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Abstract

In this paper, to characterize and distinguish identical
twins, three popular texture descriptors: i.e. local binary
patterns (LBPs), gabor filters (GFs) and local gabor bina-
ry patterns (LGBPs) are employed to encode the normal
components (x, y and z) of the 3D facial surfaces of identi-
cal twins respectively. A group of facial normal descriptors
are thus achieved, including Normal Local Binary Patterns
descriptor (N-LBPs), Normal Gabor Filters descriptor (N-
GFs) and Normal Local Gabor Binary Patterns descriptor
(N-LGBPs). All these normal encoding based descriptors
are further fed into sparse representation classifier (SR-
C) for identification. Experimental results on the 3D TEC
database demonstrate that these proposed normal encod-
ing based descriptors are very discriminative and efficient,
achieving comparable performance to the best of state-of-
the-art algorithms.

1. Introduction

As the performance of 2D still-image face recognition
system in constrained environments continues to increase
[6] and the high enough accuracies achieved by existing
3D face recognition algorithms against public datasets like
FRGC v2.0, focus is shifting from methods that improve
face recognition performance in general, to the ones that
handle specic failure cases, caused by interference factors
such as illumination conditions, pose, lapse of time, facial
expression changes [12]. Recently, the new scenario of dis-
tinguishing identical twins becomes a challenging problem
of traditional face recognition system since the quite strong
similarity of their 2D facial appearance and 3D facial ge-
ometric shapes. Some recent studies have evidenced these
challenges [17], [16], [12], [20], [19].

To the best of our knowledge, Sun et al. [17] were

the first to evaluate the face recognition performance on a
dataset consisting of multiple biometric traits (fingerprint,
face, and iris) of identical twins. They tested face modality
using the Cognitec FaceVACS system on 134 subjects (66
pairs of twins and two sets of triplets). They revealed that
their face system could distinguish non-twins better than i-
dentical twins. Meanwhile, they concluded that the distri-
bution of identical twin impostor was more similar to the
genuine distribution than the general impostor distribution.

Phillips et al. [16] investigated the performance of three
of the top submissions to the Multiple Biometric Evalua-
tion (MBE) 2010 Still Face Track [6] on a dataset of twins
acquired at Twins Day [1] in 2009 and 2010. Their experi-
mental dataset is composed of images taken from 126 pairs
of identical twins (252 people) collected on the same day
and 24 pairs of identical twins (48 people) with images col-
lected one year apart. They revealed that the results were
largely dropped by the variations of lighting conditions (stu-
dio and outside); expressions (neutral and smiling); gender
and age.

Klare et al. [12] proposed to classify facial features into
three levels, i.e. appearance features (Level 1), local fea-
tures (Level 2) as well as detailed features (Level 3), and
studied the feature distinctiveness of Level 2 (MLBP and
SIFT) and Level 3 (facial marks) with respect to distinguish
identical twins. They indicate that these features which per-
form well in twin identification are not always consistent
with the ones good at recognizing non-twin faces.

Later, Vijayan et al. [20] evaluated the performance of
four state-of-the-art 3D face recognition algorithms against
the largest dataset of 3D facial scans of twins, namely the
3D Twins Expression Challenge (3D TEC) dataset which
contains 107 pairs of identical twins. They found that some
algorithms perform very well on the FRGC v2.0 dataset but
vastly degrades in performance on the 3D TEC dataset, e-
specially distinguishing the cases combining factors relat-
ed to facial similarity and the variation of facial expres-
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sion. Their results show that 3D face recognition of identi-
cal twins in the presence of varying facial expression is far
from a solved problem, but good performance is possible
[20]. In another work of Vijayan et al. [19], they also point-
ed out that distinguishing between identical twins with the
variation of facial expression is a very challenging problem.

Recently, Li et al. [14] proposed a 3D face descrip-
tor namely Multi-Scale Local Normal Patterns (MS-LNPs)
which encodes the three normal components of facial sur-
face using Multi-scale LBP operators. The recognition was
carried out by the weighted sparse representation of the en-
coded facial normal descriptor (MS-LNPs) to enhance the
robustness of their system to resist the variation of facial
expression. The weights of each facial physical component
were learned from training datasets. They achieved a rank-
one recognition rate of 96.3% which is comparable to the
state-of-the-art tasks. One of the important conclusions they
draw in their work lies in that: the encoded normal infor-
mation is much more discriminative than both the original
normal information and the encoded geometric information
(i.e., depth images or range images).

On the other side, as we know, except Local Binary Pat-
terns (LBP) [2], Gabor Filters (GFs) [21], and Local Gabor
Binary Patterns (LGBPs) [24] are also two popular face de-
scriptors successfully used in the state-of-the-art 2D face
biometric systems. Later, LBP [8] and GFs [3], [23] have
also been exploited to describe 3D facial shape and applied
to 3D face recognition systems. In contrast to what we do
in this study, all these 3D face descriptors directly encode
the geometric information of 3D facial surfaces.

Inspired by the two facts mentioned above, in this pa-
per, we propose two new ways to encode normal informa-
tion, including multi-scale and multi-orientation Gabor Fil-
ters (GFs) and Local Gabor Binary Patterns (LGBPs). To-
gether with MS-LNPs [14], we achieve a group of facial
normal descriptors consisting of Normal Local Binary Pat-
terns descriptor (N-LBPs, i.e. MS-LNPs), Normal Gabor
Filters descriptor (N-GFs) and Normal Local Gabor Bina-
ry Patterns descriptor (N-LGBPs). The effectiveness of the
proposed descriptors are conducted on the 3D TEC dataset,
and we find that all these descriptors are very discriminative
to distinguish identical twins.

The rest of the paper is organized as follows. The frame-
work overview of the proposed method is presented in sec-
tion 2. Section 3 introduces the method of facial normal
estimation. Facial normal encoding and representations are
explained in section 4. Section 5 describes the sparse repre-
sentation classifier. In section 6, we show the experimental
and algorithmic settings as well as the results. Section 7
concludes the paper.

2. Framework Overview
As shown in Fig. 1, our framework consists of four steps:

1) normal estimation; 2) normal encoding; 3) comprehen-
sive representation and 4) classification. Specifically, given
a raw 3D facial scan, we first launch the preprocessing step
to normalize the range image to an m × n × 3 matrix (i.e.,
x, y and z coordinates). Based on the range image, we es-
timate its three normal components (x, y, and z) by local
plane fitting method (see Sec. 3). For each normal compo-
nent, we propose to use three kinds of encoding and repre-
sentation methods and thus we achieve a group of normal
descriptors: N-LBPs, N-GFs and N-LGBPs. Since all the
three descriptors comprehensively encode normal informa-
tion either by multiple scales or orientations, we make use
of two manners to fuse them for classification. Feature-level
fusion which concatenates all the features extracted at dif-
ferent scales and orientations; and score-level fusion which
creates one feature vector at one scale or orientation for the
classifier to calculate an individual similarity score, and all
these scores are further fused for the following step. Con-
sidering its powerful classification ability, in this study, we
apply sparse representation classifier (SRC) for the classi-
fication. Due to the high dimension of the feature vector
of N-GFs and N-LGBPs, we employ PCA for dimension-
ality reduction. The final similarity measurement of each
descriptor computed by combining the ones of three normal
components are used for decision making.

3. Facial Normal Estimation
Given a range image based face model represented by an

m× n× 3 matrix as follows,

P = [pij(x, y, z)]m×n = [pijk]m×n×{x,y,z}, (1)

where pij(x, y, z) = (pijx, pijy, pijz)
T , (1 ≤ i ≤ m, 1 ≤

j ≤ n, i, j ∈ Z) represents the 3D coordinates of the point
pij . Let its unit normal vector matrix (m× n× 3) be

N(P) = [n(pij(x, y, z))]m×n = [nijk]m×n×{x,y,z}, (2)

where n(pij(x, y, z)) = (nijx, nijy, nijz)
T , (1 ≤ i ≤

m, 1 ≤ j ≤ n, i, j ∈ Z) denotes the unit normal vector of
pij . We have ‖n(pij(x, y, z))‖2 = 1. As described in [7],
the normal vector N(P) of range image P can be estimated
by using local plane fitting method. That is to say, for each
point pij ∈ P, its normal vector n(pij) can be estimated as
the normal vector of the following local fitted plane:

Sij : nijxqijx + nijyqijy + nijzqijz = d, (3)

where (qijx, qijy, qijz)
T represents any point within the lo-

cal neighborhood (5 × 5 window in our paper) of point pij
and d = nijxpijx + nijypijy + nijzpijz.
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Figure 1. Framework of our proposed method.

Figure 2 shows one example of three normal component
matrices (images) estimated from the original range image.
we can see that normal components highlight the informa-
tive clues of the raw range image, e.g. the details in the fore-
head region, which corresponds to the conclusion in [14] .
To simplify, each normal component in equation (2) can be
represented by an m× n matrix:

N(P) =


N(X) = [nxij ]m×n,

N(Y) = [nyij ]m×n,

N(Z) = [nzij ]m×n.

(4)

where −1 ≤ nkij ≤ 1, k ∈ {x, y, z}.

Figure 2. From left to right: the original range image, and its nor-
mal images of component x, y and z.

4. Facial Normal Encoding and Representation
Thanks to the matrix form of these normal components

in equation (4), we can encode and characterize each of
them using the similar way of feature extraction as for 2D
texture images. In this paper, we propose to use LBP, Ga-
bor and LGBP descriptors to encode the discriminative in-
formation from each of these normal components.

4.1. Normal Local Binary Patterns

Our Normal Local Binary Patterns (N-LBPs) is directly
inherited from MS-LNPs proposed in [14], where three s-
cales of LBP, i.e., Q1,8, Q2,16 and Q3,24, (Qn,m denotes a
neighborhood of m sampling points on a circle of radius of
n) operator were used. Formally, given a point pij , its nor-
mal component noted as nijk(0), the derived LNPs decimal

value is:

LNPs(Qn,m(pij)) =
m−1∑
q=1

t(nijk(q)− nijk(0))2q, (5)

where t(x) = 1, if x ≥ 0; t(x) = 0, if x <
0. LNPs(Qn,m) encodes local normal variations of
each normal component as decimal value, noted by
e({nijk}m×n), k ∈ {x, y, z}. See Fig. 3 for an example of
LNPs(Q1,8) representation of three normal components.

To describe a local shape region, the normal component
is encoded as the histogram of LNPs as follows:

H =
∑
i,j

I{e({nijk}m×n) = r}, r = 0, . . . , R− 1, (6)

where R is the encoded decimal number, for Q1,8, R =
28 = 256. I{A} = 1, if A is ture, else I{A} = 0. This
histogram contains the local micro-patterns of normal com-
ponent over the whole face model. To utilize spatial infor-
mation of facial shape, each facial normal component can
be further divided into several patches, from which local
normal patterns histograms H are extracted; then concate-
nated by facial configuration to form a global histogram G.
Please see [14] for more details.

Figure 3. (a) to (c): normal images of component x, y and z; (d)
to (e), the corresponding N-LBPs (LNPs) representation Q1,8.

4.2. Normal Gabor Filters

Inspired by the motivation that the smooth properties of
depth Gabor image cannot describe the facial features in
detail [23], our proposed Normal Gabor Filters descriptor
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(N-GFs) characterizes facial surfaces by Gabor Filters on
its normal components. The mathematical expression of 2D
Gabor wavelets can be defined as follows [13]:

ψ(z) =
k2
µ,v

σ2
exp(−

k2
µ,vz

2

2σ2
)[exp(ikµ,vz)− exp(−σ

2

2
)],

(7)
where z = (x, y), and µ and v define the orientation and
scale of the Gabor wavelets. kµ,v is define as follows:

kµ,v = kve
iΦµ , (8)

where kv = kmax/f
v and Φµ = πµ/8. kmax is the max-

imum frequency, and f is the spacing factor between Ga-
bor filters in the frequency domain. In this study, we use
Gabor filters with five different scales, v ∈ {0, . . . , 4},
and eight orientations, µ ∈ {0, . . . , 7}, with the parameters
σ = 2π, kmax = π/2 and f =

√
2, asin[23].

By the convolution operation of Gabor Filters and nor-
mal components, we achieve the Gabor based representa-
tion of normal components:

Okµ,v(x, y) = [nkij(x, y)]m×n ∗ψ(x, y), k ∈ {x, y, z}, (9)

where * denotes the convolution operator.
Given the normal component k, orientation µ and scale

v, at each point (x, y), Okµ,v(x, y) is a complex number. We
compute its magnitude. Thus, totally, for each normal com-
ponent k, we can achieve 40 (5 × 8) Gabor magnitude im-
ages. See Fig. 4 for an example of normal component z.
The comprehensive description of Normal Gabor Filters (N-
GFs) can be obtained by feature level fusion or score-level
fusion.

Figure 4. (a). Normal component z. (b) Its Gabor representation.

4.3. Normal Local Gabor Binary Patterns

It have been proved that the combination of Gabor filters
and LBP (i.e. Local Gabor Binary Patterns, namely LGBP
for short) can improve the performance of LBP for 2D face

Figure 5. (a). Normal component z. (b) Its LGBP representation.

recognition [24]. Analogously, to characterize 3D facial
surfaces, our proposed Normal Local Gabor Binary Pattern-
s descriptor (N-LGBPs) employ LGBP operator to encode
the facial normal components. That is to say, we continue
to encode the micro-patterns of normal Gabor magnitude
images by the LBP operator.

Formally, given a point pkij of normal component k, the
derived N-LGBPs decimal value is:

N -LGBPskµ,v(Qn,m(pkij)) =
m−1∑
q=1

t(Okµ,v(q)−Okµ,v(0))2q,

(10)
where Qn,m, t, q, 0 have the same meaning as Eq. (5),
and Okµ,v represents the Gabor representations of normal
component k as Eq. (9). See Fig. 5 for an example of
N -LGBPszµ,v(Q1,8) based normal representation. Like
LBP, to avoid the loss of spatial information of facial normal
representation by histograms, each Normal Gabor Magni-
tude image is further divided into several non-overlapping
regions. The global representation can be obtained by con-
catenating (by facial configuration) all the N-LGBPs his-
tograms extracted from each sub-regions. Similarly, the
comprehensive description of Normal Local Gabor Bina-
ry Patterns (N-LGBPs) can be achieved using feature level
fusion or score-level fusion.

5. Sparse Representation Classifier
Based on the face subspace model: a well-aligned frontal

face image under different lighting conditions and various
facial expressions lies close to a special low-dimensional
linear subspace spanned by sufficient training samples from
the same subject, Wright et al. [22] modeled the face recog-
nition problem by solving the l1 minimization sparse repre-
sentation. They also proposed sparse representation classi-
fier (SRC) for robust 2D face recognition.

Analogously, we assume that a well-aligned frontal test
3D face model represented by a feature vector under dif-
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ferent facial expressions approximately lies in a linear sub-
space spanned by the 3D faces in the training set (represent-
ed by the same type of facial features) associated with the
same subject.

That is, given ni training samples of i-th subject, Ai =
[vi,1, vi,2, . . . , vi,ni ] ∈ Rm×ni , any test sample y ∈ Rm
from the same subject can be represented by:

y = αi,1vi,1 + αi,2vi,2 + ...+ αi,nivi,ni , (11)

where αi,j ∈ R, j = 1, 2, . . . , ni.
However, the case is not exactly the same, in our experi-

ments, the training set is composed of one face model from
each subject (gallery set) (ni = 1). This problem of insuffi-
cient training samples introduces a new model error, noted
by ε ∈ Rm. Model (8) can be modified as:

y ≈ αivi = αivi + ε, (12)

where y ∈ Rm, vi ∈ Rm and αi ∈ R represent a probe
face, a gallery face from the same subject and their linear
scalar factor respectively.

Considering the whole gallery set with n 3D faces, each
of which belongs to one subject, A .

= [v1, v2, . . . , vn] ∈
Rm×n and any probe y ∈ Rm, (12) can be rewritten as

y = Ax + ε̃, (13)

where x = [0, . . . , 0, αi, 0, . . . , 0]T ∈ Rn is the coefficient
vector whose entries are zero except the one associated with
the i-subject. Sparse coefficients x in (13) can be solved as
the following l1 minimization problem:

x̂1 = argminx||x||1s.t.||Ax − y||2 ≤ ||ε̃||2, (14)

We employ OMP [15] algorithm to solve (14) and com-
pute the residuals:

ri(y) = ||y −Aδi(x̂1)||2, i = 1, 2, . . . , n. (15)

where δi is a characteristic function which selects coeffi-
cient associated with the i-th gallery. Finally, the index of
minimal ri(y) corresponding to the identity of y.

6. Experimental and Algorithmic Settings
6.1. Datasets and Preprocessing

To evaluate the performance of our proposed descriptors
to distinguish identical twins, as used in [20], all our results
were reported on the 3D TEC dataset. 3D TEC is a subset
of the Twins Days 2010 dataset acquired at the Twins Days
Festival in Twinsburg, Ohio [1]. The whole dataset contains
266 subject sessions, with the 3D scans in the dataset con-
taining two scans: one with a neutral expression and anoth-
er with a smiling expression. There are 106 sets of identical
twins, one set of triplets, and the rest are non-twins. The

subset (i.e. 3D TEC) only includes the 3D face scans ac-
quired in the first session and thus consists of of 107 pairs
of twins (two of the triplets are included as the 107th set of
twins). More instructions of data parameters can be found
in [20].

All 3D face models were preprocessed using the tool de-
veloped by Szeptycki et al. [18], including spike remov-
ing, hole filling. Then manually labeled nose tips provid-
ed by the dataset were used for face cropping and an ICP
fine registration. After normal estimation from each nor-
malized range image, three normal component matrices:
[nxij ]m×n, [n

y
ij ]m×n and [nzij ]m×n are resized to the same

size of 120× 96 for the following encoding step.

6.2. Experimental Settings

We did experiments according to the same experimental
protocol as defined in [20]. To be specific, one person in
each pair of twins was arbitrarily labeled as Twin A and the
other as Twin B. Face identification experiments were per-
formed using four different gallery and probe sets as shown
in Table 1.

No. Gallery Probe
I A Smile, B Smile A Neutral, B Neutral
II A Neutral, B Neutral A Smile, B Smile
III A Smile, B Neutral A Neutral, B Smile
IV A Neutral, B Smile A Smile, B Neutral

Table 1. Gallery and probe sets for cases I, II, III, and IV. “A Smile,
B Neutral” means that the set contains all images with Twin A
smiling and Twin B neutral [20].

In Case I, all the images in the gallery set possess a s-
miling expression while all the images in the probe set have
a neutral expression. Case II reverses these roles of Case I.
Both the two cases model a scenario that the gallery has one
expression and the probe has another. As stated in [20], in
the identication scenario, theoretically the main challenge
would be to distinguish between the probe image and the
image of his/her twin in the gallery since they look similar.

In Case III, Twin A smiling and Twin B neutral make up
of the gallery set; while Twin A neutral and Twin B smiling
as the probe compose the probe set. Case IV reverses these
roles of Case III. These two cases model a worst scenario
in which the system does not control for the expressions
of the subject in a gallery set of twins. As pointed out in
[20] as well, in the identication scenario, theoretically the
main challenge would be to distinguish between the probe
image and the image of his/her twin in the gallery. This is
more difficult than Cases I and II since the expression of the
probe face is different from his/her image in the gallery but
is the same as the image of his/her twin in the gallery.
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6.3. Algorithmic Settings

On Normal Local Binary Patterns descriptor (N-LBPs,
i.e. MS-LNPs), as introduced in [14], each normal com-
ponent matrix is empirically divided into local patches of
sizes 12× 12, 20× 16 and 40× 32 for the operators LNPs
of Q1,8, Q2,16 and Q3,24 respectively. Thus three LBP his-
tograms are achieved with dimensions of 4,720, 8,748 and
4,995. Each of this histogram can be used for score level fu-
sion based comprehensive representation directly. For fea-
ture level fusion based comprehensive representation, the
three histograms are concatenated to achieve the final fea-
ture vector (with a dimension of 18,463).

On Normal Gabor Filters descriptor (N-GFs), for fea-
ture level fusion based comprehensive representation, each
Gabor magnitude image (size of 120 × 96) is first down-
sampled by a factor of 8 and then reshaped to a column vec-
tor with a dimension of 180 (15×12). The final feature vec-
tor (with a dimension of 7,200) is achieved by concatenat-
ing all the 40 column vectors. For score level fusion based
comprehensive representation, each Gabor magnitude im-
age is directly reshaped to a column vector with dimension
of 11,520 (120× 96).

On Normal Local Gabor Binary Patterns descriptor (N-
LGBPs), empirically, we use LBP operator of Q2,16 with
local patches of 20×16. For feature level fusion based com-
prehensive representation, all the Normal Gabor Magnitude
images are first down-sampled by a factor of 2 before ex-
tracting LBP histograms. By concatenating all the 40 LBP
based histograms, the final feature thus has a dimension of
87,480 (40 × 2, 187). For score level fusion based com-
prehensive representation, each Normal Gabor Magnitude
image is directly encoded by the LBP histogram with a di-
mension of 8,748.

PCA is employed to reduce the huge dimensions of the
N-GFs and N-LGBPs descriptors. For all the cases, includ-
ing the two descriptors with two kinds of comprehensive
representations, according to the number of the gallery sam-
ples, we fix the compacted dimension of features at 205. To
solve (14), OMP algorithm with sparse coding number of
30 was used.

6.4. Experimental Results

6.4.1 Comparison of comprehensive representations

To evaluate the influences of different comprehensive
representations related to different facial normal descrip-
tors, we compared their rank-one performances at both fea-
ture level and score level fusion according to Case I. S-
ince the effectiveness of fusion different normal compo-
nents have been proved by Li et al. [14], all the results
shown in this study are the final ones obtained by fusing the
three normal components. From Tab. 2, we can see that
score level fusion is better for N-LBPs; while feature lev-

el fusion is better for N-GFs and N-LGBPs. Therefore, we
report our following results based on their better schemes,
i.e. score level fusion for N-LBP, feature level fusion for
N-LGFs and N-LGBPs.

Descriptor Rank-1 Recognition Rate
score-level fusion feature-level fusion

N-LBPs 94.86% 92.52%
N-GFs 88.79% 93.93%
N-LGBPs 93.46% 96.73%

Table 2. Comparison of feature level and score level fusion based
comprehensive representation (tested in Case I))

6.4.2 Comparison of identification results

Tab. 3 shows the rank-one recognition rate of our pro-
posed method (noted as Alg. 5) and the algorithms reported
in [20]. We can find that N-LGBPs performs best among
the group of proposed normal descriptors for all the four
cases. N-LBPs and N-GFs achieved comparable results for
all the four cases. All the proposed descriptors work better
for Cases I and II than Cases III and IV. Compared with oth-
er algorithms, N-LGBPs displays comparable results to the
best results (given by Alg. 4) for all these four cases. This
indicates that our proposed normal descriptors (especially
N-LGBPs) prove very high discrimination to recognize i-
dentical twins.

Algorithm Rank-1 Recognition Rate
I II III IV

Alg.1 (Epkn) [4] 93.5% 93.0% 72.0% 72.4%
Alg.1 (Eminmax) [4] 94.4% 93.5% 72.4% 72.9%
Alg.2 (SI) [10] 92.1% 93.0% 83.2% 83.2%
Alg.2 (eLBP) [8] 91.1% 93.5% 77.1% 78.5%
Alg.2 (Range PFI) [9] 91.6% 93.9% 68.7% 71.0%
Alg.2 (Text. PFI) [9] 95.8% 96.3% 91.6% 92.1%
Alg.3 [5] 62.6% 63.6% 54.2% 59.4%
Alg.4 [11] 98.1% 98.1% 91.6% 93.5%
Alg.5 (N-LBPs) 94.9% 96.3% 89.3% 88.3%
Alg.5 (N-GFs) 93.9% 94.4% 89.3% 90.2%
Alg.5 (N-LGBPs) 96.7% 96.7% 92.5% 93.5%

Table 3. Comparison of rank-one scores of our method (Alg. 5)
and the state-of-the-art methods.

7. Conclusion and Perspective

In this paper, we proposed a group of facial normal de-
scriptors consisting of Local Normal Patterns (N-LBPs, i.e.
MS-LNPs), Normal Gabor Filters (N-GFs) and Normal Lo-
cal Gabor Binary Patterns (N-LGBPs). Their discrimina-
tions for distinguishing 3D identical twins were evaluated
in the face identification scenario. Meanwhile, both fea-
ture level fusion and score level fusion based comprehen-
sive representations of each descriptor were compared. We
achieved the state-of-the-art results.
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In our future work, we will mainly investigate the follow
issues: 1) As used in [14], we will study the learning-based
weighted sparse representation method for N-GFs and N-
LGBPs to resist facial expression variations. 2) Except P-
CA, other more efficient techniques for dimensionality re-
duction and feature selection methods, such as Linear Dis-
criminant Analysis (LDA), AdaBoost, manifold learning,
etc. will be discussed for N-GFs and N-LGBPs descriptors.
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