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Abstract

The rotation curves of galaxies remain flat to large distances, this
fact raises a rather crucial question, and the only explanation is to
admit the existence of a massive spherical halo around a galaxy.
We show that, within a Newtonian framework, the phenomenon of
flatness of the curves is very simply explained without recourse to a
possible massive halo. Moreover our method gives also the
Einsteinian correction which appears to be non negligible. Our
direct method rests on the simulation of a spiral galaxy by a disc of
N massive bodies distributed with an axial symmetry. As these
bodies follow a given curve of rotation, then the balance of the
radial forces between N bodies leads to a set of linear equations
(the unknown are the masses of the N bodies) that one reverses
and which thus provides the surface density curve. In fact it is an
”inverse method of the N-bodies problem”, which give results very
precise and easy to implement.



Links with others methods

Our method is a Riemannian approximation of the double integral
coming from the method which uses the elliptic integrals; it is thus
theoretically equivalent to it and also to the method of the Bessel
transform. As this last method is invertible, our method provides a
surface density whatever the given curve of rotation, and this
without recourse to a massive halo.

Results for the Milky Way : We derive for the Milky Way a mass of 1.4× 1011M�. The exponential profile is well
reproduced with a scale length between 3.6 and 5 kpc. The local surface density is found to be

125± 10M�.pc−2, compatible with other independent determinations.
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N body formulation I
Our method is based on a numerical resolution of the Poisson equation. For a maximal disk, given the surface
density Σ(R), the force acting on a given point of the disk reads :

~F =

∫
Σ(R)

R3
~Rd~R. (1)

Such an integral is mathematically divergent, but there are in fact symmetric compensations near the singular
point, so that the integral is well defined.

We will evaluate this integral, and use the discretized equation to derive Σ(R) from ~F .
We model a spiral galaxy by a central mass mo , and a disk of radius Rg which consists of n massive bodies of mass
mi and position ~xi distributed within an axial symmetry. For each point its distance to the center is denoted di , its
velocity vi and its distance to other stars dij = ‖~xj − ~xi‖.
Using this discretization to calculate the integral (1), the force ~Fi acting at the point ~xi reads:

~Fi =
∑
j 6=i

G
mi mj

d3
ij

~dij .

Now if we suppose that these forces give rise to the rotation curve with Newtonian gravitation, we have

~Fi = mi
v2
i

di

~xi

di

.

The two former equations yields:

v2
i

di

~xi

di

=
∑
j 6=i

G
mj

d3
ij

~dij . (2)
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N body formulation II

Because of the symmetry of the problem, the first equation for the center (i = 0) reduces to ~0 = ~0, and the other
equations can be projected on the radial axis. Introducing the angle θij between the vectors ~xi and ~xj , then

d2
ij = d2

i + d2
j − 2di dj cos(θij ) and the set of n linear equations (2) reduces to :

∑
j 6=i

mjFij = v2
i /di , (3)

where Fij = G(di − dj cos(θij ))/d3
ij .

In order to solve such a linear system of n equations with n + 1 unknows mi , we have to fix an arbitrary parameter.

The total mass of the galaxy seems to be the natural parameter. Using dimensionless quantities, we use the

normalised parameter ω = 1
Mg

, where Mg =
∑

i mi is the mass of the galaxy.

Denoting µi = mi /Mg , we thus have to solve the following n + 1 equations with n + 1 variables µi for each ω:

∑
j 6=i

µjFij = ω v2
i /di , (4)

for i = 1, ..., n ∑
i

µi = 1; (5)

with the constraint:
µi ≥ 0, (6)
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N body formulation III

The constraint (6) is very interesting because it restricts the range of possible values for the parameter ω and
yields the following striking result:

there exist a maximal ωmax and a minimal ωmin possible values for ω such that all
masses are positive.
Moreover the difference between ωmax and ωmin is so small (about 10−2 or less) that this method provides a
natural evaluation of the mass of a galaxy.
We stress that for a spherically symmetric distribution of matter, the Gauss theorem implies that only forces due to
the matter inside the sphere have to be taken into account. This property is no longer valid for a two dimensional
distribution (Binney and Tremaine 1987), and the integration domain of (1) must include not only the matter
inside, but also outside the sphere. Not doing this gives erroneous results. So a maximal disk can’t be considered
as a limit of flattened spheroids.

We used a numerical discretisation of 250 000 points. The points are displayed along

500 rings (500 points on each ring). The ring radii ri are proportional to i2, i.e. if the

first one has a radius r1, the second one a radius r2 = 4r1, r3 = 9r1 for the third ring

and so on (in fact, it is to obtain the same order for all µi = mi/Mg , and so a good

accuracy by numerical analysis). The constraints (6) determines ωmin and ωmax . This

method provides a very narrow range [ωmin, ωmax ] of solutions, the differences between

the given curves are indistinguishable.
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Exponential disk, Mestel’s disk and Keplerian curve I

In order to test the accuracy of our method, we first apply it to the following three
well-known types of velocity curves: an exponential disk, a constant rotation curve
(Mestel’s disk), and a Keplerian rotation curve.

Left: surface density for the rotation curve of an exponential disk (solid curve), compared to the exact profile

(dashed curve). The mass of an exponential galaxy of central surface density 1M�.pc−2 is 6.2832× 106M� :

the mass we derive from the allowed values of ω is 6.279× 106M�, a very goog agreement !
Right: Surface density for a constant rotation curve, assuming a finite disk.

The dashed curve is the density of an infinite Mestel disk.
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Exponential disk, Mestel’s disk and Keplerian curve II

The rotation curve has the so-called Keplerian shape v2(r) = GM/r . For this model,
our numerical method reproduces the analytical result within the computer precision.
The total mass is recovered exactly, and the density in the rest of the disk is less than
10−14 the central density, as expected for a Keplerian profile.

These three theoretical examples assess the validity and the accuracy of the method
and show that the method of spheroids is wrong! (cf. the mathematical Gauss
theorem above).

Within a Newtonian framework, the phenomenon of flatness of the curves is very
simply explained without recourse to a possible massive halo and the proofs show why
there is in fact less ” hidden mass ” than believe.

How many people have worked after Mestel with the right equivalent methods : the
method of the elliptic integrals (based on the disc seen like rings of matter), the
method of the Bessel transform (based on asymptotic properties of the gravitational
potential created by the disc of matter)? Many. Among them, B. Fuchs and all,
astro-ph/0408072 ; A. Pierens and J.-M. Huré, astro-ph/0312529; F.I. Cooperstock
and S. Tieu, astro-ph/0610370; L. Marmet http://www.marmet.ca/louis/galaxy/; K.
Nicholson astro-ph/0309762; G. Pronko astro-ph/0611303; and so on.
It is very surprising that the wrong method of the spheroids is always used.
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and S. Tieu, astro-ph/0610370; L. Marmet http://www.marmet.ca/louis/galaxy/; K.
Nicholson astro-ph/0309762; G. Pronko astro-ph/0611303; and so on.
It is very surprising that the wrong method of the spheroids is always used.



For Milky Way and Andromeda

Results for a small Milky Way (16 kpc): a mass of 1.4× 1011M�. The exponential profile with a scale length

between 3.6 and 5 kpc. The local surface density is found to be 125± 10M�.pc−2.

For Andromeda

Results for Andromeda N-E : left the rotation curve, right the density curve. The mass is 2.49× 1011M� for the

N-E curve (and 2.42× 1011M� for the S-W curve of the galaxy).
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Relativistic approach

The Einsteinian study of these curves can be made using the potential coming from a
non empty universe. The correction is non negligeable; this can seem surprising,
insofar as the gravitational field created by a galaxy is very weak, but on such a scale
the Einsteinian correction of the usual Newtonian gravitation proves to be small but
non negligeable.
For this, we use the same method but as each point ~xi , is submit to a cosmological
accelerating field ~g = −qo H2

o ~xi , where Ho is the Hubble parameter and qo the
decelerating parameter we have to change the equations (2) using

~Fi =
∑
j 6=i

G
mimj

d3
ij

~dij − mi (−qo H2
o ) ~xi .

For all mathematical proofs we refer to
M. Mizony : La relativité générale aujourd’hui ou l’observateur oublié, Editions Aléas,
juin 2003. The chapter 9 is on line at :
http://www.univ-lyon1.fr/IREM/michel/pdfch8bis.pdf or in english rotation curves
M. Mizony and M. Lachieze-Rey : Cosmological effects in the local static frame,
Astronomy and Astrophysics, Volume 434, Issue 1, April IV 2005, pp. 45-52,
gr-qc/0412084.

http://math.univ-lyon1.fr/~mizony/rotationA.html
http://fr.arxiv.org/abs/gr-qc/0412084
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