, where b was the last time we crossed the |X ∗e (m)| = 1/2 line.
We shall use the martingale bound

P
(
As − A0 >

1

2

)
6 exp

(
−1

8αβs + α

)
where

|Ai+1 − Ai | 6 α a.s.

and
E [|Ai+1 − Ai |] 6 β a.s.

The worst case for us is s = n3/2/t. So it suffices to prove that

8αβn3/2 6 (logn)−2 .



It suffices to prove that

max |∆X ∗e (m)| ·max |E [|∆X ∗e (m)|] 6
1

n3/2(logn)2
.

A bound on |∆X ∗e (m)|
It follows that

|∆Xe(m)| 6 4tn1/2e−8t2

for n3/2 6 m 6 1
4n

3/2
√

log n, and

|∆Xe(m)| 6 (log n)C

for 1
4n

3/2
√

log n 6 m 6 ( 1
2
√

2
− ε)n3/2

√
log n.

Thus

|∆X ∗e (m)| 6 tn−1/4e−2t2

log n4

for n3/2 6 m 6 1
4n

3/2
√

log n, and

|∆Xe(m)| 6 (log n)C

n3/4(log n4)e−6t2 .

for 1
4n

3/2
√

log n 6 m 6 ( 1
2
√

2
− ε)n3/2

√
log n.



Bounding E [|∆X ∗e (m)|] is easier
We have

E
[
|∆X ∗e (m)|

]
6

C

gx(m)
· log n

n3/2

And so the product |∆X ∗e (m)| · E [|∆X ∗e (m)|] is at most

tn−1/4e−2t2

log n4
· C

gx(m)
· log n

n3/2
6

1

n3/2(log n)2

for n3/2 6 m 6 1
4n

3/2
√

log n, and

(log n)C

n3/4(log n4)e−6t2 ·
C

gx(m)
· log n

n3/2
6

(log n)C

n2e−4t2

for 1
4n

3/2
√

log n 6 m 6 ( 1
2
√

2
− ε)n3/2

√
log n.



Upper bounds

We prove that degrees may only increase by o(
√
n
√

log n) after we stop
tracking the process.
We may also prove that

α(Gn,4) 6 α(Gm∗) 6 (
√

2 + o(1))
√
n
√

log n .



Ramsey Theory

Our bound on the independence number of Gn,4 implies that

R(3, k) >

(
1

4
− o(1)

)
k2

log k
.

Together with the upper bound of Shearer, this gives that(
1

4
− o(1)

)
k2

log k
6 R(3, k) 6 (1 + o(1))

k2

log k
.



Open Problems

Improve the upper bound on R(3, k).
Obtain similar results for the H-free process.



Exercises

The exercises start on the next page. This initial discussion may be helpful.

One thing we will see on Monday is that it is sometimes necessary to go beyond the usual scaling of time that occurs in the differential
equations method. Indeed, this was the key to the advance achieved by Bohman.

In the first exercise we shall do a similar analysis for a slightly contrived problem. There then follow some variants of this problem. Finally,
there is an exercise which is very similar in nature to the triangle-free process and will allow us to practise applying the approach shown in
the course to a similar problem.

We will generally use Freedman’s inequality rather than Hoeffding-Azuma. The sum which occurs in the denominator in the

Hoeffding-Azuma inequality is
∑m

i=1 c2
i where the martingale increments Xi are such that |Xi | 6 ci almost surely. This sum is an upper

bound on the variance of the martingale. In Freedman’s inequality we effectively get to replace this sum by a quantity related to variance.

Freedman’s inequality Let (Sm)Mm=0 be a supermartingale with increments (Xi )Mi=1 with respect to a filtration (Fm)Mm=0, let R ∈ R
be such that maxi |Xi | 6 R almost surely, and let

V (m) :=
m∑
i=1

E
[
|Xi |

2 ∣∣Fi−1

]
.

Then, for every α, β > 0, we have

P
(
Sm − S0 > α and V (m) 6 β for some m

)
6 exp

 −α2

2(β + Rα)

 .



1. Consider a random Battle Royale which starts with N0 = N participants numbered 1, . . . , N. At each time step a number
k ∈ [N] = {1, . . . , N} is selected uniformly at random, and player k (if they are still alive) shoots one other player. If player k has
already died then nothing happens. Let us write Ni for the number of participants alive after i steps.

(a) We shall write N̄i for E
[
Ni
]

show that N̄i = N(1 − 1/N)i ≈ Ne−i/N .

(b) We now aim to show that Ni stays close to N̄i throughout the process. Specifically, we aim to show that (with high probability)

N̄i − fi 6 Ni 6 N̄i + fi for all i > 0

for some sequence fi . We define the event Eb
s to be the event that Ni becomes larger than N̄i + fi at step b + s after having

increased from N̄i + 2
3
fi at step bi (and never falling below). More formally, let Eb

s be the event that

(i) Nb−1 < N̄b−1 + 2
3
fb−1

(ii) Nb+i > N̄b+i + 2
3
fb+i for all i = 0, . . . s, and

(iii) s is minimal such that Nb+s > N̄b+s + fb+s

Show that the event that Ni > N̄i + fi for some i 6 N log N is contained in the union
⋃
b,s:b+s6N log N Eb

s .



(c) We now define a sequence of random variables associated with these deviation events. We wish to study

Nb+i − N̄b+i − fb+i

as this sequence becomes positive exactly when we break the inequality Ni 6 N̄i + fi . However, it is useful to stop the process
if we ever fall too far. Let τ be the stopping time defined to be the minimum i such that

Nb+i < N̄b+i +
2

3
fb+i .

We write i ∧ τ for the minimum of i and τ (so that effectively the process is halted at the stopping time). Let

Zb
i := Nb+i∧τ − N̄b+i∧τ − fb+i∧τ .

Show that Eb
s is contained in the event that

Zb
s > Zb

0 +
1

3
fb − |fb − fb−1| − 1 .

(When using this in the rest of the question feel free to ignore the |fb − fb−1| and the −1, they really don’t matter).

(d) We shall define the sequence fi as follows:

fi := N1/2(log N)

(
1 −

1

2N

)i
≈ N1/2(log N) e−i/2N

.

Show that (with this choice of fi ) the sequence Zb
i : i > 0 is a supermartingale.

(e) Using Freedman’s inequality show that P
(
Eb
s

)
6 exp(−c(log N)2) for some constant c > 0 and for all b + s 6 N log N.

(f) Show that with high probability
N̄i − fi 6 Ni 6 N̄i + fi for all i > 0 .

(g) Would it be possible to replace fi by some sequence that is significantly smaller?



2. This question is a variant of first question. Suppose now there are two opposing armies (not necessarily the British and the French ;).
This time one number is selected on each side at each step. When a soldier is activated he shoots someone in the opposing army. Let Mi
and Ni denote the number of soldiers left in each army after i steps, and suppose M0 = N0 = N. We wish to show that both Mi and Ni
remain somewhat close to N̄i for some time. We will use an error function of the form

fi = N1/2(log N) eηi/N

for some η ∈ R. For which values of η is it possible to prove that with high probability

N̄i − fi 6 Mi , Ni 6 N̄i + fi for all i > 0 ?

3. Now consider yet another variant. Again we have two opposing armies. However, now an activated soldier shoots someone on the other
side with probability α and his own side with probability 1− α for some α ∈ (0, 1). Let η(α) be the smallest value of η we could take
in question 2 for this variant of the game. Find η(α) for all α ∈ (0, 1).

4.(*) How about if there are k equal sized armies and the shooting probabilities are given by some doubly stochastic k × k matrix A?



5. This final question will be based on the approach described on Monday. Let us consider the bipartite C4-free process. In other words
we start with two sets A, B of n vertices and we shall only ever add edges between the two sides. The process runs by adding at each step

a uniformly random edge that can be added without creating a C4. Let us define p = p(i) = i/n2 to be the density after i steps, it may

also be useful to use the scaled time t = in−4/3 and q = q(i) = e−i3/n4
= e−t3

which will be approximately the probability that
a pair is open ater i steps.

(a) Let Q(i) be the number of open edges in Gi . Explain why we should expect Q(i) ≈ n2q = n2e−t3
.

(b) Given a pair u ∈ A, v ∈ B let Xu,v be the number of copies of C4 containing u and v such that Gi contains one of the other

three edges and the remaining two are open. Explain why we should expect Xu,v (i) ≈ 3pn2q2 = 3tn4/3e−2t3
.

(c) Given a pair u ∈ A, v ∈ B let Yu,v be the number of copies of C4 containing u and v such that Gi contains two of the other

three edges and the remaining edge is open. Explain why we should expect Yu,v (i) ≈ 3p2n2q = 3t2n2/3e−t3
.

(d) Assume1 (unrealistically) that the approximate values in (a) and (b) hold precisely, prove that with high probability the

approximation in (c) holds for all time, up to an error of the form fi = n3/5eCt
3

, for some constant C .

(e) Now assume (d), show deterministically that the process runs for at least cn4/3(log n)1/3 steps for some constant c > 0.

(f) Conjecture the correct (optimal) value of the constant c.

1
You may also assume all common neighbourhoods have size at most (log n)2


