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Abstract. This paper is an attempt to reconcile several con-

tradictory observations in the Galaxy, mainly the microlensing

observations, the local dynamical surface density, and the rota-

tion curve. We use a new, original method of inversion of the

rotation curve to derive the disk density profile under various

assumptions. We show that a flat rotation curve is compatible

with an exponential disk. However, the maximal disk model is

excluded, unless the vertical scale height is larger than 3 kpc.

A larger dark halo core radius, of about the size of the Galactic

stellar disk, is required to reconcile the observations, although

only at a 1 � � confidence level. This implies in particular a

disk surface density of 85 M
�

pc�2, higher than most dynam-

ical estimates (Bienaymé et al., 1987; Kuijken and Gilmore,

1991; Bahcall et al., 1992; Flynn and Fuchs, 1994), but not ir-

realistic with regard to the fact that the Sun lies between two

spiral arms. Moreover, this result is consistent with the recent

discovery of nearby field brown dwarfs (Ruiz et al., 1997; Basri

et al., 1997).

Key words: Galaxy: kinematics and dynamics – Galaxy: struc-

ture – Galaxy: halo – Galaxies: spiral

1. Introduction

The last data concerning microlensing towards the center of the

Galaxy imply a non negligible amount of hidden mass in the

galactic disk (Alcock et al., 1997a; Udalski et al., 1994). While

the observed surface density follows an exponential law (see

for instance Binney and Tremaine 1987, hereafter BT), which

leads to a nearly Keplerian rotation curve, the observed rotation

curve remains flat to distances larger than the disc size. This

problem is one of the reasons for introducing a spherical halo.

The exact repartition of dark matter between a (more or

less) spherical halo and the two dimensional disk is still un-

known. There has been suggested (Pfenniger and Combes, 1994)
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that all dark matter may be in the disk, whereas in standard

Galactic models (Bahcall and Soneira, 1980; Gilmore et al.,

1989, Bienaymé et al., 1987) the disk contains little or no dark

matter at all.

The global analysis of microlensing results, together with

more traditional observations (star counts, velocity dispersions,

rotation curve ...), puts new constraints on possible Galactic

models. Such an analysis is presented by Méra et al. (1997b).

In this paper, we use a new method to calculate the con-

tribution of the disk surface density �(R) needed to reproduce

the observed rotation curve of our Galaxy, with respect to some

assumed halo distribution. Recall that the method using Bessel

functions (see e.g. Binney & Tremaine, 1987, hereafter BT;

Mestel, 1963) is inapplicable for two reasons: 1) it needs the

radial derivative of the observed rotational velocity, which is

not known accurately enough, and 2) it needs the knowledge of

the rotation curve from 0 to infinity. In the following section,

we explain our method, and we verify its reliability in section 3

with analytic models. Section 4 reports the results of the simu-

lation for our own Galaxy, with different halo parameters. Sec-

tion 5 summarizes our results and conclusions.

2. The method

Let us suppose that the Galaxy is a bidimensionnal disk with

revolution symmetry. We propose to compute the surface den-

sity of this disk �(R) which gives rise to a specific rotation

curve.

Our method is based on a numerical resolution of the Pois-

son equation. For a maximal disk, given the surface density

�(R), the force acting on a given point of the disk reads:

F =

Z

�(R)

R

3

RdR: (1)

Such an integral is mathematically divergent, but there are in

fact symmetric compensations near the singular point, so that

the integral is well defined. Recall that all numerical methods

to calculate integrals introduce various discretisations of the in-

tegration volume. We will evaluate this integral, and use the

discretised equation to derive �(R) from F .

asus
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We model a spiral galaxy by a disk of radius R

g

which

consists of n massive bodies of mass m
i

and position x
i

dis-

tributed within an axial symmetry. The central point is denoted

m

0

1. For each point its distance to the center is denoted d

i

, its

velocity v
i

and its distance to other stars d
ij

= kx

j

� x

i

k.

Using this discretisation to calculate the integral (1), the

force F
i

acting at the point x
i

reads:

F

i

=

X

j 6=i

G

m

i

m

j

d

3

ij

d

ij

:

Now if we suppose that these forces give rise to the rotation

curve with Newtonian gravitation, we have

F

i

= m

i

v

2

i

d

i

x

i

d

i

:

The two former equations yields:

v

2

i

d

i

x

i

d

i

=

X

j 6=i

G

m

j

d

3

ij

d

ij

: (2)

Because of the symmetry of the problem, the first equa-

tion for the center (i = 0) reduces to 0 = 0, and the other

equations can be projected on the radial axis. Introducing the

angle �
ij

between the vectors x
i

and x
j

, then d2
ij

= d

2

i

+ d

2

j

�

2d

i

d

j

cos(�

ij

) and the set of n linear equations (2) reduces to :
X

j 6=i

m

j

F

ij

= v

2

i

=d

i

; (3)

where F
ij

= G(d

i

� d

j

cos(�

ij

))=d

3

ij

.

In order to solve such a linear system of n equations with

n + 1 unknowns m
i

, we have to fix an arbitrary parameter.

For each value of this parameter, there is in general a unique

solution to the whole system. The total mass of the galaxy

seems to be the natural parameter. Using dimensionless quan-

tities, we choose the normalized parameter ! =

1

M

g

; where

M

g

=

P

i

m

i

is the mass of the galaxy.

The physical significance of the existence of a free param-

eter lies in the fact that only a portion of the rotation curve is

known. The range allowed for this parameter corresponds to all

possible extensions of the rotation curve from R

g

to infinity.

Denoting�
i

= m

i

=M

g

, we thus have to solve the following

n + 1 equations with n+ 1 variables �
i

for each !:

j=n

X

j=0;j 6=i

�

j

F

ij

= ! v

2

i

=d

i

; (4)

n

X

j=0

�

j

= 1; (5)

for i = 1; :::; nwith the constraint:

�

i

� 0; (6)

The constraint (6) is very interesting because it restricts the

range of possible values for the parameter ! and yields the fol-

lowing striking result: there exists a maximal !
max

and a min-

imal !
min

possible values for ! such that all masses are pos-

itive. Moreover the difference between !

max

and !

min

is so

1 This point should not be assimilated to the bulge

small (about 10�2 or less) that this method provides a natural

evaluation of the mass of a galaxy, to which must be added the

dark halo contribution. As a consequence, we have shown that

only a partial knowledge of the rotation curve allows a precise

determination of the mass of the Galaxy, despite the theoreti-

cal requirement that the whole rotation curve should be known

(see Eq. A3). The mathematical proof is given in the appendix.

We recall that for a spherically symmetric distribution of

matter, the Gauss theorem implies that only forces due to the

matter inside the sphere have to be taken into account. This

property is no longer valid for a two dimensional distribution,

and the integration domain of (1) must include not only the

matter inside, but also outside a given ring. Not doing this

yields erroneous results. This error appears in some astronomy

books.

The approach of the thin ellipsoids is properly examined in

Mestel’s seminal paper (1963), where he explains rigorously

the reasons for the apparent difference between the ellipsoid

and the thin disk approaches. In particular, the so-called Mes-

tel’s disk is the only case for which, by chance, the two methods

give the same results without the need of a careful handling of

some correcting terms.

The generalization of our numerical method to a galaxy

with a known halo contribution is straightforward. The halo

contribution to the rotation curve has just to be subtracted to

the observations, and the method to be applied to the resulting

velocity distribution.

3. Test of the method

In order to test the accuracy of our method, we first apply it

to the following three well-known types of velocity curves: an

exponential disk, a constant rotation curve (Mestel’s disk), and

a Keplerian rotation curve.

We used a numerical discretisation of 250 000 points. The

points are displayed along 500 rings (500 points on each ring).

The ring radii r
i

are proportional to i2, i.e. if the first one has a

radius r
1

, the second one a radius r
2

= 4r

1

, r
3

= 9r

1

for the

third ring and so on (see Fig. 1). The constraint (6) determines

!

min

and !
max

.

3.1. Exponential disk

For the exponential disk of scale length R
d

, the rotation curve

is given in BT, p. 78:

v

2

c

(r) = 4�G�

0

R

d

y

2

[I

0

(y)K

0

(y) � I

1

(y)K

1

(y)] (7)

where y =

r

2R

d

and I

0

; I

1

;K

0

;K

1

are modified Bessel func-

tions (see the appendix 1.C.7 of BT).

The surface density we obtain with our method is plotted in

Fig. 2, along with the exact, exponential profile associated with

the rotation curve (7). In fact, two results are shown on the plot,

for the two extreme possibilities ! = !

min

and ! = !

max

.

The differences between the curves are indistinguishable.
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Fig. 1. A schematic representation of the point distribution used in the

numerical computation, with only 30�30 points instead of 500�500

for a better visualization. Each ring has a fixed number of points, and

its radius is proportional to the square of its order (see text).
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Fig. 2. Surface density for the rotation curve of an exponential disk

(solid curve), compared to the exact profile of the infinite disc (dashed

curve).

The surface density obtained with our method is in remark-

able agreement with the exact profile, except near the edge of

the disk. Since our method is applicable to a finite disk only, the

density is lower than the true result near the edge of the disk. A

finite exponential yields a larger rotation curve than an infinite

one near the edge, so a lower density is required to reproduce

the rotation curve (7). The inner part of the galaxy is not af-

fected by this effect because of the exponential decrease of the

density.

Another constraint arises from the total mass of the galaxy.

As shown in the appendix this constraint is correctly fulfilled

by the present method. The mass of an exponential galaxy of

central surface density 1M

�

:pc

�2 is 6:2832 � 10

6M
�

: the

mass we derive from the allowed values of ! is 6:279�10

6M
�

,

a 0.07% agreement ! The difference arises from 1) the finite

size of the disk, and 2) the numerical approximation of the in-

tegral by a discrete summation.

Such an error is much smaller than the observational un-

certainty in the measurement of the rotation curve. An estimate

of this uncertainty can be done on this example. If the preci-

sion of the observation is about 10 per cent, then the mass re-

constructed from a randomly perturbated rotation curve varies

from 5:2 to 7�10

6M
�

. The error on the mass is hence approx-

imately twice that on the velocity.

3.2. Point mass

The finite size effect has no influence at all on this example.

It is then a good test of the reliability of the method. A point

mass corresponds to a surface density equal to zero everywhere

except at the center. The rotation curve has the so-called Kep-

lerian shape v2(r) = GM=r.

For this model, our numerical method reproduces the an-

alytical result within the computer precision. The total mass

is recovered exactly, and the density in the rest of the disk is

less than 10

�14 the central density, as expected for a Keplerian

profile. It is unusual for a numerical method to give such an

accurate result for a singular mass distribution.

3.3. Mestel’s disk

Mestel (1963) derived the analytical result for the surface den-

sity of a finite disk with constant rotation curve (Eq. 56 of his

article):

�(R) =

v

2

2�GR

(1�

2

�

arcsin

R

R

g

) (8)

where v is the rotation velocity, and R

g

is the disk radius. Of

course, the rotation curve of this disk is flat only for 0 < R <

R

g

, and it has the so-called Keplerian behavior at infinity. A

constant rotation curve from 0 to +1 corresponds to R

g

!

+1 and

�(R) =

v

2

2�GR

(9)

Our numerical method, applied to a finite disk with constant

rotation curve on its surface, leads to a density profile which is

exactly the theoretical profile given in Eq. (8) (see Fig. 3). Also

plotted is the profile of the infinite disc (Eq. 9) which appears

to be a very poor approximation of Eq. (8), except at the center

of the galaxy.

We can see on Fig. 3 that the density of the finite disk with a

flat rotation curve is for a large part an exponential of the form
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Fig. 3. Surface density for a constant rotation curve, assuming a finite

disk (of radius R
g

= 10 kpc). The exact density of the Mestel’s disk

(Eq. 8), and the result we get with our method are indistinguishable

on the figure (solid line). The dashed curve is the density profile of an

infinite disc with a flat rotation curve (Eq. 9), which is very different

from the finite disc density. The dot-dashed curve is an exponential

density with a scale length of approximately one third of the galactic

radius.

�(R) = �

0

e

�R=R

d (the plot is logarithmic on the y�axis).

The scale length R

d

derived for this model is approximately

0:3R

g

. The density is increasing more rapidly (than the expo-

nential) towards the galactic center, like in a real spiral galaxy

with a bulge.

Mestel used this result to determine the mass of the Galaxy

and its density at the sun position. However, the value he used

for the Galactic radius (R
g

= 10 � 11 kpc, as recommended

by the IAU in 1963) is now known to be incorrect. Moreover

the rotation curve of a real spiral galaxy is not exactly constant,

especially near the center.

These examples assess the validity and the accuracy of the

method developed in x2. One may argue that the disk is not

bi-dimensional. Given a vertical distribution, for instance an

exponential density, the method can be adapted to take into ac-

count the thickness of the disk, at a higher computational price.

With a standard scale height (about 1/10th of the scale length),

we have seen that the surface density profile was nearly unaf-

fected by the finite thickness of the disk. Then we will only use

the 2D method, accurate enough for our purposes.

4. Application to our Galaxy

Since the accuracy of the present method has been assessed in

the previous section by comparison with analytical models, we

can apply it with confidence to the case of the Milky Way, first

with no halo (i.e. all dark matter is 2D distributed).
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Fig. 4. The surface density of the Milky Way, derived with our method

from the rotation curve of Vallée (1994). The straight dashed line is an

eye fit by an exponential of scale length 3:6 kpc, and local density

115M

�

:pc

�2.

Fich and Tremaine (1991) review observational data on our

Galaxy rotation curve. Vallée (1994) takes into account the ap-

parent rise of the rotation curve at the limit of the observations.

The Galactic radius R
g

= 14 kpc is taken from Robin et al.

(1992).

The surface density we obtain is plotted on Figs. 4, along

with an exponential profile of scale length 3.6 kpc. A large

part of the curve is close to the exponential. Only the cen-

tral and external parts deviate substantially from the exponen-

tial law. The local surface density (i.e. at R = R

�

= 8:5

kpc) is 115M

�

:pc

�2, more than twice the visible density �

50M

�

:pc

�2.

The local amount of dark matter has been tentatively esti-

mated by several authors in the last ten years from dynamical

constraints (see Méra et al. 1997a for a summary of these ob-

servations).

The surface density we obtain, with a maximal disk is in-

compatible with the results of Kuijken and Gilmore (1991), and

Bienaymé, Robin and Crézé (1987). However, Bahcall, Flynn

and Gould (1992) derived 1-sigma limits 50 � �(R

�

) �

115M

�

:pc

�2, so that the value we derive, a bit higher than the

upper limit, can not be excluded with a high confidence level.

In this model, the rotation curve remains flat only on the

disk surface. Beyond 14 kpc, the rotation velocity has a Kep-

lerian decrease, which is not the case for other spiral Galaxies

similar to the Milky Way (Casertano and van Gorkom, 1991).

This can been solved by taking a larger disk radius, which

leads to a larger scale length (roughly proportional to the ra-

dius, see section 3.3). Moreover, the local surface density is

190 M
�

pc�2 for a rotation curve flat up to 30 kpc, well over

dynamical constraints.

This strongly argues for the presence of a dark halo, which

does contribute to the Galaxy rotation curve. The microlensing
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results towards the galactic bulge (Alcock et al., 1997a; Udalski

et al., 1994) and the LMC (Alcock et al., 1997b; Ansari et al.,

1996) suggest a light halo and a massive disk.

The standard halo density (see e.g. Alcock et al., 1997b)

has the following form:

�(r) =

v

2

1

4�G

1

r

2

+ a

2

; (10)

where r is the distance to the galactic center, a is the core ra-

dius, and v

1

is the asymptotic rotation velocity of this model.

The halo size is fixed by dynamical considerations at the level

of globular clusters and satellite dwarf galaxies (Kochanek, 1996),

or at the scale of the local group (Peebles, 1994). We refer to

Méra, Chabrier and Schaeffer (1997a) for a discussion of the

Galactic mass. Since we are in this article only interested in the

disk, the halo size is not relevant because of the spherical sym-

metry. The value of v
1

is also related to large scale dynamics,

and is v
1

= 220� 20 km:s

�1

(Méra et al., 1997a).

We have computed the related disk density profile with our

method for several values of the parameters. For each model,

the optical depth in the direction of the LMC, assuming a disk

scale height of 300 pc, is computed. The bulge optical depth is

more dependent on the 3D modelisation of the Galactic center.

Moreover, for the bulge, the source stars can not be supposed

to lie at the same distance. The distribution of the number of

source stars, and of their velocities, is still uncertain because of

absorption (Paczyński et al., 1994). Hence, only the LMC opti-

cal depth can provide robust constraints on a mass model. The

observed values are �
LMC

= 2:2

+1:1

�0:7

� 10

�7 for the MACHO

collaboration (Alcock et al., 1997b), and �

LMC

= 0:8� 10

�7

for the EROS collaboration (Ansari et al., 1996). The latter es-

timate relies on only two candidates, and is less robust than the

MACHO result (which relies on 6 candidates).

Table 1 shows the relation between the halo core radius a

(see Eq. 10) and the disk solar density of the model. We have al-

ready mentioned that 50 < �

�

< 115M

�

:pc

�2, which is ver-

ified only for a > 7 kpc. The third column of Table 1 gives the

model optical depth towards the LMC. The upper limit of MA-

CHO observations leads to the constraint a > 18 kpc. How-

ever, because the disk has a size of 14 kpc, the resulting rota-

tion curve, which is exactly the observed one (Vallee, 1994) for

R < 14 kpc, present a dip at R � 15� 20 kpc, just before the

halo contribution is sufficient to provide a rotation velocity of

� v

1

, which is the case for R >> a. In fact, for that reason,

the halo core radius must be at most of the order of the disk

radius.

The last two columns of Table 1 display respectively the

disk mass and scale length. The latter, depending on a, varies

between 2.5 and 3.5 kpc, in perfect agreement with observa-

tions. The disk mass is not observationally constrained since

the amount of dark matter is unknown. The allowed range is

8� 9� 10

10

M

�

.

We have made the same computations for two extreme val-

ues of v
1

. In the case v

1

= 200 km:s

�1

, the solar surface

density imposes a > 6 kpc and the LMC optical depth implies

a > 14 kpc. For v
1

= 240 km:s

�1, these limits are respec-

Table 1. Model parameters for different halo core radius a (see Eq.

10), and for v
1

= 220 km:s

�1 . The second column gives the solar

density, the third column display the theoretical optical depth towards

the LMC (assuming a disk scale height of 300 pc). The next column

corresponds to the disk total mass. The last column is the disk scale

length, fitted in the linear part of the density, between 30% and 70%

of R
g

. The compatibility with observations at the 1 � � confidence

level imposes a > 18 kpc (see text).

a �

�

�

LMC

M

disk

H

d

(kpc) (M
�

:pc

�2) (�107) (�10�10M
�

) (kpc)

2 2.4 6:5 2:9 1.1

3 11.84 6:4 3:957 1.8

4 21.71 6:2 4:82 2.1

5 31.36 5:98 5:53 2.3

6 40.37 5:74 6:14 2.5

7 48.56 5:5 6:65 2.7

8 55.86 5:24 7:08 2.8

9 62.3 5 7:45 2.9

10 67.93 4:76 7:76 3

11 72.85 4:53 8:03 3.1

12 77.14 4:31 8:26 3.2

13 80.87 4:11 8:46 3.2

14 84.13 3:91 8:63 3.3

15 86.98 3:73 8:776 3.3

16 89.48 3:56 8:91 3.4

17 91.68 3:4 9:02 3.4

18 93.61 3:25 9:12 3.5

19 95.33 3:11 9:21 3.5

20 96.85 2:97 9:29 3.5

tively a > 9 and a > 20 kpc. The disk mass and scale length

are still compatible with observations.

This study shows that the halo core radius has to be of the

order of the disk radius. A larger value leads to a dip in the ro-

tation curve which is not observed in other spiral galaxies. On

the contrary, the microlensing towards the LMC suggest a value

significantly larger than the standard 5 kpc. The high observed

optical depth towards the bulge, although its interpretation is

more model-dependent (especially because of the bar struc-

ture), is in favor of some non-negligible amount of dark matter

in the Galactic disk. For instance, the model with a = 14 or 15

kpc is in perfect agreement with microlensing observations, the

disk measured scale length, and with the dynamical determina-

tion of the solar surface density by Bahcall, Flynn and Gould

(1992): this model predicts �
�

= 85M

�

:pc

�2 (see table 1).

Moreover, this result shows that the disk does contribute to

the flattening of the rotation curve, at least up to its limits.

5. Discussion and conclusions

We have used a new method to calculate the surface density of

a disk from the measured rotation curve, assuming a standard

halo contribution. This method, whose accuracy has been as-

sessed on several analytic examples, is a useful tool for Galac-

tic modeling. We show that a flat rotation curve for a finite

disk does correspond to an exponential profile plus a central
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bulge. The scale length is � 3=10 of the radius of the galaxy.

Therefore, the exponential disk is compatible with a flat rota-

tion curve, and the 1=R approximation is valid only in the inner

part of the Galaxy.

We have then applied the method to the observed rotation

curve of our own Galaxy. The case with no dark halo contri-

bution is excluded. The model of Pfenniger and Combe (1994)

implies a solar surface density incompatible with observations,

unless the dark matter (whatever its nature) is distributed with

a scale height larger than 3 kpc.

This confirms the well-established result that such a maxi-

mal disk is inconsistent with various estimates of the mass of

the Milky Way (Trimble, 1987; Kochanek, 1996). But the re-

sults of microlensing experiments urge to reconsider standard

Galactic models. The LMC observed optical depth suggests a

halo model with a core radius of the order of the disk size.

The disk surface density in the solar neighborhood is found

to be 85M
�

:pc

�2 in a galactic model with a halo having a large

core radius (a � 15 kpc). This result is within the error bar of

the independent determination by Bahcall, Flynn and Gould

(1992). The predicted optical depth is in this model �
LMC

=

3:73�10

�7, compatible with the observations of (Alcock et al.,

1997b) at the 1:5� � confidence level.

The determination of a self-consistent galactic model is out

of the scope of the present paper, which presents only a new

method for this purpose. This ultimate goal is addressed in

Méra, Chabrier and Schaeffer (1997a; 1997b), with a consis-

tent analysis of microlensing events, stars counts and viable

Galactic models.

Further work implies the application of the method to other

galaxies for which we have accurately determined rotation curves,

and the study of the stability of the disk. We also plan to include

the corrections due to general relativity arising from cosmolog-

ical considerations. With such a correction, the influence of the

local group could also be taken into account.
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Appendix A: mathematical background

Let suppose that the rotation velocity v(r) is known up to in-

finity. Using Bessel functions J
0

and J
1

we have the following

formula (BT):

�(r) =

1

2�G

Z

1

0

J

0

(kr)S(k)k dk

where

S(k) =

Z

1

0

v

2

(x)J

1

(kx) dx:

And conversely, using Bessel transformations :

S(k) = 2�G

Z

1

0

�(x)J

0

(kx)x dx

v

2

(r) = r

Z

1

0

S(k)J

1

(kr)k dk:

For the Mestel’s disk or for the exponential disk these integrals

can be solved analytically.

This method has a theoretical interest: indeed the corre-

spondence v $ �(r) is a bijection, but since the rotation curve

is know from observations up to r � R

g

only, several surface

densities can in principle lead to the same rotation curve v(r)

for r � R

g

, but with different v(r) for r � R

g

. Since most of

the mass is concentrated in the center of the galaxy, the rotation

curves for r � R

g

must be nearly Keplerian. It is the reason

why our method provides a very narrow range [!
min

; !

max

] of

solutions.

If we want to compute �(r) from v(r), we have to consider

the following double singular integral:

�(r) =

1

2�G

Z

1

0

J

0

(kr)

�

Z

1

0

v

2

(x)J

1

(kx) dx

�

k dk:
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In order to carry out the integrations, it is necessary to introduce

a principal value integral.

Using properties of hypergeometric series
2

F

1

(Erdelyi,

1953), we write:

4�Gr�(r) = lim

a!1

Z

a

0

[v

2

(r=

p

z)

1

p

z

2

F

1

([3=2; 1=2]; [1]; z)

�

1

2

v

2

(r

p

z)

2

F

1

([3=2; 3=2]; [2]; z) ]dz: (A1)

Conversely, v(r) can be written as a function of �(r) in the

following form:

v

2

(r)=r = �G lim

a!1

Z

a

0

[�(r

p

z)

2

F

1

([3=2; 1=2]; [1]; z)

�

1

2

p

z

�(r=

p

z)

2

F

1

([3=2; 3=2]; [2]; z) ]dz: (A2)

It is also possible to rewrite this latter formula using elliptic

integrals. Actually elliptic integrals are hypergeometric func-

tions, so the formula (2-146) of BT leads to the above principal

value integral in the plane of the disk.

But the most important consequence is the theoretical for-

mula giving the mass of the galaxy from the rotation curve: If

R

g

is the radius of the disk then :

M =

R

g

4G

�

Z

1

0

[v

2

(R

q

p

z) + v

2

(

R

g

p

z

)=

p

z]

2

F

1

([3=2; 1=2]; [2]; z) dz:

This formula can not be used to compute the mass of a given

galaxy because of the unknown term v

2

(R

g

=

p

z), but we shall

use it to prove that our method gives accurate results.

Notice first that if r � R

g

then the relation (A2) reduces to

:

v

2

(r)=r = �G

Z

1

0

�(r

p

z)

2

F

1

([3=2; 1=2]; [1]; z)dz;

or

v

2

(r) =

2�G

r

Z

R

g

0

2

F

1

([3=2; 1=2]; [1]; u

2

=r

2

)u�(u) du:(A3)

Let v2
k

(r) =

GM

r

=

2�G

r

R

R

g

0

u�(u) du be the Keplerian ro-

tation curve. Then (A3) can be written:

v

2

(r)� v

2

k

(r) =

2�G

r

Z

R

g

0

[

2

F

1

([3=2; 1=2]; [1]; u

2

=r

2

)� 1]u�(u) du:

But the function f(u

2

=r

2

) =

2

F

1

([3=2; 1=2]; [1]; u

2

=r

2

) � 1

has the two following properties :

if r � R

g

then 3

4

u

2

r

2

+

2

3

u

4

r

4

� f(u

2

=r

2

) and

if r � 2R

g

then f(u

2

=r

2

) �

3

4

u

2

r

2

+

u

4

r

4

: Denoting M
n

=

2�

R

R

g

0

u

n

�(u) du the momentum of order n of the surface

density, we thus obtain the following estimates:

for r � R

g

,

3

4

GM

3

r

3

+

2

3

GM

5

r

5

� v

2

(r)� v

2

k

(r);

and for r � 2R

g

v

2

(r) � v

2

k

(r) �

3

4

GM

3

r

3

+

GM

5

r

5

:

This inequality proves indeed the accuracy of our method:

let v
sup

and v

inf

be the rotation curves associated with the ex-

tremal surface densities. Taking into account the above rela-

tions, we get:

M

sup

�M

inf

M

�

4

�

�v

o

v

o

+

2

3�R

2

g

M

sup;3

�M

inf;3

M

where M
sup;3

and M

inf;3

are the three momentum of the sur-

face densities associated respectively to the M

sup

and M

inf

configurations; and �v
o

= sup

R

g

�r�2R

g

(v

+

(r)� v

�

(r)). The

LHS of this inequality is expected to be small, because the ro-

tation curves are both near the Keplerian curve, and the mo-

mentum of order 3 are small.




