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Abstract

In the theory of differential geometry, surface normal, as a first order surface differential quantity, determines the

orientation of a surface at each point and contains informative local surface shape information. To fully exploit this

kind of information for 3D face identification, this paper proposes a novel highly discriminative facial shape descrip-

tor, namely Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP). Given a registered facial range

image, three components of normal vectors are first estimated, leading to three normal images. Then, each normal

image is encoded locally to Local Normal binary Patterns (LNP) at different scales. To utilize spatial information of

facial shape, each normal image is divided into several patches, and their LNP histograms are computed and concate-

nated according to facial configuration. Finally, each original facial surface is represented by a set of LNP histograms

including both global and local cues. Moreover, to make the proposed solution robust to the variations of facial ex-

pressions, being subtle, prototypical or exaggerated, we propose to learn the weight of each local patch under a given

encoding scale and normal component. Based on the learned weights and the weighted LNP histograms, we formulate

a Weighted Sparse Representation-based Classifier (W-SRC). In contrast to the overwhelming of 3D FR algorithms

which were only benchmarked on the FRGC v2.0 dataset, we carried out extensive experiments on the FRGC v2.0,

Bosphorus, BU-3DFE and 3D-TEC databases, thus enclosing 3D face data captured under different scenarios through

various sensors and depicting in particular different challenges with respect to facial expressions. The experimental

results show that the proposed approach consistently achieves competitive rank-one identification rates over those

datasets despite their heterogeneous nature, and demonstrates thereby its effectiveness and its generalization skills.

Keywords: facial surface normal, local normal patterns (LNP), weighted sparse representation, 3D face recognition,

identical twins

1. Introduction

Biometric systems are dedicated for identifying human beings from their own unique hard or soft physiological

attributes such as iris, face, fingerprint, hand palm, hand vessel, gait, gender, etc. Among these attributes, face has

proved to be one of the most popular and promising biometric modalities mainly due to the nature of human perception

and the non-intrusiveness of face data acquisition. Although intensity image based 2D face recognition (FR) systems

have provided solutions to achieve high performance under constrained conditions, the variations, especially caused

by illumination and pose, which typically occur under uncontrolled environment, are still its big block [1]. With the

advent of 3D sensors, it is widely expected that 3D face scans, in providing geometrical information of facial surfaces,

open a new avenue to handle those unsolved issues in 2D. As such, 3D face recognition (FR) has attracted increasing

attention in recent years [2, 3].
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1.1. Related work

A typical 3D FR algorithm comprises the following major components although they are strongly interwoven

each other [4]: 3D face landmarking, 3D face registration, the extraction of facial features along with the design of

a matching scheme which closely depends upon the chosen facial features. Automatic 3D face landmarking is to

automatically locate some key facial fiducial points, e.g., nose tip, inner eye corners, etc., which are instrumental

for face cropping, face alignment and pose normalization. The most challenging issue of automatic landmarking is

to tolerate the disturbance caused by arbitrary variations of facial expression, pose, or occlusion [5], and existing

landmarking techniques are mainly based on the analysis of facial surface curvatures, shape index values, the facial

symmetry central profile or depth information [6, 7, 8]. 3D face registration is to align 3D face scans on a common

coordinate system so that the matching of facial features can be carried out in a consistent way. Popular methods for

the registration of 3D face scans are ICP-based which consists of minimizing in an iterative way the distance of two

3D point clouds [9, 10] although they are reputed to be computationally expensive. The extraction of facial features

is to generate a discriminating facial representation which should comprehensively describe each 3D face scan for the

latter stage of matching. As all human faces are similar to each other in terms of configuration whereas a 3D face scan

accurately captures the geometrical shape of the underlying 3D facial surface, thereby making it likely more sensitive

to facial expressions in comparison with 2D facial images, the design of a discriminating facial feature which stays

robust to facial expressions is a critical issue in 3D FR. A number of approaches has been proposed in the literature,

including facial curves [11], geometry and normal maps [12], tensor based representations [13], iso-geodesic stripes

[14], Multi-Scale Local Binary Pattern (MS-LBP) Depth maps and Shape Index (SI) maps [15], Multi-Scale extended

Local Binary Pattern (MS-eLBP) maps [16] etc. Other essays try to explicitly account for facial expression variations.

An original tentative was made by Bronstein et al. [17] who assumed that facial expressions can be modeled as

isometries of the facial surface and proposed a facial expression invariant canonical form. However, their assumption

proves to be inexact, especially in the presence of exaggerated facial expression [18]. A far more popular approach

observes that facial expressions introduce facial distortions but there are still relatively stable facial regions, e.g.,
forehead, nose region, from which expression robust features can be extracted [19, 20]. Chang et al. [21] selected

three regions around the nose for 3D face matching whereas Faltemier et al. [9] extended the later number to 28 small

regions on the face. However, automatic detection and segmentation of facial surface into rigid and mimic regions is

still problematic [8, 20].

The overwhelming majority of 3D FR algorithms proposed thus far in the literature is evaluated on the FRGC v2.0

dataset [2] which has become de facto the standard benchmark for 3D FR algorithms. Very high performance, up to

99% rank-one recognition rate [22], was reported on that dataset. However, although FRGC v2.0, with its 4007 3D

face scans from 466 subjects, is the largest public 3D face dataset so far known in the literature, all its scans were

captured in frontal pose position under controlled lighting conditions, and less than half of them depict only a limited

number of facial expressions, e.g., happiness, surprise, etc. 3D face scans captured from uncooperative subjects

in real-life applications can feature other challenges, i.e. missing data due to arbitrary pose, external occlusions, and

uncountable other types of facial expressions, being subtle, prototypical or exaggerated. As a result, 3D FR algorithms

with high performance on FRGC v2.0 can vastly degrade under other settings as revealed the recent studies on the

3D Twins Expression Challenge (3D-TEC) database [23, 24]. 3D-TEC stages a scenario of distinguishing 107 sets

of identical twins through 3D face scans, each subject depicting a neutral and a smiling facial expressions. This is

a very challenging scenario for 3D FR systems because of the strong similarities between the 3D facial surfaces of

twins in addition to the traditional interference factors like facial expression variations. Vijayan et al. [23] evaluated

the performance of four state-of-the-art 3D FR algorithms on the 3D-TEC dataset. They found that some algorithms

performed very well on FRGC v2.0 but vastly degraded on 3D-TEC, especially in the joint presence of disturbing

factors, i.e. strong inter-class facial similarities and intra-class variations of facial expressions. Their results suggest

that benchmarking 3D FR algorithms on FRGC v2.0 is certainly necessary but not sufficient to ensure the same

performance and robustness with respect to the challenges of real-life applications, including in particular uncountable

facial expressions, leading to subtle, moderate and exaggerated facial surface deformations.

1.2. Motivations and the proposed approach

In this paper, we target the challenge of facial expressions in 3D FR and propose a discriminative facial surface

representation and an expression-robust method to handle expression variations. Specifically, we propose a novel
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facial shape descriptor, namely Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP), which rep-

resents the local facial shape by encoding their three normal components: x, y, and z as binary patterns in a multi-scale

way, respectively. An input facial surface can then be represented as a certain number of local normal patterns based

maps or histograms of Local Normal Patterns (LNP).

As we know, surface curvatures [7, 25, 26] and shape index values [15, 27, 28] have been widely investigated

for facial surface representation and characterization. However, the surface normal, which determines (at each point)

the orientation of a facial surface, has not been well explored in terms of 3D face representation 1. Abate et al.
[31, 32, 33, 34] introduced normal maps to describe facial surfaces. But this direct use of normal information in

the holistic way did not achieve satisfying results. Gokbert et al. [35] used surface normal variance at each pixel

location as a distance measure between face images and reported a rank-one score of 87.8% on the whole FRGC v2.0

database, while this performance vastly degraded on the 3D-TEC database [23]. Kakadiaris et al. [12] proposed to

extract wavelet coefficients from normal and geometry maps for the computation of similarity, and reported a rank

one recognition rate of 97% on the FRGC v2.0 database; however, the wavelet transform along with the fitting of

the annotated deformable model is quite computationally expensive. Inspired by the competitive performance and

computational efficiency of local binary patterns (LBP) for texture classification and 2D FR [36, 37, 38], we propose

to encode surface normal information, namely x, y, and z component normal images, in a local manner to generate

histograms of LNP, in a similar way that LBP does for texture image description. The idea behind it lies in that

different facial shapes can be described by different LNP under given encoding scales and normal components, which

makes LNP a very discriminative descriptor to recognize 3D faces and even to distinguish identical twins.

To pursue expression-robust 3D face recognition, we have seen that the popular method consists of choosing

rigid facial regions, e.g., the nose and forehead regions [9, 21], for the purpose of 3D face matching. However,

the segmentation of a 3D facial surface into relatively rigid and elastic regions is problematic. Furthermore, such

an approach also tends to ignore the elastic facial regions which also bear significant discriminating information.

In this paper, we consider another alternative and propose to find the average quantification weights for all facial

regions or facial physical components, e.g., eyes, nose, mouth, etc., according to their discriminating power in 3D

face recognition. This kind of quantification weights of local patches has been investigated in 2D FR and several

works [37, 39, 40] demonstrated its effectiveness (see Fig. 1 (a) and (b) for an example). Interesting enough, to the

best of our knowledge, the corresponding strategy in 3D using the weighting of facial components has not been studied

yet for the purpose of expression-robust 3D FR . As shown in Fig. 1 (c) and (d), in this paper, we will show that the

weights associated with 3D face components are largely different from those of their 2D counterparts, especially in

the regions of nose and mouth. These weights can be learned from a given training set in the training phase (see Fig.

2). The learned patch weights then can be used to build a weighted sparse representation model and compute the

weighted reconstruction errors, leading to a Weighted Sparse Representation-based Classifier (W-SRC).

The main contributions of this paper can be summarized as follows:

1. We introduce a new 3D facial representation based on Multi-Scale and Multi-Component Local Normal Patterns

(MSMC-LNP) for facial shape description. MSMC-LNP describes the micro-structure of facial normal information

in multiple scales and multiple normal component channels. The extensive experiments show that the proposed LNP

based facial representation is more discriminative than both the raw normal information and the encoded range image,

i.e., Local Shape binary Patterns (LSP) [41] (see Tab. 3). We also show that the fusion of both multiple scales and

multiple components is a helpful way to improve the final performance and demonstrate its competency on 3D face

identification as well as the challenging issue of recognizing expressive identical twins.

2. A learning-based strategy is proposed to find out the quantification weights of local patches of 3D facial surfaces

in terms of discriminating power. Given a training database, the patch weights associated with different facial regions,

encoding scales, and normal components are learned by normalizing the patch matching scores. Those scores are

computed by running the sparse representation-based classifier (SRC) over MSMC-LNP features of local patches.

The experimental results show that the weights associated with these local patches in 3D are quite different from

those of their 2D counterparts, especially in the nose region, thereby highlight the fact that 3D and 2D face data bear

different facial information which can be further explored in a multimodal face recognition scenario.

1Note that, recently, normal constraint based surface registration for 3D FR methods such as [29, 30] have achieved very high performance on

FRGC v2.0. In this paper, we focus on extracting normal based facial descriptor for 3D FR.
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(a)                                 (b)                 (c)                                (d)
Figure 1: Illustration of patch weights for 2D and 3D face recognitions: (a-b) a 2D face image and its corresponding patch weights [37]; (c-d) a 3D

face depth image and its corresponding patch weights learned by our method. All images are split to 6 × 6 local patches. Darker patches indicate

lower weights, while brighter ones indicate higher weights.

3. Using the learned patch weights along with the proposed MSMC-LNP feature, a weighted sparse representation-

based classifier (W-SRC) is formulated to account for the different sensitivities of facial components to facial expres-

sions, making the proposed 3D FR algorithm both discriminating enough for distinguishing identical twins and robust

enough to tolerate various facial expressions. In particular, we formally establish that a weighted combination of

SRCs amounts to directly weighting the corresponding feature vectors of those SRCs.

4. Extensive experiments were carried out using various 3D face datasets, including FRGC v2.0, BU-3DFE,

Bosphorus and 3D-TEC, to benchmark the effectiveness and the generalization skills of the proposed approach with

respect to 3D face scans captured under different scenarios and conditions with different 3D sensors, depicting in

particular different challenges in terms of facial expressions. This is in clear contrast with the overwhelming majority

of 3D FR algorithms so far proposed in the literature which are only evaluated on FRGC v2.0 with 3D face scans

depicting a limited number of facial expressions. The experimental results demonstrate the effectiveness and the

generalization skills of the proposed approach which consistently displays competitive rank-1 recognition rates over

those datasets of different nature.

This paper integrates our preliminary work in [42] but significantly extends that work. First, we carefully re-

formulate here the weighted sparse representation-based classifier (W-SRC) and formally establish that a weighted

combination of SRCs amounts to directly weighting the feature vectors of those SRCs. Then, we extensively evaluate

the robustness of the proposed system with respect to a rich set of facial expressions, using in particular the BU-3DFE

database which encloses expressive 3D face scans depicting the six prototypical expressions in different intensities,

as well as the Bosphorus database which features both the six prototypical expressions and subtle facial expressions

through action units. This is in clear contrast with the overwhelming majority of 3D FR algorithms which were only

benchmarked over FRGC v2.0 depicting merely a limited number of facial expressions. Finally, we validate the dis-

criminative power of the proposed feature and the robustness of the proposed approach to facial expressions in the

challenging issue of distinguishing expressive identical twins using the 3D-TEC database.

The reminder of the paper is organized as follows. The framework overview of the proposed system is presented in

Section 2. Section 3 introduces the proposed Local Normal Patterns (LNP) based facial descriptor. Section 4 describes

the weighted sparse representation-based classifier. In section 5, we present the experimental and algorithmic settings

and discuss the experimental results. Section 6 concludes the paper.

2. Overview of the Proposed Approach

As illustrated in Fig. 2, the framework of the proposed approach consists of two phases: i.e. a training phase

and a testing phase. Before the training and testing phases, each raw 3D face scan is preprocessed, e.g., spike and

noise removing, holes filling, nose tip localization, face cropping and alignment, to generate a range image with a

predefined size. The training process is carried out to learn on a predefined training set the quantitative weights of
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facial physical components in terms of discriminating power and robustness to facial expression variations. It includes

three procedures: feature extraction, identification and score normalization within different patches. They are shortly

summarized as follows:

Patch Features: Multi-Scale and Multi-ComRange

Training P

Normal Estimation Normal Encoding
Images

Training
Set

…

iPatch Weights (3 Encoding
Face Preprocessing        
& Face Alignment  

Global Features: Multi-Scale and Multi-ComRange
Images

Normal Estimation Normal Encoding 

…

g
Testing

Set

Testing Ph

mponent Local Normal Patterns 

hase

g Normal Representation 
SRC

Normalized
Patch Scores

3 Scales & 3 Components…

g Scales & 3 Normal Components)

mponent Local Normal Patterns Score 
Fusion

…

Normal Representation 
W-SRC

Fusion
&

Final
Decision

Weighted
Features

ase

Figure 2: Overview of the proposed approach.

(1) Patch feature extraction. This procedure consists of three steps: (a) facial normal estimation; (b) facial normal

encoding; (c) facial normal representation. Specifically, given a raw 3D face scan, we first launch the preprocessing

pipeline (see Sec. 5.2) to normalize the range image to an m × n × 3 matrix (i.e., x, y and z coordinates). Based on

the range image, we estimate its three normal components (x, y, and z) by the local plane fitting method (see Sec.

3.1). Each normal component map is coarsely split into several local patches (e.g. 3 × 3); then each of these local

patches is encoded as LNP with multiple scales, giving birth to multi-scale and multi-component local normal patterns

(MSMC-LNP) to comprehensively describe the shape of each patch.

(2) Patch-based identification. Given a patch, an encoding scale, and a normal component, the corresponding LNP

is extracted and fed into the sparse representation-based classifier (SRC) to generate a rank-one recognition rate using

the training set.

(3) Patch score normalization. The patch scores, i.e. rank-one recognition rates, of different encoding scales and

normal components are further normalized as the corresponding patch weights. The importance of facial physical

regions in terms of discriminating power and robustness to facial expression variations can thus be measured by those

quantitative patch weights.

During the testing phase, given a preprocessed range image in the testing set, we first compute the MSMC-

LNP features over all the patches as in procedure (1) in the training phase. The global MSMC-LNP features are then

obtained by simply stacking all these patch based MSMC-LNP features according to the holistic configuration of facial

surfaces (see Sec. 3.3). Based on the patch weights learned in the training phase, weighted sparse representation (W-

SRC) is formulated as seeking the sparse solution of the sum of the weighted patch based sparse representation (see

(13) in Sec. 4). Then, W-SRC carries out face identification by finding the minimal weighted reconstruction residuals.

(see (14) in Sec. 4). The final similarity measurement of MSMC-LNP for decision making is computed using the

score level fusion which combines the matching scores of three encoding scales and three normal components through

simple sum rule.
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3. Local Normal Patterns (LNP) based Facial Descriptor

3.1. Facial Normal Estimation

To highlight local variations of facial surfaces, recall that we make use of their normal information instead of the

original point-cloud or range images. Existing normal estimation methods can be roughly classified into optimization

based methods (i.e., local fitting methods) and averaging methods [43].

The basic idea of optimization based methods is as follows: 1) the normal vector on a given point can be calculated

as the normal vector of a plane or quadratic surface which it belongs to; 2) the underlying plane or surface can be

estimated by fitting it to the local neighboring points around that given point; 3) the fitting problem then can be

solved by minimizing a cost functional penalizing a certain criterion, e.g., the distance of the neighboring points to the

searched local plane (see Fig. 3 (a)). The averaging methods estimate the normal vector of a given point by computing

a weighted average of the normal vectors of the triangles in its one-ring neighbors, the weights being the inverse ratios

of the areas or the surrounding angles of the triangles in its one-ring neighbors (see Fig. 3 (b)).

p q1

q2q3q4

q5

q6 q7 q8

n

S

(a)

q1

q2

q3

q4
q5

n

p

(b)
Figure 3: Illustration of two approaches for normal estimation: (a) a plane is fitted to a vertex p and its neighbors; (b) the normal vectors of triangles

in one-ring of p are averaged.

The optimization-based methods can be applied to 3D point-clouds and triangular meshes while the averaging

methods can only work on triangular meshes. Both types of methods are competent for normal calculation. In this

paper, 3D face scans from various datasets were captured under different conditions and scenarios with divers 3D

sensors, resulting in a diversity of data formats. As a result, optimization-based method is adopted for the estimation

of normals.

Specifically, given a facial range image P represented by an m × n × 3 matrix:

P = [pi j(x, y, z)]m×n = [pi jk]m×n×{x,y,z}, (1)

where pi j(x, y, z) = (pi jx, pi jy, pi jz)
T , (1 ≤ i ≤ m, 1 ≤ j ≤ n, i, j ∈ Z) represents the 3D coordinates of the point pi j. Let

its unit normal vector matrix (m × n × 3) be

N(P) = [n(pi j(x, y, z))]m×n = [ni jk]m×n×{x,y,z}, (2)

where n(pi j(x, y, z)) = (ni jx, ni jy, ni jz)
T , (1 ≤ i ≤ m, 1 ≤ j ≤ n, i, j ∈ Z) denotes the unit normal vector of pi j. As

described in [44], the normal vector N(P) of range image P can be estimated using the local plane fitting method. That

is to say, for each point pi j ∈ P, its normal vector n(pi j) can be estimated as the normal vector of the following local

fitted plane:

S i j : ni jxqi jx + ni jyqi jy + ni jzqi jz = d, (3)

where (qi jx, qi jy, qi jz)
T represents any point within the local neighborhood of point pi j and d = ni jx pi jx + ni jy pi jy +

ni jz pi jz. In this work, a neighborhood of 5 × 5 window is used. To simplify, each normal component in equation (2)

6



can be represented by an m × n matrix:

N(P) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N(X) = [nx

i j]m×n,

N(Y) = [ny
i j]m×n,

N(Z) = [nz
i j]m×n.

(4)

where ‖(nx
i j, n

y
i j, n

z
i j)

T ‖2 = 1.
Fig. 4 shows a sample range image extracted from the 3D-TEC database and its estimated three normal component

matrices (images). As we can see from that figure, the normal component images contain more informative geometric

information than their corresponding range image which is quite smooth. In particular, one can see that the geometric

shape details around the eyes, mouth and forehead regions are quite well highlighted.

(a)                                 (b)                                (c)                              (d)

Figure 4: Illustration of facial normal estimation: (a) the original range image, (b-d) its normal images of component x, y and z (the sample comes

from the 3D-TEC dataset).

3.2. Facial Normal Encoding

Inspired by the discriminative power and computational simplicity of LBP for 2D texture description, we propose

to encode each normal component, x, y, and z, respectively, as local normal patterns (LNP) to further highlight local

shape variations. Thanks to the matrix form of these normal components as in equation (4), the encoding of these local

shape variations can be carried out in a similar way as LBP encodes 2D texture images. Specifically, the value of each

point in a normal component is compared with its neighbors in a pre-defined neighborhood. A local neighborhood

is defined as a set of sampling points evenly spaced on a circle which is centered at the pixel to be labeled, and the

sampling points that do not fall within the pixels are interpolated using bilinear interpolation, thus allowing for any

radius and any number of sampling points in the neighborhood. Fig. 5 shows two examples of neighborhood of LNP,

where the notation Qn,m denotes a neighborhood of m sampling points on a circle of radius of n.

After subtracting the central pixel value, the resulting strictly negative values are encoded with 0 and the others

with 1; a binary number is thus obtained by concatenating all these binary codes in a clockwise direction starting from

the top-left one and its corresponding decimal value is used for labeling. The decimal numbers which result from such

a process are referred to as local normal patterns (LNP). Formally, given a point pi j, its normal component noted as

nk
i j(0), the derived LNP decimal value is:

LNP(Qn,m(pi j)) =

m−1∑
q=1

t(nk
i j(q) − nk

i j(0))2q, (5)

where t(x) = 1, if x ≥ 0 and t(x) = 0, if x < 0.
Given a normal component, LNP(Qn,m) thus encodes local normal variations around each point as a decimal value,

denoted as e([nk
i j]m×n), k ∈ {x, y, z}. Fig. 6 gives an example of LNP(Q1,8) on the three facial normal components of

the same subject.
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(a) (b)

Figure 5: Examples of the neighborhood of LNP: (a) Q1,8 and (b) Q2,16.

(a)                       (b)                     (c)                     (d)                     (e)                      (f)

Figure 6: Illustration of facial normal encoding: (a) to (c), normal images of component x, y and z; (d) to (e), their corresponding LNP maps using

the neighborhood Q1,8.

LNP encodes the local shape variations at point level. In order to characterize the shape of a local region,

histogram-based statistics is computed and used as facial feature vector. For a given normal component k ∈ {x, y, z},
the histogram of the encoded normal component e([nk

i j]m×n) can be defined as:

H =
∑
i, j

I{e([nk
i j]m×n) = r}, r = 0, . . . ,R − 1, (6)

where r is the encoded decimal number, and R − 1 is the maximum value of local normal patterns (LNPs) given a

neighborhood Qn,m, e.g., for Q1,8,R = 28 = 256. I{A} = 1, if A is true, else I{A} = 0. This histogram describes the

local micro-patterns of a given normal component over the whole face model.

3.3. Facial Normal Representation
To utilize the spatial information of 3D face scans, each facial normal component, x, y, and z, can be further

divided into several patches, from which LNP histograms H are extracted and then concatenated to form a global

histogram G which thus captures the facial configuration of the encoded facial normal feature (see Fig. 7). Finally,

the original facial surface is described by three global feature histograms Gx,Gy, and Gz at a given encoding scale.

4. Weighted Sparse Representation-based Classifier

Once 3D face scans described by their respective facial normal representations, a proper classifier is needed for the

purpose of 3D face identification. In this work, we introduce a Weighted Sparse Representation-based Classifier (W-
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Facial Normal Image

Histogram o

Histogram of LNP
for the whole face

of LNP extracted from each patch

Figure 7: Illustration of facial normal representation: histogram of LNP.

SRC) which is described in this section. We first introduce 3D face subspace based sparse representation model and its

corresponding SRC. Then, we theoretically formulate a weighted sparse representation model and its corresponding

W-SRC to account for the patch weights which are learned using a training set to quantify the relative discriminating

power of each facial component. We demonstrate in particular that solving a weighted SRC amounts to computing a

single SRC with global feature vectors in stacking weighted feature vectors of each patch.

4.1. 3D Face Subspace and Sparse Representation-based Classifier
A common assumption in 2D FR is the 2D face subspace model which assumes that well-aligned frontal face

images under different lighting conditions and various facial expressions, lie close to a special low-dimensional linear

subspace spanned by sufficient training samples from the same subject. Using such an assumption, Wright et al.
[45] proposed a sparse representation model and its corresponding SRC for robust 2D FR. In this work, we make an

extension of this assumption to the 3D case, and assume that well-aligned frontal 3D face scans under different facial

expressions approximately lie close to a special low-dimensional linear subspace spanned by sufficient training 3D

face scans from the same subject. We call this assumption as 3D face subspace model. Formally, it can be formulated

by the following equation:

y ≈ α1v1 + α2v2 + ... + αnvn. (7)

That is, given ni training samples of i-th subject, [vi,1, vi,2, . . . , vi,ni ] ∈ R
m×ni ,, any test sample y ∈ R

m of the i-th
subject can be represented, according to (7), as:

yi ≈ αi,1vi,1 + αi,2vi,2 + ... + αi,ni vi,ni , (8)

where αi, j ∈ R, j = 1, 2, . . . , ni.
Note that the most common experimental setting in 3D FR is that there is only one training sample per each

subject in the the gallery. Therefore, without occlusion, the only difference between two well-aligned frontal 3D face

scans from the same subject is the local shape distortion caused by expression variations. This problem of insufficient

training samples along with the shape distortion caused by expression variations introduces a new model error term,

denoted as εi ∈ Rm. Thus, model (8) can be modified as:

yi ≈ αi,1vi,1 = αi,1vi,1 + εi, (9)

where yi ∈ R
m, vi,1 ∈ R

m and αi,1 ∈ R represent a probe face, a gallery face from the same subject and their linear

scalar factor respectively.
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Using (9), sparse representation model and its corresponding SRC for 3D FR can be formulated as follows. Given a

gallery set with n 3D face scans, each of which belongs to one subject, we define the dictionary as D .= [v1, v2, . . . , vn] ∈
R

m×n. Then for any probe y ∈ Rm, we have

y = Dx + ε, (10)

where x = [0, . . . , 0, α j, 0, . . . , 0]T ∈ Rn is the coefficient vector whose entries are zero except the one associated with

the j-subject. Sparse coefficients x in (10) can be solved by the following l0 minimization problem:

x̂ = arg min
x
‖x‖0 s.t. ‖y − Dx‖22 ≤ T, (11)

where T = ‖ε‖22.

In practice, we employ Orthogonal Matching Pursuit (OMP) [46] algorithm to solve (11) and compute the recon-

struction residuals:

ri(y) = ‖y − Dδi(x̂)‖22, i = 1, 2, . . . , n. (12)

where δi is a characteristic function which selects the coefficient associated with the i-th gallery. Finally, the index of

minimal ri(y) delivers the identity of the probe y.

4.2. Weighted Sparse Representation-based Classifier

Assume now that each face scan is divided into K different patches. Denote wk as the learned weight for patch k.

Using the MATLAB convention:

[x1; x2]
.
=

[
x1

x2

]

the feature vector vi can be rewritten as

vi = [vi1; vi2; . . . ; vik; . . . ; viK],

where vik ∈ R(m/K)×1, and the dictionary D can be denoted as

D = [D1; D2; . . . ; Dk; . . . ; DK],

where Dk = [v1,k, v2,k, . . . , vi,k, . . . , vn,k], and a probe y can be denoted as

y = [y1; y2; . . . ; yk; . . . ; yK],

where yk ∈ R(m/K)×1, k = 1, 2, . . . ,K.

Eq. (11) can then be rewritten as the following weighted sparse representation model:

x̂ = arg min
x
‖x‖0 s.t.

K∑
k=1

wk‖yk − Dk x‖22 ≤ T, (13)

and the corresponding weighted reconstruction residuals is

ri(y) =

K∑
k=1

wk‖yk − Dkδi(x̂)‖22, i = 1, 2, . . . , n. (14)

To solve eq. (13), we notice that it equals to solve

x̂ = arg min
x
‖x‖0 s.t.

K∑
k=1

‖wkyk − wkDk x‖22 ≤ T. (15)

We denote

W(D) = [w1D1; w2D2; . . . ; wK DK],
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and

W(y) = [w1y1; w2y2; . . . ; wKyK].

Then eq. (15) equals to

x̂ = arg min
x
‖x‖0 s.t. ‖W(y) −W(D)x‖22 ≤ T. (16)

Eq. (16) means that the weighted sparse representation model as expressed in Eq. (13) amounts to solving a single

SRC with global feature vectors in simply stacking weighted features of the corresponding patches. Eq. (16) can be

solved by the OMP algorithm [46]. Once determined the sparse representation coefficient x̂ of Eq. (16), weighted

reconstruction residuals in Eq. (14) can be computed. Then the minimal ri(y) can be used to determine the identity of

y.We call this sparse representation-based classifier enhanced by spatial weights as Weighted Sparse Representation-

based Classifier (W-SRC) in the subsequent.

5. Experiments

Recent studies [23] show that 3D FR algorithms with very high performance on the de facto standard benchmark,

namely FRGC v2.0, can vastly degrade when evaluated on expressive 3D face scans captured under different scenario.

As a result, we decide to evaluate the effectiveness and the generalization skills of the proposed approach using

various datasets, namely FRGC, BU-3DFE, Bosphorus and 3D-TEC, with 3D face scans depicting a rich set of facial

expressions, being subtle, prototypical and exaggerated. Depending on the underlying dataset, those expressive 3D

face scans were captured under different scenarios and conditions, e.g., 3D sensors, lighting conditions, and thus offer

different levels of challenge with respect to facial expression variations. In this section, we first introduce the different

datasets and describe their particularity, then present the different experimental settings aiming to highlight the various

facets of the proposed approach and finally discuss the experimental results.

5.1. Databases and Preprocessing

In our experiments, three databases, namely FRGC v1.0 [2], BU-3DFE [47] and Bosphorus [48], are used as

training sets to learn the patch weights respectively, while four databases, the BU-3DFE, Bosphorus, FRGC v2.0 [2]

and 3D-TEC [24] are used as testing sets for cross database validation and evaluation. Fig. 8 plots a raw 3D face scan

from each of these databases. They are briefly introduced as follows:

(a)                (b)                  (c)               (d)              (e)

Figure 8: Illustrate of the raw samples of the five databases: (a) FRGC v1.0, (b) FRGC v2.0, (c) Bosphorus, (d) BU-3DFE, (e) 3D-TEC.

• FRGC v1.0: The FRGC v1.0 database (Spring2003) consists of 943 textured 3D face models of 275 subjects

with the neutral expression. The hardware used to acquire these range images is a Minolta Vivid 900 (MV 900)

laser range scanner, with a resolution of 640 × 480.

• FRGC v2.0: The FRGC v2.0 database (Fall2003 and Spring2004) is made up of 4007 textured 3D face models

of 466 subjects with different facial expressions. The same hardware as in FRGCv1.0 is used for data acquisi-

tion, and the resolution of each range image is also 640 × 480. FRGC v2.0 is the largest public 3D face dataset

which encloses 1642 expressive frontal 3D face scans captured under controlled lighting conditions. Although
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FRGC v2.0 has become de facto the standard benchmark for evaluating 3D FR algorithms, in particular be-
cause of its size, it only contains a very limited of facial expressions, including happiness, surprise, disgust,
sadness and others. This is to be compared with uncountable number of facial expressions which can occur in
real-life applications under uncontrolled conditions. As a result, a 3D FR algorithm with high performance on
FRGC v2.0 does not guarantee a same level of performance on other 3D face scans captured under different
conditions and scenarios. The generalization skills of a claimed robustness to facial expression variations needs
to be checked on representative expressive 3D face scans.

• BU-3DFE: The BU-3DFE database contains 100 subjects (56 females and 44 males), ranging age from 18 to

70 years old, with a variety of ethnic ancestries. Each subject performs seven expressions. Except neutral,

each of the six prototypic expressions (happiness, disgust, fear, angry, surprise, and sadness) includes four

levels of intensity. Therefore, there are 25 instant models for each subject, resulting in a total of 2,500 3D

facial models. The 3D models are captured with a 3D face imaging system named 3DMD digitizer. Each

model is saved as a polygonal mesh with a resolution ranging from 20,000 to 35,000 polygons. This dataset
thus permits to benchmark 3D FR algorithms over 3D face scans depicting prototypical facial expressions of
different intensities, ranging from very subtle to exaggerated, and quantitatively measures the robustness of a
given 3D FR technique in varying the intensities of facial expressions.

• Bosphorus: The Bosphorus database contains 4666 textured 3D face models of 105 subjects in various facial

expressions, action units, poses and occlusions. The 3D models are acquired with a device named Inspeck Mega

Capturor II (IMC II). Each model is saved as a range image with a resolution of 1, 600×1, 200. This dataset thus
permit to benchmarking 3D FR techniques under in controlled environment in close real-life conditions. In this
work, we are interested in Bosphorus for its challenge of facial expressions which contain not only prototypical
expressions but also action units.

• 3D-TEC: The 3D-TEC database consists of 106 pairs of identical twins and a set of triplets, totalizing 214

subjects. Each subject contains two scans: one neutral scan and one smile scan. More details can be found

in [23]. This dataset thus enbales the evaluation of 3D FR algorithms under hard conditions, i.e. the joint
presence of strong inter-class similarities and intra-class expression variations.

All scans of FRGC v1.0, FRGC v2.0, and 3D-TEC databases are preprocessed by using the 3D Face Models Pre-

processing Tool 2 developed by Szeptycki et al. [6]. The preprocessing pipeline contains: spike and noise removing,

holes filling, nose tip localization and face cropping. As introduced in [6], a decision-based median filtering technique

is used to remove spikes, and the holes are detected by searching vertexes having less than 8 neighbors, and filled

by fitting square surfaces. Nose tip is located through a curvature analysis-based coarse grained search and generic

face model-based fine grained search. As an exception, for 3D-TEC, the manually labeled nose tips provided by the

database are used in this work. Finally, each scan is cropped by a sphere centering at nose tip and with a radius of 90

mm. The polygon surface scans in BU-3DFE are first preprocessed as discrete manifold triangular meshes and then

projected as range images by an interpolation algorithm. Then, nose tip localization and face cropping are carried

out for all the scans of BU-3DFE and Bosphrous databases by using the same aforementioned preprocessing tool.

Regarding the registration, we select a face scan with neutral expression in frontal pose for each of the five databases

as a reference model, all the other face scans are then aligned to the reference model using the Iterative Closest Point

(ICP) [49] algorithm. Fig. 9 illustrates several examples of preprocessed face models.

5.2. Experimental Settings
To comprehensively evaluate the proposed approach and highlight its various facets, six experiments are designed.

1) The discriminative power of the proposed LNP descriptor. This experiment aims to compare the proposed LNP

with the raw normal maps and the direct encoding of range images to highlight the effectiveness of the proposed en-

coding to normal maps; 2) The effectiveness of SRC. This experiment aims to highlight the advantage of using sparse

representation-based classifier (SRC) in comparison with the popular Chi-square distance when histogram-based fea-

tures (e.g.,LNP) are involved; 3) The patch weights learning and the effectiveness of W-SRC. This experiment is to

2http://pszeptycki.com/tool.html
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Figure 9: Illustration of several examples of preprocessed face models: first row: models of one subject with different facial expressions (BU-

3DFE); second and third rows: models of one subject with different facial expressions and action units (Bosphorus); forth row: models of one

subject with different facial expressions (FRGC v2.0); last row: two pairs of identical twin models with neutral and simile expressions (3D-TEC).

13



show the learning process of patch weights, to bring out the difference of patch weights between 3D and 2D face

data, and to highlight the effectiveness of the proposed W-SRC in terms of performance improvement; 4) The robust-

ness analysis of the proposed approach with respect to various facial expression variations. This experiment aims to

highlight the behavior of the proposed approach with respect to facial expressions as well as their intensities; 5) The

performance of distinguishing expressive identical twins. This experiment aims to benchmark through 3D-TEC the

proposed 3D algorithm in hard conditions, i.e. the recognition of expressive identical twins with strong inter-class

similarities in presence of intra-class variations introduced by facial expressions. 6) The comparison with the state-

of-the-art. This study compares the proposed approach with the state of the art using the four datasets whenever state

of the art results are available.

The experimental settings are as follows: for the FRGC v1.0 and FRGC v2.0 databases, the first scans of each

subject are used to make a gallery set and the remaining 3D face scans are treated as probe; for the BU-3DFE database,

the neutral scans are used to make a gallery set and the remaining scans are treated as the probe set. For the Bosphorus

database, we focus on the challenge of facial expression variations and select the first neutral scans to make the gallery

set whereas the remaining scans with frontal pose and without occlusions are treated as probe, thus excluding those

scans with pose variations and occlusions which depict different challenges. Table 1 summarizes these protocols, and

presents the sizes of both the gallery sets and probe sets for those four databases.

Table 1: Experimental settings of FRGC v1.0, BU-3DFE, Bosphorus, and FRGC v2.0 databases (O/R means Occlusion and Rotation).

Database Gallery Probe

FRGC v1.0 first scans (267) remaining (571)

FRGC v2.0 first scans (466) remaining (3541)

BU-3DFE neutral scans (100) remaining (2400)

Bosphorus first neutral scans (105) without O/R (1797)

The gallery and probe scans used for 3D-TEC database is based on the standard protocol shown in Table 2 [23].

One person in each pair of twins is arbitrarily labeled as Twin A and the other as Twin B, and four Cases are considered.

In Case I, all the images in the gallery set possess a smiling expression while all the images in the probe set have a

neutral expression. Case II reverses these roles of Case I. In Case III, Twin A smiling and Twin B neutral make up

of the gallery set; while Twin A neutral and Twin B smiling as probe compose the probe set. Case IV reverses these

roles of Case III. As pointed out in [23], theoretically the main challenge would be to distinguish between the probe

image and the image of his/her twin in the gallery. Case III and IV are more difficult than Cases I and II since the

expression of the probe face is different from his/her image in the gallery but is the same as the image of his/her twin

in the gallery.

Table 2: Experimental setting of 3D-TEC database: “A Smile, B Neutral” means that the set contains all images with Twin A smiling and Twin B

neutral [23].

No. Gallery Probe

I A Smile, B Smile A Neutral, B Neutral

II A Neutral, B Neutral A Smile, B Smile

III A Smile, B Neutral A Neutral, B Smile

IV A Neutral, B Smile A Smile, B Neutral

Before encoding the normal information, three normal component matrices or images [nx
i j]m×n, [ny

i j]m×n and

[nz
i j]m×n are resized into 120 × 96 matrices, respectively. Each normal component matrix is divided into 10 × 8, 6

× 6 and 3 ×3 windows corresponding to local patches with sizes of 12 × 12, 20 × 16 and 40 × 32, respectively. Then,

three different scales are considered with all kinds of local patches. This amounts to performing encoding operators

Q1,8, Q2,16, and Q3,24 on local patches with sizes of 12 × 12, 20 × 16 and 40 × 32, respectively. As a result, for

each normal component, we encode it with three different scales, achieving three histograms of local normal patterns

(LNP). In order to reduce the dimensionality of final facial features, the uniform pattern strategy [36] as in LBP is

adopted to decrease the number of bins in each local patch. Finally, from one original 3D face scan, we generate 9
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histograms of local normal patterns (3 normal components and 3 encoding scales) involving both local patch based

and global features. Each histogram representation of the whole face is fed into the classifier to achieve one similarity

score matrix. All the 9 similarity score matrices are then fused through a simple sum rule to compute the final accu-

racy of MSMC-LNP. To solve (11) and (16), the Orthogonal Matching Pursuit (OMP) [46] algorithm with the sparse

number L = 30 of the sparse representation coefficient x̂ is used in all the experiments.

5.3. Experimental Results

5.3.1. Experiment I: The discriminative power of local normal patterns
To highlight the discriminating power of the proposed LNP based facial feature, we compare it with other two

kinds of facial features: i) The raw normal information based facial features Nx, Ny and Nz, by simply stacking

the columns of each normal component matrices ni jx, ni jy and ni jz respectively, and their fusion Nxyz. ii) Local

Shape binary Patterns (LSP), i.e. LBP histograms extracted directly from range images. For a fair comparison,

LNP descriptor used the same encoding parameter (i.e. Q2,16) with LSP to extract the feature vector on each normal

component, respectively noted as LNPx, LNPy and LNPz, and their fusion, i.e. Multi-Component Local Normal

Patterns (MC-LNP). All features were finally fed into a SRC classifier. Once again, the score-level fusion through a

simple sum rule was employed for combining different normal components and encoding scales.

Table 3: Comparison of rank-one scores: original normal, LSP and LNP on the whole FRGC v2.0 database.

Approaches Rank-one Scores

(1) Nx + SRC 67.83%

(2) Ny + SRC 65.62%

(3) Nz + SRC 71.63%

(4) Nxyz + SRC 73.19%

(5) LSP2,16 + SRC 82.07%

(6) LNPx(Q2,16) + SRC 87.01%
(7) LNPy(Q2,16) + SRC 86.13%
(8) LNPz(Q2,16) + SRC 88.43%
(9) MC-LNP(Q2,16) + SRC 92.60%

Table 3 reports the rank-one recognition rates on the whole FRGC v2.0 database. We can see that LNP performs

much better (about 20% higher) than the original normal feature. On the other side, without normal information, the

result based on LSP is about 5% lower than that of each encoded normal component and 10% lower than their fusion,

i.e. MC-LNP(Q2,16). This experiment indicates that the encoded normal information (LNP) is more discriminative

not only than the original normal information, but also than the encoded depth information (LSP).

5.3.2. Experiment II: The effectiveness of sparse representation-based classifier
For histogram based feature vector (e.g., LNP), Chi-Square distance is the preferred similarity measurement in

the literature [50]. Table 4 compares the rank-one recognition rates achieved by SRC and Chi-Square distance based

classifiers on the whole FRGC v2.0 database. All the results are achieved using LNP feature with the same encoding

scale (i.e. Q2,16).

As it can be seen from Table 4, the rank-one scores of SRC using LNPx, LNPy and LNPz as well as their fusion

MC-LNP, with an average gain of 8 points, consistently outperform those of Chi-square distance-based classifier using

the same feature vectors. These results highlight the effectiveness of SRC when using local normal patterns (LNP)

based facial representation.

5.3.3. Experiment III: The patch weight learning and the effectiveness of W-SRC
In this experiment, firstly, we describe the way to learn patch weights and analyze the relative importance of facial

physical components for face identification. Then, we compare the performance of W-SRC and SRC on FRGC v2.0,

Bosphorus, and BU-3DFE respectively. Three databases are used for learning the patch weights: FRGC v1.0, BU-

3DFE, and Bosphorus. The experimental protocol listed in Table 1 is used, and according to the proposed framework,

15



Table 4: Comparison of rank-one scores: Chi-Square vs. SRC on the whole FRGC v2.0 database.

Approaches Rank-one Scores

(1) LNPx(Q2,16) + Chi-Square 77.36%

(2) LNPx(Q2,16) + SRC 87.01%
(3) LNPy(Q2,16) + Chi-Square 77.87%

(4) LNPy(Q2,16) + SRC 86.13%
(5) LNPz(Q2,16) + Chi-Square 81.33%

(6) LNPz(Q2,16) + SRC 88.43%
(7) MC-LNP(Q2,16) + Chi-Square 82.64%

(8) MC-LNP(Q2,16) + SRC 92.60%

(a)                     (b)                    (c)                    (d) ((e)                    (f)       (g)                    (h)                    (i)

Figure 10: Illustration of the patch weights learned from the Bosphorus database. Columns (a-c), normal images x, y and z and their patch weights

(10× 8 patches); columns (d-f), normal images x, y and z and their patch weights (6× 6 patches); columns (g-i), normal images x, y and z and their

patch weights (3 × 3 patches). Darker patches indicate lower weights, while brighter ones indicate higher weights.

the patch weights are achieved by the following four steps: 1) divide each normal component into local patches (10

× 8, 6 × 6, and 3 ×3 windows); 2) extract patch based MSMC-LNP features, three normal components and three

encoding scales (Q1,8, Q2,16, and Q3,24); 3) compute patch based rank-one scores using SRC classifier on a given

training database. 4) compute patch based weights by normalizing the patch based scores.

Fig. 10 shows the results of such a learning process using Bosphorus as training database in displaying the patch

weights of three normal component images x, y and z with three binary encoding scales Q1,8, Q2,16 and Q3,24. The

patch number with respect to those three encoding scales is 10 × 8, 6 × 6 and 3 × 3, respectively. The weights are

marked by gray values where darker ones indicate lower weights while the brighter ones indicate higher weights. We

can see that the weight distribution patterns are quiet different to each other among different normal components and

different encoding scales but we can observe some similar trends, in particular with the largest weights near the nose

regions, and larger weights near the eyes, while smallest weights near the mouth regions and the boundary parts. For

more detail, consider column (e) in Fig. 10 as an example. The rigid regions including nose, eyes and forehead totally

possess about 56% importance of the whole face. While the mouth region has only about 2.8% importance. It is

worth noting that facial cheek regions (in two sides), which are usually considered as non-rigid regions, own about

more than 20% importance, showing that there also exists much identity related information in those non-rigid facial

regions. Note that this kind of weight distribution patterns are quite different from those of 2D face, especially in the

nose region in comparison with Fig. 1 (b). This difference can be explained by the different data nature between 2D

and 3D faces; for example, the nose region in a 2D image is easily influenced by the variations of illumination whilst

the one of the 3D face remains stable under expression variations.

To evaluate the effectiveness of W-SRC to facial expression variations, we compare the performance of SRC and

the W-SRC on FRGC v2.0, Bosphorus, and BU-3DFE respectively (see Table 5, 6, and 7). The weights learned from

FRGC v1.0, BU-3DFE, and Bosphorus are denoted as F-W-SRC, BU-W-SRC, and BO-W-SRC respectively. The

local normal encoding operator Q2,16 is used in all the three Tables. Table 5 presents the rank-one scores on the FRGC

v2.0 database using SRC, F-W-SRC, BU-W-SRC, and BO-W-SRC. The results using the single normal component
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Table 5: Comparison of rank-one score improvements on the FRGC v 2.0 database: patch weights are learned using FRGC v1.0, BU-3DFE, and

Bosphorus respectively.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 87.01% 86.13% 88.43% 92.60%

F-W-SRC 86.63% 88.40% 88.65% 93.59%

BU-W-SRC 88.85% 88.54% 90.58% 94.50%

BO-W-SRC 88.62% 88.88% 90.41% 94.61%

Table 6: Comparison of rank-one score improvements on the BU-3DFE database: patch weights are learned from Bosphorus.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 78.92% 80.92% 84.08% 88.25%

BO-W-SRC 78.83% 84.29% 86.21% 90.71%

LNPx(Q2,16), LNPy(Q2,16), and LNPz(Q2,16) and the one of their fusion MC-LNP(Q2,16) are reported. We can see

from Table 5 that the performance of F-W-SRC is slightly better than SRC except LNPx(Q2,16). The results of BU-

W-SRC and BO-W-SRC are similar and both are improved by 1.5% to 2% in comparison with SRC. These results

suggest W-SRC along with the weight learning strategy does provide more robustness to facial expression variations

than SRC.

Table 6 presents the rank-one scores on the BU-3DFE database using SRC and BO-W-SRC. We can see that

the performance improvements based on BO-W-SRC are largely different in the three normal components, with -

0.09%, 3.37% and 2.13% for LNPx, LNPy and LNPz respectively. These results indicate that the facial surface

deformations caused by facial expression variations are likely to decompose into different quantities over different

normal components. The improvement of the fusion result using MC-LNP is about 2.5% which also proves the

effectiveness of W-SRC handling facial expression variations.

Table 7 presents the rank-one scores on the Bosphorus database using SRC and BU-W-SRC. We can see that

BU-W-SRC improves the performance for all three normal components, with 3.76%, 2.03% and 4.19% for LNPx,

LNPy, and LNPz respectively.

Table 7: Comparison of rank-one score improvements on the Bosphorus database: patch weights are learned from BU-3DFE.

LNPx(Q2,16) LNPy(Q2,16) LNPz(Q2,16) MC-LNP(Q2,16)

SRC 83.12% 86.24% 84.91% 90.92%

BU-W-SRC 86.88% 88.27% 89.10% 93.21%

5.3.4. Experiment V: Comparison of the performance degradation due to facial expression variations
We first evaluate the degradation influenced by facial expression variations on the FRGC v2.0 database. According

to the experimental protocol used in [13], [15] and [51], we split all probe faces into two subsets based on their original

expression labels. The first subset consists of only neutral faces, while the second one is only made up of non-neutral

faces. The performance degradation, reflected by the difference between the accuracies of subset I and II reported in

Table 8, is utilized to analyze the robustness to facial expression variations. We can see from that table that 6.6% drop

is achieved based on the proposed MSMC-LNP descriptor and SRC, and 3.8% drop is obtained by using Bosphorus

database as training set for W-SRC. Note that our performance on subset I is a little bit worse than [13, 15, 51], while

the degradations are competitive in comparison with their results.
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Table 8: Comparing the degradations of rank-one scores influenced by facial expression changes on the FRGC v 2.0 database (Subset I: neutral

probes; Subset II: non-neutral probes).

Sub. I Sub. II Degradation

(1) Mian et al. [13] 99.0% 86.7% 12.3%

(2) Huang et al. [15] 99.1% 92.5% 6.6%

(3) Huang et al. [51] 99.0% 94.9% 4.1%

(4) MSMC-LNP + SRC 97.1% 90.5% 6.6%

(5) MSMC-LNP + BO-W-SRC 98.0% 94.2% 3.8%

Since all the 2,400 non-neutral probe faces in the BU-3DFE database have labels of expression intensity levels

(increasing from level 1 to level 4), it is thus possible to quantify the performance drop as the the intensity of facial

expressions increases. For this purpose, all the probe faces are divided into four subsets according to their labels of

expression intensity. Subset I, II, III, and IV are made up of the probe faces with the expression intensity of level 1,

level 2, level 3, and level 4 respectively, and each subset consists of 600 probe faces with six prototypical expressions.

Table 9: the degradations of rank-one scores of the proposed approach as the intensity of facial expressions increases on the BU-3DFE database.

Sub. I Sub. II Sub. III Sub. IV

MSMC-LNP + SRC 97.0% 94.0% 90.5% 80.5%

MSMC-LNP + BO-W-SRC 97.3% 95.0% 92.7% 83.8%

The performance is shown in Table 9. We can find out that the degradation from the lower level to higher level

expression intensity becomes larger and larger especially from Subset III to Subset IV. By using SRC without weight

learning, the degradations are 3.0% from Subset I to Subset II, 3.5% from Subset II to Subset III, and 10.0% from

Subset III to Subset IV. By using BO-W-SRC, the degradations are 2.3% from Subset I to Subset II, 2.3% from Subset

II to Subset III, and 8.9% from Subset III to Subset IV. As we can see, all the three degradations using BO-W-SRC

are smaller than those using SRC, suggesting that the weight learning using different facial components is an effective

way for an improved robustness to expression changes.

5.3.5. The performance of distinguishing identical twins across expression variations
In this experiment, we evaluate the performance of our system to distinguish identical twins with a smile expres-

sion. We regard the SRC based recognition rate as the baseline and compare it with W-SRC, where the patch weights

are learned from different training sets. Given the fact that there are only neutral and smile scans in the 3D-TEC

dataset, a specific training set is designed based on the subset of Bosphrous dataset, i.e. 105 first neutral scans as

gallery and 105 happy scans as probe, the corresponding W-SRC is denoted as BOS-W-SRC. All the rank-one scores

achieved by using MSMC-LNP feature as well as SRC, F-W-SRC, BU-W-SRC, BO-W-SRC, and BOS-W-SRC clas-

sifiers are shown in Table 10.

Table 10: Comparison of the rank-one scores on 3D-TEC by using different training sets.

Algorithm Rank-one scores
I II III IV

MSMC-LNP + SRC 94.9% 96.3% 89.3% 88.3%

MSMC-LNP + F-W-SRC 93.5% 94.4% 88.8% 88.3%

MSMC-LNP + BU-W-SRC 93.9% 96.3% 90.7% 91.6%

MSMC-LNP + BO-W-SRC 94.4% 96.7% 90.7% 92.5%
MSMC-LNP + BOS-W-SRC 95.8% 96.7% 95.3% 95.3%
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From Table 10, we can see that the performance improvements are very limited for F-W-SRC, BU-W-SRC, and

BO-W-SRC. The main reason is the asymmetry of the training and testing data. The 3D-TEC dataset contains identical

twin samples only with neutral and smile expressions, while the FRGC v1.0 database only includes neutral expression

scans; BU-3DFE and Bosphrous databases consist of the scans with different expression types. The performance of

BOS-W-SRC confirms this analysis, i.e. when the sample distributions of the training and testing sets are more similar

to each other, W-SRC will be more efficient, with 6% and 7% improvements for Cases III and IV.

5.3.6. Experiment IV: Comparison with the state-of-the-art
To further evaluate the performance of the proposed method, we display, in Table 11, a comprehensive comparison

of the rank-one recognition rates on the FRGC v2.0, Bosphrous, BU-3DFE, and 3D-TEC databases with the state of

the art. In that table, our best results are highlighted as well as those of the state of the art better than ours. From that

table, we can observe that:

(i) The vast majority of 3D FR algorithms only report their performance on FRGC v2.0 which is de facto standard

benchmark in 3D FR. Table 11 only lists some of them. However, because of different nature of 3D face data captured

under different conditions and scenarios, a 3D FR technique with high performance on FRGC v2.0 does not guarantee

the same level of performance over other 3D face data and can even vastly degrade (see (5-b) and (5-c) on 3D TEC).

This means that it is important to benchmark 3D FR techniques over other datasets to check their generalization skills.

To the best of our knowledge, except our method, only (8-a) and (8-b) report their results on all the four databases.

(ii) The proposed approach, i.e. Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP) along

with the weighted SRC for an improved robustness to facial expression variations, consistently display competitive

rank-one recognition rates over these various datasets, and even the best results in the hard scenarios, namely case

III and case IV with 3D-TEC, and thereby demonstrates its effectiveness and its generalization skills in particular

with respect to various types and intensities of facial expressions. The results achieved by the proposed approach on

3D-TEC tend to suggest that the proposed MSMC-LNP facial feature is discriminative enough to distinguish even

identical twins despite of their strong similarities whereas W-SRC, in learning the discriminative weights of different

facial regions, makes the proposed solution robust enough to facial expression variations as stated in hard case III and

IV on 3D-TEC.

(iii) Facial normal information is also used as 3D facial representation for the extraction of facial features, e.g.,
(4), (7), (8-a) and (8-b). In (4), difference of normal maps is used as similarity measurement, while a rank-one score

of 92.2% is reported on a subset of FRGC v2.0 (1024 samples) database; In (7), Gokbert et al. use surface normal

variance at each pixel location as a distance measure between face images and report a rank-one score of 87.8% on the

whole FRGC v2.0 database, while this reasonable performance vastly degrades on the 3D-TEC database, achieving

only around 60% rank-one recognition rate. In (8-a) and (8-b), wavelet coefficients are used as similarity measurement

on both normal and geometry maps. Note that this method is the one of the best 3D FR method in the literature with

a very good generalization skill. Kakadiaris et al. in (8-a) and (8-b) use a very sophisticated face registration (spin

images and ICP) and fitting (Annotated Face Model) techniques, and a Linear Discriminant Analysis (LDA) based

feature selection techniques in their following works [58, 59]. Compared with the proposed method, they make use

of additional information of 3D face scans, e.g.,geometry image, and achieve better results on all the four databases

except hard Case III and Case IV over the 3D-TEC database.

6. Conclusion and Future Work

In this paper, we presented an expression-robust 3D face identification approach based on a novel 3D facial surface

descriptor, namely Multi-Scale and Multi-Component Local Normal Patterns (MSMC-LNP), along with a weighted

Sparse Representation-based Classifier (W-SRC). The extensive experiments that we carried out using 4 different 3D

face datasets indicate that: 1) LNP is much more discriminative than both the original normal information and LSP.

2) Both multi-scale and multi-component are efficient manners to improve the performance of LNP. 3) SRC is more

efficient than the Chi-square distance based classifier. 4) The importance of facial physical component for 3D face

identification is quite different from the one of 2D based, especially in the nose region. 5) Patch-weight based W-SRC

is very robust to facial expression variations, even for identical twins with expression changes, and large improvement

can be achieved if the distributions of training and testing sets are similar to each other. 6) The proposed system (i.e.
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MSMC-LNP +W-SRC) consistently achieved competitive rank-one recognition rates on the FRGC v2.0, Bosphrous,

BU-3DFE, and 3D-TEC databases and thereby displays a good generalization skill with respect to various types of

facial expressions.

In the future, we will focus on the following two aspects to further improve the proposed method. 1) In this work, a

basic 3D face alinement method, i.e. few iterations of ICP with respect to a reference model, was used. Recent works

[22, 30] suggest that a better 3D face alignment can further lead to significant performance improvement. We want to

improve the proposed approach with a better alignment method; 2) In this paper, we only presented the identification

results of the proposed method. Notice that there are very few works on the study of sparse representation-based

classifier for 2D and 3D face verification. Reference [61] is perhaps the only work stressing this issue for 2D face

verification. In our future work, we will study sparse representation-based classifier for 3D face verification and

report the verification results on the FRGC v2.0, Bosphrous, BU-3DFE and 3D-TEC databases. 3) In this work, only

the challenge of facial expression variations was considered. However, in real-life applications, 3D face scans from

uncooperative subjects under uncontrolled conditions can be in an arbitrary pose, thus with missing face data, along

with possible external occlusions (e.g., glasses, scarf, etc.). We want to extend this work to face those new challenges.
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The main contributions of this paper can be summarized as follows:

• Multi-Scale Multi-Component Local Normal Patterns based 3D facial descriptor

is proposed. Local Normal Patterns (LNP) is more discriminative than Local

Shape Patterns (LSP) feature and the original facial normal feature.

• Quantification weights of local patches of 3D facial surface are learned, which

are quite different from those of their 2D counterparts, especially in the nose

region.

• A weighted sparse representation classifier (W-SRC) is formulated, making the

proposed method robust enough to tolerate various facial expressions and dis-

criminating enough for distinguishing identical twins.

• Extensive experiments were carried out using various 3D face datasets, including

FRGC v2.0, BU-3DFE, Bosphorus and 3D-TEC, to benchmark the effectiveness

and the generalization skills of the proposed approach with respect to 3D face s-

cans captured under different scenarios and conditions with different 3D sensors,

depicting in particular different challenges in terms of facial expressions.
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