Exercises

July 11, 2019

1. Let P, π be a reversible finite Markov chain. Let $A \subsetneq \Omega$ and let $B=A^{c}$ with $k=|B|$. Suppose that the sub-stochastic matrix P_{B} (the restriction of P to B, i.e. $P_{B}(x, y)=P(x, y)$ for $x, y \in B$) is irreducible, in the sense that for all $x, y \in B$, there exists $n \geq 0$ such that $P_{B}^{n}(x, y)>0$.
(i) Show that P_{B} has k real eigenvalues

$$
1 \geq \gamma_{1}>\gamma_{2} \geq \ldots \geq \gamma_{k} .
$$

(ii) Show that there exist nonnegative numbers a_{1}, \ldots, a_{k} satisfying $\sum_{i} a_{i}=1$ such that for all $t \geq 0$ we have

$$
\mathbb{P}_{\pi_{B}}\left(\tau_{A}>t\right)=\sum_{i=1}^{k} a_{i} \gamma_{i}^{t}
$$

(iii) The Perron Frobenius theorem gives that $\gamma_{1}>0$ and $\gamma_{1} \geq-\gamma_{k}$. Using the Courant-Fischer characterisation of eigenvalues or otherwise establish that

$$
\gamma_{1} \leq 1-\frac{\pi(A)}{t_{\mathrm{rel}}}
$$

(iv) Deduce that $\mathbb{P}_{\pi_{B}}\left(\tau_{A}>t\right) \leq\left(1-\frac{\pi(A)}{t_{\mathrm{rel}}}\right)^{t} \leq \exp \left(-\frac{t \pi(A)}{t_{\mathrm{rel}}}\right)$.
(v) By the Perron Frobenius theorem the eigenvector v corresponding to $\gamma_{1}>0$ is strictly positive. Let α be the probability distribution given by $\alpha=v / \sum_{i} v(i)$. Show that when the starting distribution is α, then the law of τ_{A} is geometric with parameter γ_{1}.
Prove that for all t and all y

$$
\mathbb{P}_{\alpha}\left(X_{t}=y \mid \tau_{A}>t\right)=\alpha(y)
$$

Finally show that for all $x \notin A$ we have

$$
\mathbb{P}_{x}\left(X_{t}=y \mid \tau_{A}>t\right) \rightarrow \alpha(y) \text { as } t \rightarrow \infty .
$$

(The distribution α is called the quasi-stationary distribution.)
2. Let X be a reversible Markov chain on a finite state space E with transition matrix P and invariant distribution π. Prove the Poincaré inequality, i.e. that for all functions $f: E \rightarrow \mathbb{R}$

$$
\operatorname{Var}_{\pi}\left(P^{t} f\right) \leq e^{-2 t / t_{\text {rel }}} \operatorname{Var}_{\pi}(f)
$$

3. Let X be a reversible Markov chain on a finite state space with transition matrix P and invariant distribution π.
(i) Prove that for all x, y

$$
\frac{P^{2 t}(x, y)}{\pi(y)} \geq\left(1-\max _{z, w}\left\|P^{t}(z, \cdot)-P^{t}(w, \cdot)\right\|_{\mathrm{TV}}\right)^{2}
$$

Deduce that

$$
P^{2 t_{\operatorname{mix}}}(x, y) \geq \frac{1}{4} \pi(y)
$$

and that there exists a transition matrix \widetilde{P} such that

$$
P^{2 t_{\mathrm{mix}}}(x, y)=\frac{1}{4} \pi(y)+\frac{3}{4} \widetilde{P}(x, y)
$$

(ii) Let $t_{\text {stop }}=\max _{x} \min \left\{\mathbb{E}_{x}\left[\Lambda_{x}\right]: \Lambda_{x}\right.$ is a stopping time s.t. $\left.\mathbb{P}_{x}\left(X_{\Lambda_{x}} \in \cdot\right)=\pi(\cdot)\right\}$. By defining an appropriate stationary time, prove that

$$
t_{\text {stop }} \leq 8 t_{\mathrm{mix}}
$$

4. Let X be an irreducible, lazy and reversible Markov chain on a finite state space with transition matrix P and stationary distribution π.
(i) Show that

$$
\mathbb{E}_{\pi}\left[\tau_{\pi}\right]:=\sum_{x, y} \pi(x) \pi(y) \mathbb{E}_{x}\left[\tau_{y}\right]=\sum_{i \geq 2} \frac{1}{1-\lambda_{i}} .
$$

where $\left(\lambda_{i}\right)$ are all the eigenvalues.
(ii) Show that

$$
\sum_{t=k}^{\infty}\left(P^{t}(x, x)-\pi(x)\right) \leq e^{-k / t_{\mathrm{rel}}} \pi(x) \mathbb{E}_{\pi}\left[\tau_{x}\right]
$$

5. For each t let U_{t} be a uniform random variable on $\{1, \ldots, t\}$ and let Z_{t} be a geometric random variable of parameter $1 / t$. The Cesaro mixing time is defined to be

$$
t_{\mathrm{Ces}}=\inf \left\{t \geq 0: \max _{x}\left\|\mathbb{P}_{x}\left(X_{U_{t}} \in \cdot\right)-\pi\right\|_{\mathrm{TV}} \leq 1 / 4\right\}
$$

The geometric mixing time is defined to be

$$
t_{\mathrm{G}}=\inf \left\{t \geq 0: \max _{x}\left\|\mathbb{P}_{x}\left(X_{Z_{t}} \in \cdot\right)-\pi\right\|_{\mathrm{TV}} \leq 1 / 4\right\}
$$

Show that there exist two constants c_{1} and c_{2} so that for all chains we have

$$
c_{1} t_{\mathrm{G}} \leq t_{\mathrm{Ces}} \leq c_{2} t_{\mathrm{G}} .
$$

(You may assume the following form of "sub-multiplicativity": if $d_{G}(t) \leq \alpha<1 / 2$, then there exists a constant c so that $d_{G}(c t) \leq 1 / 4$.)
6. This exercise shows that for non-reversible chains $t_{\mathrm{stop}}, t_{\mathrm{H}}$ and $t_{\text {mix }}$ can be of different order.
(i) Let X be an irreducible Markov chain with transition matrix P and invariant distribution π and let

$$
\mathbb{E}_{a}\left[\tau_{\pi}\right]:=\sum_{x} \pi(x) \mathbb{E}_{a}\left[\tau_{x}\right]
$$

Show that $\mathbb{E}_{a}\left[\tau_{\pi}\right]$ is independent of a. (This is called the random target lemma.)
(ii) Consider the random walk on the greasy ladder, which is a Markov chain with state space $S=\{1, \ldots, n\}$ and transition matrix $P(i, i+1)=\frac{1}{2}=1-P(i, 1)$ for $i=1, \ldots, n-1$ and $P(n, 1)=1$. Check that the invariant distribution satisfies

$$
\pi(i)=\frac{2^{-i}}{1-2^{-n}}
$$

Show that the mixing time of the lazy chain is of order 1 . Show that $t_{\text {stop }} \asymp n$.
You can use the following that will be proved in the lectures tomorrow.
Definition Let S be a stopping time. A state z is called a halting state for the stopping time if $S \leq T_{z}$ a.s. where T_{z} is the first hitting time of state z.
Theorem [Lovász and Winkler] Let μ be a distribution. Let S be a stopping time such that $\mathbb{P}_{\mu}\left(X_{S}=x\right)=\pi(x)$ for all x. Then S is mean optimal in the sense that

$$
\mathbb{E}_{\mu}[S]=\min \left\{\mathbb{E}_{\mu}[U]: U \text { is a stopping time s.t. } \mathbb{P}_{\mu}\left(X_{U} \in \cdot\right)=\pi(\cdot)\right\}
$$

if and only if it has a halting state.
(iii) Let $\mathbb{Z}_{n}=\{1,2, \ldots, n\}$ denote the n-cycle and let $P(i, i+1)=\frac{2}{3}$ for all $1 \leq i<n$ and $P(n, 1)=\frac{2}{3}$. Also $P(i, i-1)=\frac{1}{3}$, for all $1<i \leq n$, and $P(1, n)=\frac{1}{3}$. Find the order of the mixing time of the lazy version of the chain and also of $t_{\text {stop }}$ and $\max _{x, A: \pi(A) \geq 1 / 4} \mathbb{E}_{x}\left[\tau_{A}\right]$.

