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Abstract

This paper proposes a novel approach for 3D face recog-
nition by learning weighted sparse representation of encod-
ed facial normal information. To comprehensively describe
3D facial surface, three components, in X, Y, and Z-plane
respectively, of normal vector are encoded locally to their
corresponding normal pattern histograms. They are finally
fed to a sparse representation classifier enhanced by learn-
ing based spatial weights. Experimental results achieved on
the FRGC v2.0 database prove that the proposed encoded
normal information is much more discriminative than origi-
nal normal information. Moreover, the patch based weights
learned using the FRGC v1.0 and Bosphorus datasets also
demonstrate the importance of each facial physical compo-
nent for 3D face recognition.

1. Introduction
In recent years, 3D face recognition technologies have

achieved considerable progress mainly in: i) automatic
and accurate facial landmark localization under expression,
pose and occlusion variation [25]; ii) efficient face registra-
tion algorithm for pose normalization [34]; iii) discrimina-
tive 3D facial shape descriptors [15] [14]; iv) robust models
or learning strategies to reduce the influences caused by fa-
cial expression variations [9] [19] [32]; v) high performance
and low computational cost [29]. However, all these issues
need to be improved to meet the requirements in the real
world.

Focusing on issues iii and iv, this paper explores a
discriminative facial shape descriptor and investigates an
expression-robust algorithm by learning strategy. To ad-
dress issue iii, we propose a novel facial shape descrip-
tor, named multi-scale local normal patterns (MS-LNPs),
to represent local shape variations by encoding their normal

Figure 1. A simple example illustrating that the encoded normal
information is more discriminative than the original normal infor-
mation. The three scans (rang images), from left to right: a gallery
face of subject A, a probe face of subject A, a gallery face of sub-
ject B.

information. As we known, curvatures and shape index [15]
are widely used for facial surface characterization. Howev-
er, surface normal, which determines (at each point) the ori-
entation of the facial surface, has not been well discussed.
To the best of our knowledge, Abate et al. [2] [3] [4] [1]
introduced normal map to describe facial surface but this
direct use of normal information in the holistic way did not
achieve a satisfying result compared with the state of the
art. Kakadiaris et al. extracted wavelet coefficients from
normal and geometry maps, and reported a rank one recog-
nition rate of 97% on the FRGC v2.0 database, however, the
wavelet transform is computationally expensive [16]. In-
spired by the competitive performance and computational
efficiency of local descriptors, such as LBP [22] [5], SIFT
[18], and more recently DAISY [31], we propose to encode
original normal information, X,Y and Z components, in a
local manner to generate histograms of Local Normal Pat-
terns (LNPs), similar to the way LBP does for texture de-
scription. The idea behind it is that different shapes can
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Figure 2. (a) and (b), a 2D facial image divided into patches, and
the patch weights for recognition [5], (c) and (d), a 3D facial sur-
face divided into patches, and the patch weights for recognition
are unknown.

be described by different LNPs. As illustrated by a simple
example in Fig. 1, the discriminative power is defined as:
DP = similarity(intra-class)/similarity(inter-class); a bigger
value of DP indicates a stronger discriminative power. The
proposed feature (marked in blue cross) increases DP and
thereby improves the discriminative power of original nor-
mal information (marked in red circle).

To pursue expression-robust 3D face recognition, some
works dedicated to choose rigid facial regions, such as nose
region [10], since they are expected to change less when
facial expression appears. However, there has been no s-
tudy to show a large subset of the face that is perfectly
shape invariant across all facial expressions, meanwhile, the
useful information conveyed in non-rigid facial areas is ig-
nored. Some methods tried to model a virtual face to im-
prove the discrimination of non-rigid regions by distorting
the shape of entire face region, but it also changed the rigid
parts, leading to the loss in discriminative power [9]. All
the above facts demonstrate that it is not so straightforward
to segment rigid facial parts from non-rigid ones, and non-
rigid areas still contain the information which is important
for identification. In our view, a better alternative to solve
this problem is finding the average quantification weights
for all facial regions or facial physical component such as
eyes, nose, mouth, etc. according to their importance in 3D
face recognition. As shown in Fig.2 a) and b), the quan-
tification weights of local patches for 2D face recognition
has been investigated [5], and in this paper, we present their
corresponding weights in the viewpoint of machine learn-
ing and demonstrate their effects for expression-robust 3D
face recognition.

Our contributions are: i) propose a novel compact facial
surface descriptor named MS-LNPs (multi-scale local nor-
mal patterns); ii) Find out the average quantification weight-
s of local patches for expression-robust 3D face recognition.

The rest of the paper is organized as follows. In sec-
tion 2, we present the construction of the proposed LNPs
(local normal patterns) descriptor, including normal estima-
tion and encoding. Section 3 introduces the weighted sparse
representation classifier. Section 4 shows the experimental
settings and experimental results. Finally, we conclude the
paper in section 5.

2. Local normal patterns facial descriptor
2.1. Normal estimation

Existing normal estimation methods can be roughly clas-
sified into optimization-based methods and averaging meth-
ods [17]. Base on the format of face data used in this
paper, we employ optimization-based local plane fitting
method. A 3D facial surface can be represented by a set
of n points written as a n× 3 matrix: P = [p1, p2, ..., pn]T ,
where pi = [pix, piy, piz]T , i = 1, 2, . . . , n; denotes the
3D coordinates of measured points. For each point pi,
its normal vector ni = [nix, niy, niz]T can be estimat-
ed from its neighborhood consisting of m points Qi =
{qi1, qi2, ..., qim}, qij ∈ P, qij 6= pi. We refer to the m× 3
matrix Qi = [qi1, qi2, ..., qim]T and the (m + 1) × 3 ma-
trix Q̄i = [pi, qi1, qi2, ..., qim]T represent the neighbor-
hood points Qi and its extended neighborhood points Q̄i

containing pi. Estimate normal vector ni can be modeled
by solving the optimization problem:

min
ni

J(pi, Qi, ni). (1)

Here we choose the cost function J(pi, Qi, ni) as the dis-
tance of neighborhood points Qi to a local plane Si =
nixx+ niyy + nizz + d, i.e. solve

min
ni,d
||Q̄ini − d1m+1||2, (2)

where 1m+1 represents an (m+ 1)× 1 vector of ones. This
optimization problem can be solved by linear least square
method. Since current face models are usually saved as
range images, it is easy to choose the neighborhood points
and in this paper, we utilize the neighborhood points in a
5× 5 window as did in [13], i.e. Qi = {qi1, qi2, . . . , qi24}.
The estimated normal vectors are then normalized to unit
vectors.

2.2. Normal encoding with local normal patterns

Inspired by the discriminative power and computational
simplicity of Local Binary Patterns (LBP) to describe 2D
texture, we encode each normal component, X, Y and Z
respectively as LNPs (local normal patterns). Given a scan
face model represented by an m× n× 3 matrix as follows,

P = {pij(x, y, z)}m×n = {pijk}m×n×{x,y,z}, (3)

where pij(x, y, z) = [pijx, pijy, pijz]T represents the 3D
coordinates of the point pij . Its unit normal vector matrix
(m× n× 3) is

N(P) = {n(pij(x, y, z))}m×n = {nijk}m×n×{x,y,z},
(4)

where n(pij(x, y, z)) = [nijx, nijy, nijz]T denotes the unit
normal vector of pij . Further, each normal component can



Figure 3. Left three, images of normal components X, Y and Z;
right three, their corresponding encoded normal information rep-
resented as images (using the neighborhood Q1,8).

be represented by an m× n matrix:

N(P) =


N(X) = {nijx}m×n,
N(Y) = {nijy}m×n,
N(Z) = {nijz}m×n.

(5)

where −1 ≤ nijk ≤ 1, k ∈ {x, y, z}.
This kind of matrix form, which is convenient for us to

locate the neighborhood of each normal component of any
point pij for the following encoding step, and the neighbor-
hood of 3D point Q(pij) can be in the same way as pixels
in 2D images. Specifically, the value of every point in each
normal component i.e. X, Y, and Z, is compared with its
neighbors in a pre-defined neighborhood. A local neighbor-
hood is defined as a set of sampling points evenly spaced on
a circle which is centered at the pixel to be labeled, and the
sampling points that do not fall within the pixels are inter-
polated using bilinear interpolation, thus allowing for any
radius and any number of sampling points in the neighbor-
hood. Fig.4 shows two examples of the neighborhood of
LNPs, where the notation Qn,m denotes a neighborhood of
m sampling points on a circle of radius of n. After sub-
tracting the center pixel value, the resulting strictly negative
values are encoded with 0 and the others with 1; a binary
number is thus obtained by concatenating all these binary
codes in a clockwise direction starting from the top-left one
and its corresponding decimal value is used for labeling.
The derived binary numbers are referred to as Local Normal
Patterns. Formally, given a point pij , its normal component
noted as nijk(0), the derived LNPs decimal value is:

LNPs(Qn,m(pij)) =

m−1∑
q=1

t(nijk(q)− nijk(0))2q, (6)

where t(x) = 1, if x ≥ 0 and t(x) = 0, if x < 0.

Figure 4. Examples of the neighborhood of LNPs: Q1,8 and Q2,16.

LNPs(Qn,m) encodes local normal variations of
each normal component as decimal value, noted by
e({nijk}m×n), k ∈ {x, y, z}. See Fig.3 for an example of
LNPs(Q1,8) on three facial normal components of same

subject. It extracts the differential structure at point level.
In order to describe a local shape region, histogram statistic
is introduced as facial feature vector. For a given normal
component k ∈ {x, y, z}, the histogram of encoded normal
component e({nijk}m×n) can be defined as:

H =
∑
i,j

I{e({nijk}m×n) = r}, r = 0, . . . , R− 1, (7)

where R is the encoded decimal number, for Q1,8, R =
28 = 256. I{A} = 1, if A is ture, else I{A} = 0. This
histogram contains the local micro-patterns of normal com-
ponent over the whole face model.

2.3. LNPs Based Facial Representation

To utilize spatial information of facial shape, each fa-
cial normal component, X, Y and Z, can be further divided
into several patches, from which local normal patterns his-
tograms H are extracted; then concatenated by facial con-
figuration to form a global histogram G to represent the fa-
cial normal (see Fig.5). Finally, the original facial surface is
described by three global feature histograms GX , GY , and
GZ .

Figure 5. LNPs based facial representation.

3. Weighted sparse representation classifier
Based on the model of face subspace claiming that a

well-aligned frontal face image under different lighting con-
ditions and various facial expressions lies close to a spe-
cial low-dimensional linear subspace spanned by sufficien-
t training samples from the same subject, J.Wright et.al
[33] modeled the face recognition problem by solving the
l1 minimization sparse representation and proposed sparse
representation-base classification (SRC) classifier.

Analogously, we assume that a well-aligned frontal test
3D face model represented by a feature vector under dif-
ferent facial expressions approximately lies in a linear sub-
space spanned by the 3D faces in the training set (represent-
ed by the same type of facial features) associated with the
same subject.

That is, given ni training samples of i-th subject, Ai =
[vi,1, vi,2, . . . , vi,ni

] ∈ Rm×ni , any test sample y ∈ Rm

from the same subject can be represented by:

y = αi,1vi,1 + αi,2vi,2 + ...+ αi,nivi,ni , (8)

where αi,j ∈ R, j = 1, 2, . . . , ni.



However, unlike 2D face images with different illumi-
nation conditions, the only difference between two well-
aligned 3D face models from the same subject is the local
shape distortion caused by expression variations. To fairly
compare the result with the state of the art, SRC is modeled
with one training model (ni = 1) from each subject by in-
troducing an additional error term ε ∈ Rm. Model (8) can
be modified as:

y ≈ αivi = αivi + ε, (9)

where y ∈ Rm, vi ∈ Rm and αi ∈ R represent a probe
face, a gallery face from the same subject and their linear
scalar factor respectively.

Recall that in this paper face models are divided in-
to K different regions, the feature vector vi hence can
be rewritten as vi = [v11; v12; . . . ; v1K ], where vik ∈
R(m/K)×1, k = 1, 2, . . . ,K, according to the MATLAB
convention:

[x1;x2]
.
=

[
x1
x2

]
To reduce the model error ε in (9), we learned different
weights wi, (i = 1, 2, . . . ,K) for different regions based
on their rank-one recognition rates. Then, we have:

W (vi) = [w1v11;w2v12; . . . ;wKv1K ], (10)

and
W (y) = [w1y1;w2y2; . . . ;wKyK ]. (11)

(9) can be rewrite as

W (y) ≈ αiW (vi) = αiW (vi) + ε̃, (||ε̃||2 ≤ ||ε||2). (12)

Considering the whole gallery set with n 3D faces,
each of which belongs to one subject, W (A)

.
=

[W (v1),W (v2), . . . ,W (vn)] ∈ Rm×n and any probe
W (y) ∈ Rm, (12) can be rewritten as

W (y) = W (A)x + ε̃, (13)

where x = [0, . . . , 0, αi, 0, . . . , 0]T ∈ Rn is the coefficient
vector whose entries are zero except the one associated with
the i-subject. we named (13) as weighted sparse representa-
tion which is equivalent to solve the following l1 minimiza-
tion problem:

x̂1 = argminx||x||1s.t.||W (A)x−W (y)||2 ≤ ||ε̃||2,
(14)

We employ the OMP [23] algorithm to solve (14) and com-
pute the residuals:

ri(W (y)) = ||W (y)−W (A)δi(x̂1)||2, i = 1, 2, . . . , n.
(15)

where δi is a characteristic function which selects coeffi-
cient associated with i-th gallery. Finally, the index of min-
imal ri(W (y)) corresponding to identity of y. we call this
sparse representation classifier enhanced by introducing s-
patial weights as W-SRC in the subsequent.

4. Experimental results

4.1. Databases and preprocessing

In our experiments, three datasets are used: FRGC
v1.0 [26] and Bosphorus [28] for learning weights and
FRGC v2.0 [26] for evaluation. The FRGC v1.0 dataset
(Spring2003) consists of 943 textured 3D face models of
275 subjects with neutral expression. The FRGC v2.0
dataset (Fall2003 and Spring2004) is made up of 4007 tex-
tured 3D face models of 466 subjects with different facial
expressions. The Bosphorus dataset contains 4666 textured
3D face models of 105 subjects in various facial expres-
sions, pose and occlusion conditions. The 3D face mod-
els in all these three datasets are displayed in the form of
range images, with a resolution of 640 × 480 for FRGC
v1.0 and FRGC v2.0, and 1600× 1200 for Bosphorus. The
x, y, and z-coordinates of each 3D face model are contain-
ing in three matrices respectively. All the face models were
preprocessed using the tool developed by P. Szeptycki [30],
containing removing spikes and noise, filling holes, 3D nose
tip detection, face cropping (for FRGC datasets). Then an
ICP [34] based fine registration was employed to correct
pose variations.

4.2. Experimental Settings

To evaluate the proposed approach, five experiments
were designed for face recognition on FRGC v 2.0 dataset,
including the effectiveness of facial features, classifier per-
formance, the importance of different local patches, the
comparison with the state of the art, as well as the robust-
ness analysis to facial expression variations. The first scan
from each subject was used to make a gallery of 466. The
remaining 3D face scans were treated as probes. Before en-
coding the normal information, three normal components
nx, ny and nz matrices are resized as 120×96 respectively.
Each matrix is divided into 10 × 8, 6 × 6 and 3 ×3 win-
dows corresponding to sizes of 12 × 12, 20 × 16 and 40
× 32 local patches for the operators Q1,8, Q2,16 and Q3,24

respectively, and their similarity measurements were finally
combined to achieve a multi-scale based accuracy. Similar
to LBP, in order to reduce the dimensionality of final facial
features, the uniform pattern strategy [22] was adopted to
decrease the number of bins in each local patch.

To highlight the importance of different patches for iden-
tification, 838 face modes of 267 subjects in the FRGC v1.0
dataset were selected to learn the weights of patches. At
the same time, 2909 face models of 105 subjects without
occlusions and rotations were chosen from the Bosphorus
dataset for comparison since it contains informative expres-
sion variations while FRGC v 1.0 does not. To solve (14),
OMP algorithm with sparse number L = 30 was used.



4.3. Experimental results

4.3.1 Experiment I: Comparison of facial features

To test the effectiveness of the proposed LNPs based facial
feature, we compared it with two kinds of facial features:
i) the original normal information based facial features NX,
NY and NZ, which were achieved simply by stacking the
columns of each normal component matrices nijx, nijy and
nijz respectively, and their fusion NXYZ. ii) Local shape
feature achieved by using LBP operator, LBP2,16. For a
fair comparison, LNPs descriptor used the same parameter
with LBP to extract feature vector on each normal compo-
nent, noted as LNPX, LNPY and LNPZ, and their fusion
LNPXYZ. All features were finally fed to SRC classifier
[33]. When considering that the three components X, Y
and Z have the same weights for face recognition, in this
paper, score-level fusion using a simple sum rule was em-
ployed, other fusion rules such as learning the weights of
the scores can also been used. The results are shown in
Table 1, we can see that our descriptor performs much bet-
ter (about 20% higher) than the original un-encoded nor-
mal feature; This given a statistical illustration for the idea
shown in Fig.1. On the other side, without normal informa-
tion, the result based on the range images directly encoded
by LBP operator is about 5% lower than that of each en-
coded normal component and 10% lower than their fusion
LNPXYZ(Q2,16).

Approches Rank-one Scores
(1) NX + SRC 67.83%
(2) NY + SRC 65.62%
(3) NZ + SRC 71.63%
(4) NXYZ + SRC 73.19%
(5) LBP2,16 + SRC 82.07%
(6) LNPX(Q2,16) + SRC 87.01%
(7) LNPY(Q2,16) + SRC 86.13%
(8) LNPZ(Q2,16) + SRC 88.43%
(9) LNPXYZ(Q2,16) + SRC 92.60%

Table 1. Comparison of rank-one recognition rate using different
features on the FRGC v2.0 database

4.3.2 Experiment II: Comparison of classifiers

Normally, Chi-Square distance based classifier is more pop-
ular and efficient than other classifier especially for deal-
ing with histogram based feature [24]. Table 2 illustrates
that using our proposed features, the sparse representation-
based classifier (SRC) always surpasses about 8.5% higher
than the Chi-Square distance based classifier.

Approches Rank-one Scores
(1) LNPX(Q2,16) + Chi-Square 77.36%
(2) LNPX(Q2,16) + SRC 87.01%
(3) LNPY(Q2,16) + Chi-Square 77.87%
(4) LNPY(Q2,16) + SRC 86.13%
(5) LNPZ(Q2,16) + Chi-Square 81.33%
(6) LNPZ(Q2,16) + SRC 88.43%
(7) LNPXYZ(Q2,16) + Chi-Square 82.64%
(8) LNPXYZ(Q2,16) + SRC 92.60%

Table 2. Comparison of rank-one recognition rates using different
classifiers on the FRGC v2.0 database

4.3.3 Experiment III: Comparison of weights of patch-
es associating to different learning databases

Learned from the FRGC v 1.0 and Bosphorus datasets, the
weights of patches were achieved by following the steps be-
low: i) divide each normal component into local patches;
ii) extract feature vector of each patch by LNPs; iii) com-
pute recognition rate for each patch using SRC classifier.
iv) recognition rates are normalized as patch weights.

Fig. 6 shows the average quantification weights of local
patches of each normal component X, Y and Z learned from
Bosphorus dataset. Each normal component matrix was di-
vided into 6×6 windows for LNPs withQ2,16. The weights
are encoded by gray values where darker ones indicate low-
er weights while the brighter ones indicate higher weight-
s. For example, the rigid regions including nose, eyes and
forehead (patches circled by red lines) are assigned to high-
er weights and they totally possess about 56% importance
of the whole face area for identification. While the mouth
region has only about 2.8% importance. It is worth noting
that facial cheek regions (in two sides), which are usually
considered as non-rigid regions, own about more than 20%
importance, showing that there also exists much informa-
tion which is critical to recognition conveyed in non-rigid
facial regions. In addition, the weights of 3D facial regions
are quite different from those of 2D based ones, especially
in the nose region as compared with Fig.2(b). This kind of
differences may be caused by the different data properties
between 2D and 3D.

Figure 6. Images (1, 3, 5) of normal components X, Y and Z divid-
ed by 6×6 patches, images (2, 4, 6) of their corresponding weights
of patches learned from Bosphorus database (LNPs Q2,16). Dark-
er patches indicate lower weights, while brighter ones indicate
higher weights.

To evaluate the effectiveness of patch-weights, we com-
pared the performance of un-weighted sparse representation
classifier (SRC) and weighted sparse representation classi-
fier (W-SRC) (Table 3). Table 3 presents that both F-W-
SRC (learned by FRGC v1.0) and B-W-SRC (learned by
Bosphorus) performance slightly better than SRC except
LNPX(Q2,16) + F-W-SRC. For the final fusion score, the
improvement was about 1% and 2% by F-W-SRC and B-
W-SRC respectively. These results demonstrate W-SRC is
efficient. On the other hand, since Bosphorus contains of in-
formative models with different expressions it is thus more
helpful than FRGC v1.0 to identify the expression models
of FRGC v2.0.



Approches Rank-one scores
(1) LNPX(Q2,16)+ SRC 87.01%
(2) LNPX(Q2,16) + F-W-SRC 86.63%
(3) LNPX(Q2,16) + B-W-SRC 88.62%
(4) LNPY(Q2,16)+ SRC 86.13%
(5) LNPY(Q2,16) + F-W-SRC 88.40%
(6) LNPY(Q2,16) + B-W-SRC 88.88%
(7) LNPZ(Q2,16) + SRC 88.43%
(8) LNPZ(Q2,16) + F-W-SRC 88.65%
(9) LNPZ(Q2,16) + B-W-SRC 90.41%
(10) LNPXYZ(Q2,16) + SRC 92.60%
(11) LNPXYZ(Q2,16) + F-W-SRC 93.59%
(12) LNPXYZ(Q2,16) + B-W-SRC 94.61%

Table 3. Comparison of rank-one recognition improvements on the
FRGC v 2.0 database using patch weights learned from FRGC
v1.0 (F-W-SRC) and Bosphorus (B-W-SRC) databases respective-
ly.

4.3.4 Experiment IV: Comparison to the State-of-art

In Table 4, MS-LNPs was achieved by combining the result-
s of three scales: Q1,8, Q2,16 and Q3,24. The performance
of each multi-scale normal component (13), (14) and (15)
(Table 4) is better than their corresponding single scale (3),
(6) and (9) (Table 3). The fusion of three multi-scale nor-
mal component (16) performances better than each single
normal component (13), (14) and (15). These results prove
that multi-scale LNP achieved by fusing results of different
single scale is a promising way for improved performance.

Approches Rank-one scores
(1) Abate et al. (1024 2D+3D) [1] 92.2%
(2) Chang et al. [8] 91.9%
(3) Cook et al. [11] 92.9%
(4) Mian et al. [21] 93.5%
(5) Mian et al. [20] 96.2%
(6) Mian et al. [6] 93.78%
(7) Huang et al. [15] 96.1%
(8) Huang et al. [14] 97.2%
(9) Kakadiaris et al. [16] 97.0%
(10) Faltemier et al. [12] 97.2%
(11) Alyuz et al. [7] 97.5%
(12) Queirolo et al. [27] 98.4%
(13) MS-LNPX + B-W-SRC 92.0%
(14) MS-LNPY + B-W-SRC 94.3%
(15) MS-LNPZ + B-W-SRC 94.2%
(16) MS-LNPXYZ + B-W-SRC 96.3%

Table 4. Rank-one recognition rates on the FRGC v2.0 database.

Compared with the works in the literature, the rank-one
recognition rate of the proposed method (MS-LNPXYZ +
B-W-SRC) outperforms (1)-(7), and it is slightly below (8)-
(12). It should be emphasized that compared with the tasks
(1) and (9), which made use of normal information, (1)
used the difference normal maps as similarity measuremen-
t yet did not provide competitive results on the complete
FRGC v2.0 dataset; while (9) used the wavelet coefficients
as similarity measurement on both normal map and geom-
etry map, and the wavelet filter lead to high computational
cost. Moreover, there was no reported results only based on
normal map.

4.3.5 Experiment V: Comparison of degradation influ-
enced by facial expression

According to the experimental protocol used in [21] and
[14] [15], we divided all the probe faces into two subsets
based on their original labels of expressions. The first sub-
set consists of only neutral faces, while the second is made
up of only non-neutral faces. We made a fair comparison
with two works in the literature, i.e. Mian et al. [21] and
Huang et al. [14] [15], and the performance degradation,
reflected by the difference between accuracies of subset I
and II , is utilized to analyze the robustness to facial ex-
pression variations. When using the proposed normal based
descriptor along with the original SRC, it achieves a 6.6%
drop, which is lower than the 12.3% in [21] and as good as
that in [15], showing that the proposed facial feature has a
good tolerance to facial expressions. This result is further
improved by the spatial weights learned from the FRGC
v1.0 and Bosphorus datasets, and the weights based on the
Bosphorus dataset achieves the lowest degradation of 3.8%,
highlighting that the proposed weighting strategy improves
the robustness to the variations of facial expression as well.

Subset I Subset II Degradation
(1) Mian et.al [21] 99.0% 86.7% 12.3%
(2) Huang et.al [15] 99.1% 92.5% 6.6%
(3) Huang et.al [14] 99.0% 94.9% 4.1%
(4) MS-LNPXYZ + SRC 97.1% 90.5% 6.6%
(5) MS-LNPXYZ + F-W-SRC 97.8% 92.5% 5.3%
(6) MS-LNPXYZ + B-W-SRC 98.0% 94.2% 3.8%

Table 5. Comparing the degradations of rank-one score influenced
by facial expression on the FRGC v 2.0 database. (Subset I: neutral
probes, Subset II: non-neutral probes.)

5. Conclusions and future work
This paper presented an effective approach for 3D face

recognition. We first proposed a novel 3D facial surface
shape descriptor, named the Multi-Scale Local Normal Pat-
terns (MS-LNPs), which encodes three normal components
nx, ny and nz as local pattern histograms at different s-
cales. The effectiveness of the proposed shape descrip-
tor was demonstrated by our experimental results showing
that: 1) The feature extracted by LBP from original range
faces are not so discriminative as local normal patterns (L-
NPs), which means normal information is more distinctive
than range information after local encoding; 2) Original
normal information is not so discriminative either, which
highlight the necessity of the encoding method; 3) Sparse
representation-based classifier (SRC) is more effective than
the Chi-square distance based method (Experiments 2); 4)
The average quantification learning based weights of differ-
ent local patches are helpful to improve the final accuracy;
5) Evaluated by the complete FRGC v2.0, our method dis-
plays a rank-one recognition rate of 96.3% which is com-
parable to the best performance in the literature. 6) The



proposed approach is very insensitive to facial expression
variations.

In our further work, we will continue to investigate other
methods to encode normal information, and to explore the
possible contribution of the proposed method to be com-
bined with other existing features. Furthermore, more ex-
perimental results will be demonstrated to show the useful-
ness of the proposed approach in face verification.
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