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Abstract. This paper presents a novel mesh-based method for 3D face
expression recognition using a local shape descriptor and the SVM classi-
fier. To characterize shape information of the local neighborhood of facial
landmarks, we calculate the weighted statistical distributions of surface
differential quantities, including histogram of mesh gradient (HoG) and
histogram of shape index (HoS). Normal cycle theory based curvature es-
timation method is employed for the first time on 3D face models. Mean-
while, the commonly used cubic fitting curvature estimation method is
also employed to get the comparable results. Based on the basic fact
that different expressions involve in different local shapes (shape defor-
mation), the SVM classifier with both linear and RBF kernels achieve
state of the art results on the subset of BU-3DFE database with the
same experimental setting.

Keywords: 3D facial expression recognition, normal cycle theory, cur-
vature tensor, histogram of surface differential quantities, SVM classifier

1 Introduction

Facial expression recognition (FER) is attracting a great deal of attention be-
cause of its usefulness in many applications such as human-computer interaction
and the analysis of conversation structure [1]. Ekman et al. [2], who are pio-
neers studying human facial expressions, introduced the Facial Action Coding
System (FASC) and gave evidence to classification prototypical facial expres-
sions as happiness, sadness, anger, fear, surprise, disgust and neutral. Inspired
by FASC, many researchers dedicated to FER firstly in static 2D images and
dynamic 2D videos [3] and more recently on static 3D scans [4,5,6,7,8,9,10,11]
and dynamic 3D videos [12,13]. With the great progress of 3D data acquisition
equipments, the use of 3D facial data for FRE has attracted more attention as
it contains geometry information closely sensitive to expression variations, and
further on it is invariant to pose and illumination changes.
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In general, existing methods for FER based on static 3D data can be cate-
gorized into two streams, i.e. feature based and model based. The first category
claims that the distributions of facial surface geometric informations such as
gradient and curvature [5], distances between pairs of interest landmarks [6] and
local shapes near landmarks [10,11], are closely related to expression categories.
These geometric informations are then extracted as features for different classi-
fiers such as linear discriminant analysis (LDA), support vector machine (SVM)
or Neural Network etc., to get the final classification results. The main draw-
back of this kind of approaches is that they need manual labeled landmarks. The
second category tries to simulate the physical process of generating expression
and explores a generic elastically deformable face model, which can generate
universal expressions by adjusting parameters [7]. In general, this kind of meth-
ods needs alignment and normalization steps to find one-to-one correspondence
among 3D faces, then the shape deformations between each pair of faces can be
represented by model parameters [7] or feature vectors [9] etc, which are further
used to perform FER. The main advantage of this kind of approaches is that
they work without manual assistance.

Recently, the traditional image based 2D SIFT [14](Scale Invariant Feature
Transform) framework has been extended to range image based 2.5D SIFT [15]
and discrete surface based 3D mesh-SIFT [16]. Different from 2D SIFT comput-
ing gradient, both 2.5D and mesh-SIFT extracted surface normal and curvature
(coded by shape index) on the local patches of detected salient points. The his-
tograms of these differential quantities are then used as local shape descriptors
for further surface matching. It has shown that mesh-SIFT is efficient to 3D face
recognition [16]. Inspired by the success of 3D mesh-SIFT, in this paper, we try
to exploit mesh-SIFT framework for facial expression recognition. Different from
mesh-SIFT, the manual landmarks round the regions of eyebrows, eyes, nose and
mouth are chosen as salient points. Within each local neighborhood of landmark,
we calculate the weighted statistical distributions of surface differential quanti-
ties, including histogram of mesh gradient (hogp) and histogram of shape index
(hosp). The features for each 3D face model can be obtained by concatenating
hogp or hosp of all the selected landmarks with a fixed order. These features are
then classified by SVM to achieve facial expression classification. Curvatures of
the discrete face models are estimated using normal cycle theory based method
and local cubic fitting method on mesh data. The experimental results on the
subset of BU-3DFE database highlight the effectiveness of the proposed method.

The remainder of this paper is organized as follows: differential quantities
estimated on mesh-based facial models are introduced in section 2, and section 3
presents the local shape descriptors. Experimental results are discussed in section
4. Section 5 concludes the paper.
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2 Estimating Differential Quantities on Triangular
Meshes

Since we will base our descriptors on shape index and mesh gradient, we need to
estimate the curvatures and normal vectors firstly. In this section, we describe
two curvature estimation methods: normal cycle theory based method proposed
by Cohen-Steiner and Morvan; local cubic fitting methods proposed by J. Gold-
feather and V. Interrante. Then, we give the method to compute mesh gradient.

2.1 Estimating Curvature by Normal Cycle Theory based Method

There are many approaches to calculate curvature on triangular meshes based
on estimation of curvature tensor. Taubin [17] introduced a 3D curvature tensor
from which the principal curvatures directions can be estimated by two of the
three eignvectors and the principal curvature can be computed by linear combi-
nations of two of the three eigenvalues. Cohen-Steiner and Morvan [18,19] also
given discrete definition for the mean, Gaussian curvature and the curvature
tensor based on normal cycle theory, and prove that the estimated curvature
tensors converge to the true ones of the smooth surface under specific sampling
conditions. The basic idea and its discrete from can be carried out as follows
[20]:

For every edge e of the mesh, there is an obvious minimum (i.e., along the
edge) and maximum (i.e., across the edge) curvature. A nature curvature tensor
can therefore be defined at each point along an edge, named as generalized
curvatures [18]. This line density of tensors can now be integrated over the
arbitrary region B by summing the different contributions from B, leading to
the simple expression:

T (v) =
1

B

∑
edges e

β(e)|e ∩B| e et (1)

Fig. 1. Illustrated of normal cycle theory based curvature estimation method (equation
(1) [20]).
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Fig. 2. First row, from left to right: κmax, κmin and shape index estimated by normal
cycle theory based method. Second row, from left to right: κmax, κmin and shape index
estimated by cubic fitting based method, (models of M0044-DI03).

Where v is an arbitrary vertex on the mesh, |B| is the surface area around v
over which the tensor is estimated. β(e) is the signed angle between the normals
to the two oriented triangles incident to edge e (positive if convex, negative if
cancave), |e∩B| is the length of e∩B (always between 0 and e), and e is a unit
vector in the same direction as e. In our experiments, we estimate the tensor at
every vertex location v, for a neighborhood B of 2-ring. The principal curvatures
kmin and kmax at v can now be estimated by the two maximum eigenvalues of
T (v). Fig. 1 shows the schematic of this method.

Shape index which expressing different shape classes by one single number
from 0 to 1 then can be estimated by the following equation:

S =
1

2
− 1

π
arctan(

κmax + κmin

κmax − κmin
) (2)

The first row of Fig.2 shows a example of maximum, minimum curvatures and
shape index estimated by this method on a 3D face model.

2.2 Estimating Curvature by Local Cubic Fitting based Method

In order to compare the performances of our shape descriptors based on different
curvature estimation methods used for facial expression classification, we also
adopt local cubic fitting method [20] to estimate curvatures. The basic idea of
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Fig. 3. Illustrated the estimated normal vectors (models of M0044-DI03).

this method is that: for each vertex p of the 3D mesh, a local coordinate system is
defined by taking the vertex p as an origin and normal vector np = (nx, ny, nz)T

as the z axes. Two orthogonal axes, x and y, randomly chosen in the tangent
plane perpendicular to the normal vector. The local neighborhood points (2-ring
in our paper) and its corresponding normal vectors are first transformed to the
local coordinate system, then used for fitting a cubic function and its normal
respectively. The cubic function and its normal having the following forms:

z(x, y) =
A

2
x2 +Bxy +

C

2
y2 +Dx3 + Ex2y + Fxy2 +Gy3 (3)

(zx, zy,−1) = (Ax+By + 3Dx2 + 2Exy + Fy2 +

+Bx+ Cy + Ex2 + 2Fxy + 3Gy2,−1) (4)

By using least-square fitting method to solve the fitting equations (3) and (4),
the Weingarten matrix on a vertex can be computed as:

W =

(
∂2z(x,y)

∂x2

∂2z(x,y)
∂x∂y

∂2z(x,y)
∂x∂y

∂2z(x,y)
∂y2

)
=

(
A B
C D

)
(5)

The maximum curvature kmax and minimum curvature kmin then can be es-
timated as the eigenvaules of the Weingarten matrix. The second row of Fig.2
shows a example of maximum, minimum curvatures and shape index estimated
by cubic fitting method on the same 3D face model.

2.3 Mesh Gradient Estimation

Let the normal vector at p as np = (nx, ny, nz)T , which can be estimated by av-
erage the normal vectors of one-ring faces. According to (3) and (4), the gradient
direction and the gradient magnitude can be estimated as follows:

θ = arctan(
ny
nx

) (6)
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||∇z(x, y)|| =
√

(−nx
nz

)2 + (−ny
nz

)2 (7)

Fig. 3 shows the estimated normal vectors on a 3D mesh-based face model.

3 Local Shape Descriptors

3.1 Landmarks Selection

Since we conducted our experiments on the BU3D-FE database, we extracted our
local shape descriptors on the first 60 manual landmarks round of eyebrows, eyes,
nose and mouth, which are selected from 83 manual landmarks in the database.
For each landmarks, a neighborhood with a geodesic disk is considered. The
radius of the disk is equal to 22 mm in our experiments. 60 selected landmarks
and one example of local neighborhood points of left mouth corner are shown in
Fig. 4.

Fig. 4. From left to right, 60 selected manual landmarks, local neighborhood points of
the left mouth corner (M0044-DI04 and M0044-DI03).

3.2 Local Coordinate System Obtained and Orientation Assignment

In practice, we first transform the local neighborhood points to the local coor-
dinate system, in which the landmark point is the origin and its normal vector
is along the positive z axis. Two perpendicular vectors x and y axis are ran-
domly chosen in the tangent plane. In order to make the descriptor invariant to
rotation, each landmark point is assigned one or several canonical orientations
according to the dominant direction(s) of gradients in the local tangent plane
with 360 bins. Once the canonical orientations are assigned, the local coordinate
system rotates in the local tangent plane, making each canonical orientation as
new x axis. Now y axis can be computed by cross product of z and x.
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In this new local coordinate system, we project all the neighbors of a land-
mark point to its tangent plane. Eight projected points along to eight quantized
directions starting from canonical orientation with a distance of r1 to the land-
mark point are fixed. Nine circles centered at the landmark point and its eight
neighbors with a radius r2 can be further located. Fig.5 shows this arrangement.

Fig. 5. Canonical orientation (arrow), landmark point (o) and its 8 neighborhood ver-
tices (+) assigned with 9 circles.

3.3 Feature Vector Computed by Histograms of Surface Differential
Quantities

In each circle, we calculate histogram of surface gradient (hogc) and histogram of
shape index (hosc). For hogc, we compute histogram of gradient angle weighted
by gradient magnitude. This histogram is with 8 bins representing 8 main orien-
tations ranging form 0 to 360 degree. For hosc, the values of shape index ranging
from 0 to 1 are also quantized to 8 bins. Then, all the values of histograms are
weighted by Gaussian with the Euclidian distance to the center point of the
circle as the standard deviation. Every histogram with the length of 72 is then
normalized and form a feature vector for a single landmark point. Noted as hogp

and hosp which are formed as follows:

hogp = (hogc1, hog
c
2, . . . , hog

c
9) (8)

hosp = (hosc1, hos
c
2, . . . , hos

c
9) (9)

The final feature vectors of each face model can be obtained by simply concate-
nating the histogram of all 60 manual landmarks with a fixed order respectively
(expressed by HoG and HoS). They have the same length of 60 × 72 = 4320 and
can be represented as follows:

HoG = (hogp1 , hog
p
2 , · · · , hog

p
60) (10)

HoS = (hosp1, hos
p
2, · · · , hos

p
60) (11)

The fusion of them HoG+HoS can be obtained by simply concatenating them.
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4 Experimental Results

We implemented experiments on the BU-3DFE database [4] which contains 2500
textured 3D face models of 100 subjects with different gender, race, and age. Each
subject contains one neutral model and six universal non-neutral expressions:
happiness, sadness, anger, fear, surprise and disgust. Also, each non-neutral ex-
pression is obtained at four different gradations: low, middle, high and highest.
Fig.5 shows some samples of the database with six different expressions of high
and highest gradations.

Fig. 6. Examples of six universal expressions, from left to right: anger, disgust, fear,
happiness, sadness, surprise. First row, high gradation, Second row, highest gradation.

In our experiments, we use the same set up as in [9]. A subset of 60 subjects
was randomly selected with two high-intensity models for each of the six facial
expressions. Totally 60 × 12 = 720 3D mesh-face models were selected. Then,
54 and 6 subjects were randomly selected as training set (648 models) and test
set (72 models) respectively. In practice, since the number of models in test set
is very limited (only 12 models for each expression), at the same time, people
of different race, gender and age may have different facial surface changes when
they do the same expression, the average recognition accuracy obtained by 10
or 20 random experiments varies greatly, from about 50% to more than 90% [9]
with the same feature, classifier and parameters set up. To obtain stable average
recognition recognition accuracies, we run all of our experiments 1000 times
independently. To calculate descriptors, we set r1 and r2 equal to 15 mm and
7 mm respectively. The SVM classifier with liner kernel and RBF (radial basis
function) kernel is used, here the implement of LIBSVM [22] is employed. The
parameter ’gamma’ for RBF kernel is chosen as 0.04 by 8-fold cross-validation.
The results are shown in table 1-5. AN, DI, FE, HA, SA, SU are short of anger,
disgust, fear, happiness, sadness, and surprise, respectively.

Table 1 shows the average confusion matrix obtained by HoG feature and
SVM classifier with linear and RBF kernels. we can find that both liner and RBF
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kernels get high classification rates for expressions of happiness and surprise but
low for other expressions. As the phenomenon obtained by other work, anger
and fear have comparatively lower classification rates. Anger is confused mainly
by sadness and fear is confused mainly by happiness and surprise. Linear kernel
works better for anger while a little worse for disgust and happiness than RBF
kernel. Both of these two kernels get almost the same average recognition rate
about 76.5% for all six expressions.

Table 1. Average confusion matrix obtained by HoG

linear kernel RBF kernel

% AN DI FE HA SA SU AN DI FE HA SA SU

AN 74.0 8.3 0.8 1.6 15.2 0.1 66.0 12.0 3.0 0.9 18.1 0
DI 5.9 76.5 10.4 3.7 2.6 0.9 2.3 80.7 8.5 3.8 3.2 1.5
FE 5.4 11.7 63.6 9.7 5.4 4.2 3.4 8.4 63.2 13.2 5.5 6.2
HA 1.1 0.9 16.0 82.0 0 0 0.1 1.4 12.6 85.6 0 0.3
SA 16.6 2.7 8.2 0 72.2 0.3 15.6 4.1 5.7 0 72.6 2.0
SU 1.0 2.3 4.9 0.3 1.5 90.0 0 2.6 4.1 1.6 0.9 90.7

Average 76.4 76.5

Table 2. Average confusion matrix obtained by normal cycle based HoS

linear kernel RBF kernel

% AN DI FE HA SA SU AN DI FE HA SA SU

AN 77.0 8.5 0.9 0 13.3 0.4 71.5 10.4 2.2 0 15.2 0.7
DI 7.6 80.0 6.2 2.8 3.4 0 3.6 82.0 6.5 3.4 4.4 0
FE 5.2 5.9 70.9 8.9 5.9 3.2 4.4 8.1 65.6 12.0 6.1 4.0
HA 0.4 0.9 4.8 93.2 0 0 0.6 1.0 6.5 91.2 0 0.7
SA 15.5 1.8 7.3 0 74.4 0.9 14.1 2.4 10.1 0 72.0 1.5
SU 0.2 1.9 1.9 0.4 0 95.6 0.1 1.6 1.4 0.2 0 96.8

Average 81.9 79.9

Table 2 shows the average confusion matrix obtained by HoS feature (esti-
mated by normal cycle theory based method) and SVM classifier of linear and
RBF kernels. All the results are better than the corresponding results in Table
1 except the one obtained by RBF kernel for sadness (72%, vs 72.6%). Linear
kernel works much better than RBF kernel except disgust (80.0% vs 82.0%) and
surprise (95.6% vs 96.8%). The average recognition rates for all six expressions
are 81.9% and 79.9% for linear and RBF kernals.

Table 3 shows the average confusion matrix obtained by HoS feature (es-
timated by local cubic fitting method) and SVM classifier of linear and RBF
kernels. All the results are better than the corresponding results in table 1 ex-
cept the one obtained by linear kernel for anger (73.1%, vs 74.0%). For the case
of linear kernel, the performances are worse than the ones in table 2 except for
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disgust (80.6% vs 80.0) and fear (72.3% vs 70.9%); while for the case of RBF
kernel, the performances are a litte better than table 2 (80.6% vs 79.9) especially
for sadness (76.2% vs 72%). Two curvature estimation methods get comparative
results.

Table 3. Average confusion matrix obtained by cubic fitting based HoS

linear kernel RBF kernel

% AN DI FE HA SA SU AN DI FE HA SA SU

AN 73.1 7.7 2.7 0.2 16.2 0 72.3 9.9 2.6 0 15.2 0
DI 5.1 80.6 9.3 3.0 1.7 0.5 3.3 81.3 8.5 2.9 2.7 1.2
FE 5.4 4.8 72.3 8.7 6.0 2.7 5.5 73.3 66.6 9.5 6.7 4.4
HA 0.8 3.9 4.2 90.5 0 0.7 0.9 2.2 5.2 91.1 0 0.7
SA 16.3 0.6 5.9 0 76.3 0.9 12.8 1.5 8.6 0 76.2 0.9
SU 0.1 2.3 3.0 0 0.8 93.9 0.1 2.3 1.1 0 0.6 95.9

Average 81.1 80.6

Table 4. Average confusion matrix obtained by HoG+HoS descriptor using linear
kernel of SVM

normal cycle based cubic fitting based

% AN DI FE HA SA SU AN DI FE HA SA SU

AN 76.8 7.6 2.1 0 13.5 0 76.4 8.0 1.8 0 13.7 0
DI 7.6 78.1 6.6 2.1 5.0 0.7 4.4 80.2 10.2 2.8 2.0 0.5
FE 4.6 7.6 73.2 7.3 5.1 2.3 5.1 6.2 73.6 8.0 5.3 1.7
HA 0.5 0.5 6.8 91.4 0 0.8 0.8 2.2 6.5 90.4 0 0.8
SA 14.5 1.1 8.3 0 75.5 0.6 14.7 0.5 6.2 0 77.8 0.8
SU 0 1.7 2.0 0.9 0.8 94.5 0 2.0 3.3 0.1 1.0 93.6

Average 81.6 82.0

Table 4 presents the average confusion matrix obtained by the fusion feature
HoG+HoS (estimated by normal cycle theory and cubic fitting) and SVM clas-
sifier of linear kernel. Compared to the results in table 2 left and table 3 left
(linear kernel), the results drop down except fear (73.2% vs 70.9% ) and sadness
(75.5% vs 74.4%) in the case of normal cycle theory method, while the results
increase for anger, fear, and sadness (especially for anger (76.4% vs 73.1% )) and
drop down only a little for other expressions in the case of cubic fitting method.
But there are no increase (normal cycle) or a little increase (cubic fitting) of the
average recognition rates for all six expressions. It may be caused by the huge
dimension (8640×1) of the fused descriptor.

Table 5 gives the results of our method (HoG by RBF kernel, HoS by normal
cycle and linear kernel, HoG+HoS by cubic fitting and linear kernel) and the
ones reported in [9] and [11]. In fact, in Gong et al. (Gong) [9], the results of the
approaches in Wang et al. (Wang) [5], Soyel et al. (Soyel) [6], and Tang et al.
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(Tang) [8], are obtained on the same experimental setting. While in Berretti et al.
(Berretti) [11], 60 subjects are selected randomly from experiment to experiment.
It can be found that our approach using HoG feature obtained a comparative
result to others, further on, the results obtained by HoS and HoG+HoS features
outperform all the other methods.

Table 5. Average expression recognition rats for our method and the works in [11],
[9], [5], [6], [8].

HoG HoS HoG+HoS Berretti Gong Wang Soyel Tang

AVE 76.48% 81.86% 82.01% 77.54% 76.22% 61.79% 67.52 74.51%

5 Conclusions and Future Work

In this paper, we have developed a mesh-based 3D facial expression recogni-
tion approach and evaluated it on the subset of BU-3DFE database. Our novel
approach is based on a local shape descriptor (HoG and HoS) computed from
surface differential quantities and the SVM classifier. The surface differential
quantities are extracted on the local neighborhoods of 60 manual landmark-
s. Curvatures are estimated by normal cycle theory based method and cubic
fitting method. Both linear and RBF kernels of SVM are employed for classifi-
cation. The results indicated that both curvature estimation method and both
linear and RBF kernels get nearly the same average expression recognition rates.
There is no single descriptor or kernel which works best for all the six expres-
sions. Similar to what Gong et al. said in [9], anger, fear and sadness are more
difficult than disgust, happiness and surprise for all the descriptors and kernels.

For the future work, we will test our method on the whole BU3D-FE database
and consider the other two lower expression gradations. Further on, less training
set and more test set (50% vs 50%) will also be considered . At last, well analyzing
and understanding the deep relations between different expression (principal of
their transfer) can help us to improve the results of expression recognition.
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