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Abstract

In this paper, we propose a fully automatic approach
for person-independent 3D facial expression recogni-
tion. In order to extract discriminative expression fea-
tures, each aligned 3D facial surface is compactly rep-
resented as multiple global histograms of local normal
patterns from multiple normal components and multiple
binary encoding scales, namely Multi-Scale Local Nor-
mal Patterns (MS-LNPs). 3D facial expression recog-
nition is finally carried out by modeling multiple kernel
learning (MKL) to efficiently embed and combine these
histogram based features. By using the SimpleMKL al-
gorithm with the chi-square kernel, we achieved an av-
erage recognition rate of 80.14% based on a fair exper-
imental setup. To the best of our knowledge, our method
outperforms most of the state-of-the-art ones.

1 Introduction

Facial expression is one of the most naturally means
in daily communication of human beings. Over the past
two decades, automatic analysis and recognition of fa-
cial expressions have attracted extensive attentions from
several research communities ranging from computer
vision, psychology to human computer interaction, and
involve in many applications.

While most state-of-the-art techniques on Facial Ex-
pression Recognition (FER) were so far carried out on
2D texture facial images, thereby suffering from the in-
herent issues of 2D images, namely pose changes and
lighting variations, the advent of 3D imaging systems,
e.g., Kinect, offers a very attractive alternative to bypass
these issues and has attracted an increasing interest on
FER in 3D. The release of three public datasets, namely
BU-3DEFE [15], BU-4DFE and Bosphorus, has further
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fostered the research effort in this direction (refer to the
recent survey [3]).

Face models delivered by 3D imaging systems cap-
ture precise facial surfaces along with their associated
textures, thus making it possible for an accurate descrip-
tion of human facial activities. Current research on 3D
FER can be roughly categorized into feature-based ap-
proaches and model-based ones [3]. Feature-based ap-
proaches generally investigate expression sensitive geo-
metric features, including curvature based primitive la-
bel maps [14]; distances between facial feature points
[12], [13]; Shape Deformation [4]; the 2.5D SIFT-like
descriptor [1]; histograms of surface differential quan-
tities [8]. Unfortunately, most of these methods require
a pre-defined set of manually labeled landmarks, mak-
ing them hardly applicable to real-world applications.
Model-based approaches [9], [11] generally fit a generic
face model for a dense point-to-point matching with an
input 3D face scan in order to track facial deforma-
tions. While attractive, the model-based approaches are
computationally expensive and suffer from topological
changes, e.g., opening of the mouth [9], which typically
occur during a facial expression.

This paper proposes a fully automatic feature-based
3D FER method that does not require any manually la-
beled landmark. Our first contribution is the design of a
highly discriminative and robust facial expression fea-
ture. Three normal components, in X, Y, and Z-plane re-
spectively, estimated from 2.5D range images, are first
encoded locally to their Local Normal Patterns (LNPs)
similar to the manner that Local Binary Pattern (LBP)
works on texture images. Then, to make use of the spa-
tial distribution information of facial normal patterns,
each kind of Local Normal Pattern, i.e. LNPx, LNPy
and LNPz, is further divided into several patches, from



which histograms of LNPs are individually computed.
The expression feature of a facial surface is finally rep-
resented by a global histogram of LNPs concatenated
by facial configuration. Like Multi-Scale LBP, to com-
prehensively describe facial changes caused by expres-
sions [7], we encode LNPs at different scales, achieving
Multi-Scale Local Normal Patterns (MS-LNPs). Based
on MS-LNPs using three encoding scales on three nor-
mal components, each 3D face scan can now be repre-
sented by nine feature vectors. Our second contribution
is to make use of Multiple Kernel Learning [10] which
achieves the fusion of evidence at kernel level instead
of the popular score level or feature level fusion.

The proposed 3D FER approach is further validated
on the BU-3DFE dataset in comparison with two popu-
lar score level fusion schemes, namely SVM and sparse
representation classifier (SRC), using a stable protocol
as suggested in [1]. This is in contrast to most of the 3D
FER techniques in the literature which required manu-
ally labeled landmarks and were experimented on the
BU-3DFE using an unstable protocol.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the Multi-Scale Local Normal Patterns
(MS-LNPs) based expression feature extraction; Sec-
tion 3 presents the basic idea of Multiple Kernel Learn-
ing (MKL) for multi-class expression recognition. Ex-
perimental results are discussed in section 4. Section 5
concludes the paper.

2 Multi-scale Local Normal Patterns

Given a 3D facial surface represented by an m xnx 3
matrix as follows,

P= {pij(m7y7z)}m><n - {pijk}mxnx{z,y,z}a (1)

where p;;(z,v,2) = [Pijz,Pijy,Dijz)" Tepresents the
3D coordinates of the point p;;. Its unit normal at each
point can be estimated by fitting a local plane. Each of
the normal components can be represented by an m x n
matrix:

N(X) = {nija}mxn,
N(Y) = {nijy bmxn,
N(Z) = {nij=}mxn.
where —1 < n;j, < 1.

Inspired by the discriminative power and computa-
tional simplicity of LBP for 2D texture description, we
encode each normal component as corresponding local
normal patterns (LNPs). In this work, we suppose that
the values of each normal component are similar to the
intensity values of the nature texture images. Indeed, if
we re-scale the normal values from [—1, 1] to the range
of [0, 255], these normal components can be displayed
as component-normal images (see Fig.1). Thus, every
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Figure 1. MS-LNPs illustration: images of
normal components X, Y and Z and cor-
responding features extracted from three
scales: ()13, Q216 and Q3.4 (columns
from left to right).

point of each normal component can be encoded as a
local binary pattern that is corresponding to a decimal
number. In practice, each facial normal component ma-
trix can be divided into several patches, from which his-
tograms of local normal patterns are extracted respec-
tively, then concatenated by facial configuration to form
a global histogram. Finally, the original facial surface
is described by nine global histograms extracted from
three normal components and three encoding scales (see
Fig.1). See [7] for more details about MS-LNPs.

3 Multi-class Multiple Kernel Learning

In the last few years, as the generalization of the sin-
gle kernel based Support Vector Machine (SVM), Mul-
tiple Kernel Learning (MKL) has proved to be an ef-
ficient tool for solving learning problems like classifi-
cation and regression [5], especially after Bach et al.
proposed the SimpleMKL algorithm which enables to
effectively tackle large-scale problems [10].

In a binary classification scenario, given the learning
set {x;,y; } M, where z; belongs to some input space X’
and y; is the label of z;. The MKL makes predictions
based on a function of the form

M
fl@)=>"ar> diK;(z,z:) +b" 3)
=1

j=1

where K;(-,-),(j = 1,2,...,N) is one of the defined
positive definite basis kernels; d is its corresponding
weight; d > 0, Z;yzl ds =1, N is the total number of
kernels; and all o}, d and b* are some coefficients to be
learned according to the learning set. In order to solve
the MKL problem efficiently, SimpleMKL formulates a

weighted [ regularization to the following smooth and



convex optimization problem (prime MKL):

1 1
§;a\|fm|\§{m +CZ&

infm(ZEi) +yb>1-¢& Vi

min
{f}b,&,d

s.t.
4
& >0 Vi

> dm=1,dn >0 VYm

where H,, = {f|f € H'mm : Hfldliz”" < oo}, endowed
with the inner product (f, g)3,,, = ﬁ(f, ), , and
H',, is a reproducing kernel Hilbert space (RKHS) as-
sociated with kernel K, and inner product f,,(z) =

<f()’ Km(" ')>'H’m'
The SimpeMKL minimizes a variation version of the
prime MKL as follows,

i .t. m = m >
m;nJ(d) s.t Em d 1,dm >0, 5)
where
min =5 L fulf, + OS¢ Vi
(rbgd 245~ dpm " FHom >

Yi 3o, fm(@s) +yib>1—& Vi,
& >0 Vi

J(d) = s.t.

(6)
Refer to [10] for more details of the SimpleMKL algo-
rithm.

Noticing that in our paper, {z; }}; come from multi-
ple sources, i.e., z, ¥y and z components of surface nor-
mal vector and three encoding scales of the local nor-
mal patterns (LNPs). Facial features of different normal
components or encoding scales usually capture different
and complementary shape information of facial surface,
making them have different degrees of discriminative
power associated with different weights. And that is ex-
actly what MKL does. Once given kernels associated
with different types of features, MKL seeks to the best
combination of the weights of these kernels. One of
the most useful kernel used for similarity measurement
of two sets of histogram like feature vectors x and y is
chi-square kernel (2 distance)

K(z,y) =€wp(—lzn:§xi_7yi)2)- )
D i1 3(@i +vi)

where n is the number of feature vectors, and D is the

parameter for normalizing the distances. The decision

function for binary classification SimpleMKL is

M N
D(z) = szgn(z Z o yid; Ki(z,xs) +b°)  (8)

i=1 j=1
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where o, d} and b* have the same meaning as equation
(3). Suppose that we have a multi-class problem with
K classes, the multi-class SimpleMKL differs from its

binary version by defining a new cost function

J(d) =" Jy(d)

pEP

(C)]

where P is the set of all pairs (one-to-one or one-to-rest)
to be considered, and J,(d) is the binary cost function
in (5).

4 Experimental Results

We performed six prototypical expression classifica-
tion task on the BU-3DFE database [15]. A relative fair
experimental protocol is used as [1]. During each time
of test, first, 60 subjects are randomly selected from 100
subjects (only the two models with the higher expres-
sion intensity, i.e. level 3 and level 4, of each expression
are employed). Then, they are randomly split to 54 vs.
6 as training and testing sets. We finally repeat such an
experiment 100 times.

Each triangle model is first transferred to one range
image stored in an m X n X 3 coordinate matrix by
interpolation technique and then registered by ICP al-
gorithm. As described in section 2, for each training or
testing model, we extracted 9 global histograms of local
normal patterns: 3 normal components, and 3 encoding
scales. The encoding parameters are: (8, 1), Q(16,2)
and (Q)(24, 3) corresponding to local patch sizes of 8 x
8,20 x 16 and 40 x 32, working on the normal com-
ponent matrices with the size of 120 x 96 (see [7] for
more details). Three classifiers: the score level fusion
of SRC with OMP algorithm and sparse number of 30
[7]; the score level fusion of multi-class SVM classi-
fier [2] and the SimpleMKL [10] with fixed C' as 100
are considered. To compare the performance of SVM
and SimpleMKL, linear kernel, RBF kernel with v = 3
(empirical choice) and chi-square kernel (D is set to the
average value of the y? similarity matrix of two sets of
features) are tested respectively. To simplify the test,
all the 9 MS-LNPs use the same kind of kernel, and
SimpleMKL learns the kernel weights associated with
different MS-LNPs to achieve the final score.

Table 1 shows the numerical comparisons. We can
see that SimpleMKL performs better than SVM for all
the three kernels, and the SimpleMKL with chi-square
kernel achieves the best average recognition rate. Dur-
ing the 100-time test, the differences between maximal
and minimal average recognition rates of all the meth-
ods are around 30%, and the variations of standard de-
viation are around 5.5% ~ 6.5%, which indicates that
the recognition rates are largely depends on the subjects
used for training and testing.



Table 2 presents the average confusion matrix based
on the SimpleMKL-kernel III. We find that it performs
quite well to classify happiness and surprise, getting the
recognition rates of 93.17% and 92.67% respectively.
The most likely confused expressions are anger-sadness
and fear-disgust-happiness.

Table 1. Mean, Std, Minimal, and Maximal
recognition rates obtained by SRC, SVM
and SimpleMKL (kernel I: linear; kernel II:
RBF; kernel llI: chi-square).

% Mean Std Min Max
SRC 78.36 544 59.72 91.67
SVM-kernel I 75.78 5.79 56.94 88.89
SVM-kernel II 76.65 6.37 63.89 93.06
SVM-kernel III 78.72 6.54 62.50 95.83
SimpleMKL-kernel I | 78.60 5.48 65.28 88.89
SimpleMKL-kernel IT | 78.24 6.35 62.50 90.28
SimpleMKL-kernel III | 80.14 6.05 63.89 95.83

Table 2. The average confusion matrix ob-
tained by SimpleMKL-kernel IlI

% AN DI FE HA SA SU
AN | 77.92 633 3.08 033 1158 0.75
DI | 683 77.17 7.17 3.58 1.67 3.58
FE | 442 9.00 69.25 992 3.67 3.75
HA| 0.00 025 6.17 93.17 0.00 042
SA | 1842 258 7.08 1.00 70.67 0.25
SU | 0.08 142 4.00 1.00  0.83 92.67

Table 3 compares performance of the proposed ap-
proach (SimpleMKL-kernel III) with the ones reported
in [4], [1], [8] and [6]. In fact, Gong et al. [4] repro-
duced the approaches of Wang et al. [14], Soyel et al.
[12], and Tang et al.[13] by using the same experimen-
tal setting. We can see that our result is better than the
others except [8]. However, it should be noted that [8]
depends on a large number of manual landmarks, while
the proposed approach is totally automatic. On the other
side, choosing fixed 60 subjects in setup I [4] is not as
fair as setup II [1].

Table 3. Comparison of average recogni-
tion rates, (I: Setup [4]; II: Setup [1]).

% I I
Wang et al. [14], [2006] 61.79 -
Soyel et al. [12], [2007] 67.52

Tang et al.[13], [2008] 74.51

Gong et al. [4], [2009] 76.22 -
Berretti et al. [1], [2010] - 77.54
Lietal. [8], [2011] 82.01 -
P. Lemaire et al. [6] [2011] 76.22 -
SimpleMKL-kernel III - 80.14

S Conclusion
In this paper, a fully automatic and effective person-
independent method of 3D facial expression recognition
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is performed on the BU-3DFE database. We propose a
novel 3D expression descriptor namely Multi-Scale Lo-
cal Normal Patters (MS-LNPs). To efficiently fuse the
multiple scales and multiple components of MS-LNPs,
multiple kernel learning classifier is employed. Based
on a fair setup, we achieved an average recognition rate
of 80.14%, which is better than most of the state-of-the-
art results.
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