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Abstract —Surface meshing plays a fundamental role in graphics and visualization. Many geometric processing tasks involve
solving geometric PDEs on meshes. The numerical stability, convergence rates and approximation errors are largely determined
by the mesh qualities. In practice, Delaunay refinement algorithms offer satisfactory solutions to high quality mesh generations.
The theoretical proofs for volume based and surface based Delaunay refinement algorithms have been established, but those for
conformal parameterization based ones remain wide open. This work focuses on the curvature measure convergence for the conformal
parameterization based Delaunay refinement algorithms. Given a metric surface, the proposed approach triangulates its conformal
uniformization domain by the planar Delaunay refinement algorithms, and produces a high quality mesh. We give explicit estimates for
the Hausdorff distance, the normal deviation, and the differences in curvature measures between the surface and the mesh. In contrast
to the conventional results based on volumetric Delaunay refinement, our stronger estimates are independent of the mesh structure
and directly guarantee the convergence of curvature measures. Meanwhile, our result on Gaussian curvature measure is intrinsic to
the Riemannian metric and independent of the embedding. In practice, our meshing algorithm is much easier to implement and much
more efficient. The experimental results verified our theoretical results and demonstrated the efficiency of the meshing algorithm.

Index Terms —Meshing, Delaunay refinement, conformal parameterization, normal cycle, curvature measures, convergence.

✦

1 INTRODUCTION

Surface meshing and remeshing play fundamental roles in
many engineering fields, including computer graphics, geo-
metric modeling, visualization and medical imaging. Typically,
surface meshing finds a set of sample points on the surface
with a curved triangulation, then approximates each face
by an Euclidean triangle inR3, thereby approximating the
underlying smooth surface by a polyhedral triangular surface,
which is called a triangle mesh.

Many geometric processing tasks are equivalent to solving
geometric partial differential equations (PDEs) on surfaces.
The following are some direct examples: for shape analysis,
the heat kernel signature (HKS) [1] is mostly utilized, which
entails solving a heat equation and computing the eigenvalues
and eigenfunctions of the Laplace-Beltrami operator on the
surfaces; for shape registration, the surface harmonic map[2]
is widely used, which essentially means solving elliptic PDEs
on the surfaces; for surface parameterization, the discrete Ricci
flow [3] is often computed, which amounts to solving a non-
linear parabolic equation on the surfaces.

Most geometric PDEs are discretized on triangle meshes,
and solved using numerical methods, such as Finite Element
Methods (FEM). The numerical stability, the convergence
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rates, and the approximation bounds of the discrete solutions
are largely determined by the quality of the underlying triangle
mesh, which is measured mainly by the size and the shape of
triangles on the mesh. Therefore, the generation of high quality
meshes has fundamental importance.

Most existing meshing and remeshing approaches are based
on the Delaunay refinement algorithms. They can be classified
in three main categories:

1) The sampling is computed inR3, and triangulated using
the volumetric Delaunay triangulation algorithms, such
as [4] [5] [6] [7] [8] [9].

2) The sampling and triangulation are directly computed
on curved surfaces, such as [10] [11].

3) The sampling is computed in a conformal parameter
domain, and triangulated using the planar Delaunay
triangulation algorithms, such as [12] [13] [14] [15] [16].

The convergence theories of curvature measures for the
approaches in the first two categories has been thoroughly
established in [17] [18] [19] [20]. However, so far, there is
no theory to show the convergence of curvature measures for
the approaches in the third category.

1.1 Existing Theoretical Results

Based on the classic results of Federer [21] and Fu [22], among
others, the authors in [17] [18] [19] defined a general and
unified framework of curvature measures for both smooth and
discrete submanifolds ofRN based on the normal cycle theory.
Furthermore, they proved the convergence and approximation
theorems of curvature measures for the general geometric
subset ofRN.

In particular, supposeM is a smooth surface embedded in
R

3, Mε is an ε-sampleof M, namely, for each pointp∈M,
the ballB(p,ε lfs(p)) contains at least one sample point inMε ,
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where lfs(p) denotes the local feature size ofM at pointp. Let
T be the triangle mesh induced by the volumetric Delaunay
triangulation ofMε restricted toM. If ε is small enough, each
point of the mesh has a unique closest point on the smooth
surface. This leads to the introduction of the closest point
projectionπ : T→M. This map has the following properties:

1) Normal deviation:∀p∈ T, |n(p)−n◦π(p)|= O(ε), by
Amentaet al. [4], and Boissonnatet al. [6].

2) Hausdorff distance:|p−π(p)|= O(ε2), by Boissonnat
et al. [6].

3) Homeomorphism:π is a global homeomorphism, by
Amentaet al. [4] and Boissonnatet al. [6].

4) Curvature measures: LetB be a Borel subset ofR3,
then the differences between the curvature measures on
M and those onT are Kε, where K depends on the
triangulationT [17] [19].

In the first category, the authors show that, unfortunately,
the convergence of curvature measures can not be guaranteed.
Depending on the triangulation, whenε goes to 0,K may
go to infinity, (see [18] for a counterexample). To ensure
the convergence of the curvature measures, in [18] [19], the
authors suggest adding a stronger assumption to the sampling
condition, namely,κ-light ε-sample, which is an ε-sample
with the additional constraint that each ballB(p,ε lfs(p))
contains at mostκ sample points.

In the second category, the curvature convergence for mesh-
es obtained by Chew’s second algorithm [11] has been proved
in [20]. The normal and area convergence for meshes based on
the geodesic Delaunay refinement algorithm has been proved
in [10]. However, the computation of the geodesic Delaunay
triangulation is prohibitively expensive in practice [23].

1.2 Our Theoretical Results

This paper will deal with triangulations of the third category,
showing stronger estimates. Using conformal parameteriza-
tion, we obtain meshes satisfying the first two properties as
before,

1) Normal deviation:O(ε), Lemma 4.8 and Lemma 4.9.
2) Hausdorff distance:O(ε2), Lemma 4.8 and Lemma 4.9.

Moreover, we improve the other two properties as follows:

3) Homeomorphism: In addition to the closest point pro-
jection π , we also define a novel mapping, the natural
projection η , induced by the conformal parameteriza-
tion. Both projections are global homeomorphisms, see
section 4.4.3.

4) Curvature measures: we show the Delaunay refinement
method on the conformal parameter domain generates
κ-light ε-sample, which guarantees the convergence
of curvature measures. Moreover, we show that the
bounds of the curvature measures areKε, whereK is
O(area(B))+O(length(∂B)), and are independent of the
triangulations, see Theorem 3.4 and section 4.4.4.

In addition, the coding and computational complexities are
much lower than those in the second category.

1.2.1 Similarities

Following the work in [17], our proof is mainly based on the
normal cycle theory. Both methods estimate both the Haus-
dorff distance and the normal deviation at the corresponding
points. Then both methods construct a homeomorphism from
the triangle mesh to the surface, which induces a homotopy
from the normal cycle of the mesh to the normal cycle of
the surface. Then, the volume swept by the homotopy and the
area of its boundary are estimated. This gives a bound on the
difference between the curvature measures.

1.2.2 Differences

However our work can be clearly differentiated from theirs,in
terms of both theoretical and algorithmic aspects:

• In theory, as pointed out previously, without the stronger
sampling condition, the volumetric Delaunay refinement
algorithms cannot guarantee the convergence of curvature
measures. In contrast, our results can ensure the conver-
gence without extra assumptions.

• In theory, the volumetric Delaunay refinement methods
require the embedding of the surface. Our method is
intrinsic, which only requires the Riemannian metric.
In many real-life applications, e.g. the general relativity
simulation in theoretical physics, the surface metric is
given without any embedding space. In such cases, the
volumetric Delaunay refinement methods are invalid, but
our method can still apply.

• In theory, to prove the main theorem, the closest point
mapping was constructed in [17]. In contrast, we supply
two proofs: one is based on the closest point mapping,
whereas the other uses a completely different mapping
based on conformal parameterization. Conceptually, be-
sides its novelty, the latter is also simpler.

• In practice, the planar Delaunay refinement methods are
much easier to implement, the data structure for planar
triangulation is much simpler than that of the tetrahedral
mesh, and the planar algorithms are much more efficient.

Remark The current meshing algorithm aims to achieve a
good triangulation, and requires a conformal parameterization,
which in turn requires a triangulation. Consequently, thislooks
like a chicken-and-egg problem.

In fact, conformal parameterization can be carried out using
an initial triangulation of low quality, and this algorithmwill
produce a new triangulation with much better quality. Many
geometric processing tasks cannot be computed on the initial
mesh. For example, the error bound for a discrete solution to
the Poisson equation isO(ε2) on good quality meshes. If the
mesh has too many obtuse angles, then the discrete results will
not converge to the smooth solution.

In reality, surfaces are acquired by 3D scanning devices,
such as the laser scanner or the structured light scanner.
Usually, the raw point clouds are very dense, thus the initial
triangulation can be induced by the pixel or voxel grid
structures. In the geometric modeling field, the input surfaces
may be spline surfaces, and the initial triangulation can be
chosen as the regular grids on the parameter domain. Then,
the conformal parameterizations can be computed using the
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dense samples with the initial triangulation. Finally, we can
perform the remeshing using the current conformal parametric
Delaunay refinement algorithm to improve the mesh quality or
compress the geometric data.

2 PREVIOUS WORKS

2.1 Meshing/Remeshing

2.1.1 Delaunay Refinement

The Delaunay refinement algorithms were originally designed
for meshing planar domains, and were later generalized for
meshing surfaces and volumes. Chew’s first algorithm [24]
splits any triangle whose circumradius is greater than the
prescribed shortest edge length parameterε and hence gen-
erates triangulation of uniform density and with no angle
smaller than 30◦. But the number of triangles produced is
not optimal. Chew’s second algorithm [11] splits any triangle
whose circumradius-to-shortest-edge ratio is greater than one,
and hence in practice produces grade mesh. Similar split
criterion was used in Ruppert’s algorithm [25], which has the
theoretical guarantee of the minimal angle of no less than
20.7◦. Shewchuk’s algorithm [26] can create meshes with
most angles of 30◦ or greater. Deyet al. developed a series
of algorithms for surface meshing and remeshing based on
volumetric Delaunay refinement [7] [8] [9], which belong to
the approaches in the first category. We refer readers to [27]
for full details.

2.1.2 Centroidal Voronoi Tessellation

The concept of centroidal Voronoi tessellations (CVT) was first
proposed by Duet al. [28], and then was generalized to con-
strained centroidal Voronoi tessellations (CCVT) [29]. Recent-
ly, CVT has been widely used for surface meshing/remeshing
to produce high quality triangulations. It can be carried out
in the ambient space, e.g. Yanet al. [30], or the conformal
parameter domain, e.g. Alliezet al. [12] [31], or even high
embedding space, e.g. Lévyet al. [32]. A complete survey
of the recent advancements on CVT based remeshing can be
found in [16]. Although visually pleasing and uniform, all the
existing CVT based remeshing methods for the generation of
high quality triangulation have no theoretical bound of the
minimal angle [16]. Therefore, the convergence of curvature
measures cannot be guaranteed.

2.2 Conformal Surface Parameterization

Over the last two decades, surface parameterization has grad-
ually become a very popular tool for various mesh processing
processes [33] [34]. In this work, we consider only conformal
parameterizations. There are many approaches used for this
purpose, including the harmonic energy minimization [35]
[36] [37], the Cauchy-Riemann equation approximation [38],
Laplacian operator linearization [39], circle packing [40],
angle-based flattening [41], holomorphic differentials [42],
Ricci curvature flow [3] [43], Yamabe flow [44], conformal
equivalence class [45], most isometric parameterizations(MIP-
S) [46], etc..

3 STATEMENT OF THE MAIN THEOREM

3.1 Curvature Measures

First, let M be a C2-smooth surface embedded inR3, its
curvature measures can be defined as follows.

Definition 3.1: The Gaussian curvature measure ofM, φG
M,

is the function associated with each Borel setB⊂ R3,

φG
M(B) =

∫

B∩M
G(p)dp

where G(p) is the Gaussian curvature ofM at point p.
Similarly, the mean curvature measureφH

M is given by

φH
M (B) =

∫

B∩M
H(p)dp

whereH(p) denotes the mean curvature ofM at point p.
Now, let V be a polyhedron ofR3 and its polyhedral

boundaryM be a triangular mesh surface. We usevi to denote
a vertex,[vi ,v j ] an edge, and[vi ,v j ,vk] a face ofM. We define
the discrete Gaussian curvature ofM at each vertex as the
angle deficit,

G(vi) = 2π−∑
jk

θ jk
i ,

where θ jk
i is the corner angle on the face[vi ,v j ,vk] at the

vertexvi . Similarly, the discrete mean curvature at each edge
is defined as

H(ei j ) = |vi− v j |β (ei j ),

where βi j is the angle between the normals to the faces
incident to ei j . The sign ofβ (ei j ) is chosen to be positive
if ei j is convex and negative if it is concave.

Definition 3.2: The discrete Gaussian curvature measure of
M, φG

M, is the function associated with each Borel setB⊂R3

φG
M(B) = ∑

v∈B∩M
G(v). (1)

The discrete mean curvature measureφH
M is

φH
M (B) = ∑

e∈B∩M

H(e). (2)

The curvature measures on both smooth surfaces and poly-
hedral surfaces can be unified by the normal cycle theory,
which will be explained in section 4.3.

3.2 Main Results

It is well known that any Riemannian metric defined on a
smooth (compact with or without boundary) surfaceM can
be conformally deformed into a metric of constant curvature
c∈ {−1,0,1}, depending on the topology ofM, the so-called
uniformization metric (cf. Fig. 1). Now ifM is endowed with
a Riemannian metric with constant curvature, the Delaunay
refinement algorithms can be used to generate a triangulation
on M with good quality.

The most common Delaunay refinement algorithms include
Chew’s [24], [11] and Ruppert’s [25]. Letε be a user defined
upper bound of the circumradius of the final triangulation.
Given an initial set of samples on surfaceM, such that
the distance between any pair of samples is greater than
ε. If M has boundaries, then the boundaries are sampled
and approximated by piecewise geodesics, such that each
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geodesic segment is greater thanε. The Delaunay refinement
method on the uniformization space starts with an initial
Delaunay triangulation of the initial samples, then updates
the samples by inserting circumcenters of the bad triangles,
and meanwhile, updates the triangulation by maintaining the
Delaunay property. A bad triangle can be either bad-sized
or bad-shaped. A triangle is bad-sized, if its circumradiusis
greater thanε. A triangle is bad-shaped, if its circumradius-
to-shortest-edge ratio is greater than one. In this work, we
will show the following meshing algorithm using the packing
argument.

Theorem 3.3 (Delaunay Refinement):Let M be a compact
Riemannian surface with constant curvature. Suppose that the
boundary ofM is empty or is a union of geodesic circles.
For any given small enoughε > 0, the Delaunay refinement
algorithm terminates. Moreover, in the resultant triangulation,
all triangles are well-sized and well-shaped, that is

1) The circumradius of each triangle is not greater thanε.
2) The shortest edge length is greater thanε.

SupposeM is also embedded inE3 with the induced
Euclidean metric. ThenM can also be conformally mapped to
a surface with uniformization metric, such that all boundaries
(if there are any) are mapped to geodesic circles. By running
the Delaunay refinement on the uniformization space, we can
get a triangulation ofM, which induces a polyhedral surface
T, whose vertices are on the surface, and all faces of which
are Euclidean triangles. Furthermore, all triangles are well-
sized and well-shaped under the original induced Euclidean
metric. Based on the induced triangulationT, we will show
the following main theorem.

Theorem 3.4 (Main Theorem):Let M be a compact Rie-
mannian surface embedded inE3 with the induced Euclidean
metric,T the triangulation generated by Delaunay refinement
on conformal uniformization domain, with a small enough
circumradius boundε. If B is the relative interior of a union
of triangles ofT, then:

|φG
T (B)−φG

M(π(B))| ≤ Kε (3)

|φH
T (B)−φH

M (π(B))| ≤ Kε (4)

|φG
T (B)−φG

M(η(B))| ≤ Kε (5)

|φH
T (B)−φH

M (η(B))| ≤ Kε (6)

where for fixedM

K = O( ∑
{t∈T,t⊂B̄}

r(t)2)+O( ∑
{t∈T,t⊂B̄,t∩∂B6= /0}

r(t)),

r(t) being the circumradius of trianglet. Moreover,K can
be further replaced by:K = O(area(B)) + O(length(∂B)).
Furthermore, ifM is an abstract compact Riemannian surface
(only with a Riemannian metric, but not an embedding),
inequalities (3) and (5) still hold.

Here π denotes the closest point projection onM, and η
denotes the natural projection onM, which is induced by the
conformal parameterization, see Definitions 4.6 and 4.7.

4 THEORETICAL PROOFS

4.1 Surface Uniformization

Let (M1,g1) and(M2,g2) be smooth surfaces with Riemannian
metrics. Letφ : M1→M2 be a diffeomorphism,φ is conformal
if and only if

φ∗g2 = e2λ g1,

where φ∗g2 is the pullback metric onM1, and λ : M1→ R

is a scalar function defined onM1. Conformal mappings
preserve angles and distort area elements. Theconformal
factor function e2λ indicates the area distortion.

According to the classical surface uniformization theorem,
every metric surface(M,g) can deform to one of three
canonical shapes, a sphere, a Euclidean plane or a hyperbolic
plane. Namely, there exists a unique conformal factor function
λ : M→ R, such that the uniformization Riemannian metric
e2λ g induces constant Gaussian curvature, the constant being
one of {+1,0,−1} according to the topology of the surface.
If surfaces have boundaries, then the boundaries are mapped
to circles on the uniformization space.

Fig. 1: Uniformization for closed surfaces.

Fig. 2: Uniformization for surfaces with boundaries.

Figures 1 and 2 show the uniformizations for closed sur-
faces and surfaces with boundaries, respectively. The left-hand
columns show the genus zero surfaces, which can conformally
deform to the unit sphere with+1 curvatures. The middle
columns demonstrate genus one surfaces, whose universal
covering space is conformally mapped to the Euclidean plane,
and the boundaries become circles. The columns on the right
illustrate high genus surfaces, whose universal covering space
is flattened to the hyperbolic plane, and whose boundaries are
mapped to circles.

Surface uniformization can be carried out using the discrete
Ricci flow algorithms [3]. Then we can compute the trian-
gulation of the surface by performing the planar Delaunay
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refinement algorithms on the canonical uniformization domain.

4.2 Delaunay Refinement

The Delaunay refinement algorithm for mesh generation oper-
ates by maintaining a Delaunay triangulation, which is refined
by inserting circumcenters of triangles, until the mesh meets
constraints on element quality and size.

4.2.1 Geodesic Delaunay Triangulation

By the uniformization theorem, all oriented metric surfaces can
be conformally deformed to one of three canonical shapes, the
unit sphereS2, the flat torusE2/Γ and the hyperbolic surface
H2/Γ, whereE2 is the Euclidean plane,H2 the hyperbolic
plane, andΓ is the Deck transformation group, a subgroup of
isometries ofE2 or H2, respectively. The unit sphereS2 can
be conformally mapped to the complex plane by stereographic
projection, with the Riemannian metric

C∪{∞},g =
4dzd̄z

(1+ zz̄)2 .

Similarly, the hyperbolic planeH2 is represented by Poincaré’s
disk model with a Riemannian metric

{|z|< 1|z∈ C},g =
4dzd̄z

(1− zz̄)2 .

The concepts of Euclidean triangles and Euclidean circles
can be generalized to geodesic triangles and geodesic circles
on S2 and H2. Therefore, Delaunay triangulation can be
directly defined on these canonical constant curvature surfaces.
A triangulation is Delaunay if it satisfies the empty circle
property, namely the geodesic circumcircle of each geodesic
triangle does not include any other point. Spherical circles
on S

2 are mapped to Euclidean circles or straight lines on the
plane by stereographic projection. Similarly, hyperboliccircles
are mapped to the Euclidean circles on the Poincaré disk.
Therefore, geodesic Delaunay triangulations onS2 or H2 are
mapped to the Euclidean Delaunay triangulations on the plane.
As a result, geodesic Delaunay triangulations can be carried
out using the conventional Euclidean Delaunay triangulation.

4.2.2 Delaunay Refinement on Constant Curvature Sur-
faces

The Delaunay refinement algorithm on constant curvature
surfaces with empty boundary is introduced as follows. Takea
flat torusE2/Γ as an example. The user chooses a parameter
ε, which is the upper bound of the circumradius.

1) An initial set of samples is generated on the surface, such
that the shortest distance between any pair of samples
is greater thanε. An initial Delaunay triangulation is
constructed.

2) Select bad size triangles, whose circumradii are greater
than ε, insert their circumcenters, and maintain the
Delaunay triangulation.

3) Select bad shape triangles, whose ratio between circum
radius and shortest edge length is greater than one, insert
their circum centers, maintain the Delaunay triangula-
tion.

4) Repeat 2 and 3, until the algorithm terminates.

The proof of theorem 3.3 is based on the conventional
packing argument [24].

Proof: In the initial setting, all the edge lengths are greater
than ε. In step 2, after inserting the circumcenter of a bad
size triangle, all the newly generated edges are connected to
the center, their lengths are no less than the circumradius,
which is greater thanε. In step 3, the circumradius of the
bad shape triangle is greater than the shortest edge of the
bad triangle, which is greater thanε. All the newly generated
edges connecting to the center are longer than the radiusε.
Therefore, during the refinement process, the shortest edgeis
always greater thenε.

Supposep and q are the closest pair of vertices, then the
line segment connecting them must be an edge of the final
Delaunay triangulation, which is longer thanε. Therefore,
the distance between any pair of vertices is greater thanε.
Centered at the each vertex of the triangulation, a disk with
radiusε/2 can be drawn. All these disks are disjoint. Because
the total surface area is finite, the number of vertices is finite.
Therefore, the whole algorithm will terminate.

When the algorithm terminates, all triangles are well-sized
and well-shaped. Namely, the circumradius of each triangleis
smaller thanε, and the shortest edge length is greater thanε.
For the flat torus case, the minimal angle is greater than 30◦.

By the uniformization theorem, if a surface has a bound-
ary, it can be conformally mapped to the constant curvature
surfaces with circular holes. Then the boundaries can be
approximated by the planar straight line graphs (PSLG), such
that the angles between two adjacent segments are greater than
60◦. Using a proof similar to the one given by Chew in [24]
and [11], we can show the theorem still holds.

4.2.3 Delaunay Refinement on General Surfaces

For general surfaces, we need to add grading to the Delaunay
triangulation. The grading function is the conformal factor
e2λ , which controls the size of the triangles. Step 2 in the
above algorithm needs to be modified as follows: select a
bad size triangle with the circumcenterp and circumradius
greater thanεe−λ (p). The same proof can be applied to show
the termination of the algorithm. In the resultant triangulation,
the grading is controlled by the conformal factor, the circum-
radius is less thanεe−λ , the shortest edge is greater thanεe−λ ,
so the triangles are still well-shaped. On the original surface,
the edge length is greater thanε and the circumradius is less
thanε. The minimal angle is bounded.

According to [47], such a kind of sampling is locally unifor-
m, thus is also aκ-light ε-sample. Suppose the triangulation
is T, t ∈ T is a triangle, with circumradiusr(t), B⊂ T is a
union of triangles ofT, then

Lemma 4.1:The following estimation holds

∑
t⊂B̄

r(t)2+ ∑
t⊂B̄,t∩∂B6= /0

r(t) = O(area(B))+O(length(∂B)).

(7)
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4.3 Normal Cycle Theory

In order to be complete, we briefly introduce the normal cycle
theory, which closely follows the work in [17]. For a more
in-depth treatment, we refer readers to [17].

Intuitively, the normal cycle of a surface is its offset surface
embedded in a higher dimensional Euclidean space. If the
surface is not convex or smooth, its offset surface inR3

may have self-intersections. By embedding it in a higher
dimensional space, it can be fully unwrapped.

4.3.1 Offset Surface
SupposeV is a volumetric domain inR3, whose boundary
M = ∂V is a compactC2-smooth surface. Letρ be the distance
betweenM and the medial axis of the complement ofV. The

V

V"

M

BV"(B)

� Sk(R2/V )

Fig. 3: Offset surface and tube formula.
ε-offset ofV minusV is

Vε = {p|p 6∈V d(p,V)< ε} ⊂ R
3.

The tube formula can be written as

Vol(Vε) = area(M)ε +φH
V (M)

ε2

2
+φG

V (M)
ε3

3

for ε < ρ . The localized version of the tube formula is as
follows. Let B⊂M be a Borel set, theε-offset of B is Vε(B),
then we have

Vol(Vε(B)) = area(B)ε +φH
V (B)

ε2

2
+φG

V (B)
ε3

3
.

The volume of theε-offsetVε(B) is always a polynomial inε,
and its coefficients are multiples of the curvature measures
of B. Even if the boundary ofV is not smooth but if
ρ > 0, the volume ofVε(B) is always a polynomial inε for
ε < ρ . Therefore the coefficients of this polynomial generalize
the curvature measures from smooth surfaces to polyhedral
surfaces.

This approach does not generalize to non-convex polyhedral
surfaces, whereρ may be equal to 0. So the normal cycle
theory has been developed. Intuitively, normal cycles provide
a way of unfolding offsets in a higher dimensional space.

4.3.2 Normal Cycles
Definition 4.2: The normal cycleN(M) of a C2-smooth

surfaceM is the current associated with the set

N(M) := {(p,n(p))|p∈M}

endowed with the orientation induced by that ofM, where a
current is the generalization of an oriented surface patch,with

integral coefficients. When no confusion is possible, we use
the same notationN(M) to denote both the current and its
associated set.

The normal cycle ofV is the same as that ofM, namely,
N(V) = N(M). The diffeomorphic mapping fromM to its
normal cycleN(M) is denoted as

i : M→N(M)
p→ (p,n(p))

SupposeV is a convex body, whose boundaryM is a

V1
V2V1 ∩ V2

Fig. 4: Additivity of the normal cycle.

polyhedral surface. We use normal cones to replace normal
vectors.

Definition 4.3: The normal coneNCV(p) of a point p∈V
is the set of unit vectorsv such that

∀q∈V,〈q− p,v〉 ≤ 0.

Definition 4.4: The normal cycle ofM is the current asso-
ciated with the set

{(p,n(p))|p∈M,n ∈ NCV(p)}

endowed with the orientation induced by the one ofM.
As in figure 4, normal cycles are graphically represented by
their image under the map sending(p,n(p)) to p+n(p).

The crucial property of the normal cycle is its additivity as
shown in Fig. 4. SupposeV1 andV2 are two convex bodies in
R3, such thatV1∪V2 is convex, then

N(V1∩V2)+N(V1∪V2) = N(V1)+N(V2).

By the additivity property, we can define the normal cycle of
a polyhedron. Given a triangulation of the polyhedronV into
tetrahedrati . i = 1,2, · · · ,n, the normal cycle ofV is defined
as

N(V) =
n

∑
k=1

(−1)k+1 ∑
1≤i1<···<ik≤n

N(∩k
j=1ti j )

by inclusion-exclusion. It is proved that the normal cycleN(V)
is independent of triangulations.

Similar to the smooth surface case, one can define a set-
valued mapping fromM and its normal cycleN(M)

i : M→ N(M)
p→ (p,n(p)) n ∈NCV(p).

4.3.3 Invariant Differential 2-Forms
Normal cycles are embedded in the spaceR

3×R
3, denoted

as Ep×En, whereEp is calledpoint space, andEn is called
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normal space. Let g be a rigid motion ofR3, g(p) = Rp+d,
whereR is a rotation matrix,d is a translation vector.g can
be extended toEp×En as ĝ(p,n) = (R(p)+d,R(n)). We say
that a differential 2-formω is invariant under rigid motions,
if

ĝ∗ω = ω .

The following invariant 2-forms play fundamental roles in the
normal cycle theory,

Definition 4.5: Let the coordinates of Ep × En be
(x1,x2,x3,y1,y2,y3), then

ωA = y1dx2∧dx3+ y2dx3∧dx1+ y3dx1∧dx2

ωG = y1dy2∧dy3+ y2dy3∧dy1+ y3dy1∧dy2

ωH = y1(dx2∧dy3+dy2∧dx3)+
y2(dx3∧dy1+dy3∧dx1)+
y3(dx1∧dy2+dy1∧dx2).

Curvature measures of a surface can be recovered by inte-
grating specific differential forms on its normal cycle. The
following formula unifies the curvature measures on both
smooth surfaces and polyhedral surfaces. For a Borel set
B⊂ R3, the curvature measures are given by

∫

N(M) ωG
|i(B∩M) = φG

M(B)
∫

N(M) ωH
|i(B∩M) = φH

M (B)
∫

N(M) ωA
|i(B∩M) = area(B)

whereωG
|i(B∩M) denotes the restriction ofω to i(B∩M).

4.4 Estimation

In this section, we explicitly estimate the Hausdorff distance,
the normal deviation, and the differences in curvature measures
from the discrete triangular mesh to the smooth surface.

4.4.1 Configuration

Let (M,g) be aC2 metric surface.D is the unit disk on theuv-
plane. A conformal parameterization is given byϕ : D →M,
such thatg(u,v) = e2λ (u,v)(du2 + dv2). Supposep ∈ D is a
point on the parameter domain, thenϕ(p) is a point on the
surface. The derivative mapdϕ |p : TpD → Tϕ(p)M is a linear
map

dϕ |p = eλ (p)
(

cosθ −sinθ
sinθ cosθ

)

.

(M, g)

D

τ (t)

Tϕ(p0)M

ϕ

τ

dϕ

p0 p1

p2

ϕ(p0)
dϕ(p1)

ϕ(p2)

ϕ(p1)
dϕ(p2)

dϕ(t)

t

Fig. 5: Configuration.

Let T be a triangulation of the parameter domainD , the
conformal mappingϕ induces a triangulationϕ(T ) of the
smooth surfaceM, T is the corresponding polyhedral surface.

Symbols Meaning

Surfaces
M smooth metric surface
D parameter domain
Mappings
ϕ : D →M conformal parameterization
dϕ |p : TpD → Tϕ(p)M derivative map ofϕ
τ : T → T piecewise linear map between meshes
η = ϕ ◦ τ−1 : T→M natural projection fromT to M
π : T→M closest point projection fromT to M
Triangulations
T triangulation onD
ϕ(T ) surface triangulation induced byϕ
T polyhedral surface induced byϕ(T )
Faces
t ⊂D a triangle on parameter domain
dϕ(t)⊂ Tϕ(p)M corresponding face on tangent plane
τ(t)⊂ T corresponding face onT

TABLE 1: Symbol list

Each vertexpi ∈ T corresponds to a vertexϕ(pi) ∈ T, each
triangle onT corresponds to a face inT. This induces a
piecewise linear mapτ : T → T (see Fig. 5 and Tab. 1).

Definition 4.6 (Natural projection):The homeomorphism
from the triangle meshT to the smooth surfaceM

η = ϕ ◦ τ−1 : T→M

is called the natural projection.
Another map from the mesh to the surface is the closest

point projection.
Definition 4.7 (Closest point projection):Suppose T has

no intersection with the medical axis ofM. Let q ∈ T, and
π(q) be its closest point on the surfaceM,

π(q) = argminr∈M|r−q|,

we call the mapping fromq to its closest pointπ(q) as the
closest point projection.
We will show that the closest point projection is also a
homeomorphism.

4.4.2 Hausdorff Distance and Normal Deviation

In the following discussion, we assume the triangulation is
generated by the Delaunay Refinement in Theorem 3.3. Our
goal is to estimate the Hausdorff distance and the normal
deviation, in terms of both the natural projection and the
closest point projection.

Lemma 4.8 (Natural projection):Supposeq∈ T, then

|q−η(q)| = O(ε2), (8)

|n(q)−n(η(q))| = O(ε). (9)

Proof: As shown in Fig. 5, supposep∈ D , τ(p) = q. p
is inside a trianglet = [p0, p1, p2],

p=
2

∑
k=0

αkpk,0≤ αk ≤ 1,
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whereαk’s are barycentric coordinates. All the edge lengths
areΘ(ε), and angles are bounded. The area isΘ(ε2).
Equation 8: By the linearity ofτ anddϕ , τ(pk) = ϕ(pk) and
|ϕ(pk)−dϕ(pk)|= O(ε2), we obtain

|τ(p)−dϕ(p)| = |∑k αk(τ(pk)−dϕ(pk))|
≤ ∑k αk|ϕ(pk)−dϕ(pk)|
= O(ε2).

Therefore

|τ(p)−ϕ(p)| ≤ |τ(p)−dϕ(p)|+ |dϕ(p)−ϕ(p)|= O(ε2),

whereq= τ(p) andη(q) = ϕ ◦τ−1(q) = ϕ(p), this gives Eqn.
8.
Equation 9: Construct local coordinates on the tangent plane
Tϕ(p0)M, such that ϕ(p0) is at the origin, dϕ(p1) is a-
long the x-axis. Thenτ(p1) is (Θ(ε),0,O(ε2)), τ(p2) is
(Θ(ε)cosβ ,Θ(ε)sinβ ,O(ε2)), where β is the angle atp0.
By direct computation, the normal to the faceτ(t) is
(O(ε),O(ε),Θ(1)). Therefore

|n◦ τ(p)−n◦ϕ(p0)|= O(ε).

Furthermore,

|n◦ϕ(p)−n◦ϕ(p0)| = |W(ϕ(p)−ϕ(p0))|
≤ ‖W‖|ϕ(p)−ϕ(p0)|
= O(ε),

whereW is the Weigarten map.M is compact, therefore‖W‖
is bounded,|ϕ(p)−ϕ(p0)| is O(ε).

|n◦ τ(p)−n◦ϕ(p)| ≤ |n◦ϕ(p)−n◦ϕ(p0)|
+ |n◦ τ(p)−n◦ϕ(p0)|
= O(ε).

This gives Eqn. 9.
Lemma 4.9 (Closest point projection):Supposeq∈T, then

|q−π(q)| = O(ε2), (10)

|n(q)−n(π(q))| = O(ε). (11)

Proof: Equation 10: From Eqn. 8 and the definition of
closest point, we obtain

|q−π(q)| ≤ |q−η(q)|= O(ε2).

Equation 11: From Eqn. 8 and Eqn. 10, we get

|η(q)−π(q)| ≤ |η(q)−q|+ |q−π(q)|= O(ε2),

therefore

|n◦η(q)−n◦π(q)| ≤ ‖W‖|η(q)−π(q)|= O(ε2).

Then from Eqn. 9 and the above equation,

|n(q)−n(π(q))| ≤ |n(q)−n◦η(q)|
+ |n◦η(q)−n◦π(q)|
= O(ε)+O(ε2).

Remark The proofs for the Hausdorff distances in Eqn. 8 and
Eqn. 10 do not require the triangulation to be well-shaped,
but only well-sized. The proofs for the normal deviation

�(p0)

�(p2)

�(p1)�2

S

Fig. 6: Small triangles inscribed to attitudinal circles ofa
cylinder do not guarantee the normal convergence.

estimation in Eqn. 9 and Eqn. 11 require the triangulation to
be both well-sized and well-shaped. In the proofs we use the
facts that the triangulation on parameter domain has bounded
angles, and the mappingϕ is conformal. Figure 6 shows a
counterexample: a triangle is inscribed in a latitudinal circle
of a cylinder, no matter how small it is, its normal is always
orthogonal to the surface normals.

4.4.3 Global Homeomorphism

Both the natural projection and the closest point projection
are homeomorphisms. While it is trivial for natural projection,
in the following we give detailed proof to show that the
closest point projection is a piecewise diffeomorphism, and
we estimate its Jacobian.

Lemma 4.10:The closest point projectionπ : T → M is a
homeomorphism.

Proof: First we show thatπ restricted to the one-ring
neighborhood of each vertex ofT is a local homeomorphism.
Supposep∈ T is a vertex, thereforep∈M as well.U(p) is
the union of all faces adjacent top. We demonstrate thatπ :
U(p)→M is bijective. Assumeq∈U(p), then|p−q|=O(ε),

|π(q)− p| ≤ |π(q)−q|+ |q− p|= O(ε2)+O(ε).

Therefore
|n(π(q))−n(p)|= O(ε). (12)

Assume there is another pointr ∈U(p), such thatπ(q)= π(r).
Let the unit vector of the line segment connecting them be

d =
r−q
|r−q| ,

then becauser,q∈U(p), d is almost orthogonal ton(p),

〈d,n(p)〉 = O(ε). (13)

On the other hand,d is along the normal direction atπ(q),
n(π(q)) =±d, assumed is alongn(π(q)), from Eqn. 12, we
obtain

|d−n(p)|= O(ε). (14)

Eqn. 13 and Eqn. 14 contradict each other. Thereforeπ|U(p)
is bijective.

Then we show thatπ restricted on each face is a dif-
feomorphism. Letr(u,v),n(u,v) be position and normals of
M respectively, where(u,v) are local parameters along the
principal directions.t ∈ T is a planar face. The inverse closest
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point projection map isπ−1 : r(u,v)→ q(u,v), whereq(u,v) is
the intersection between the ray throughr(u,v) alongn(u,v)
and the facet,

q(u,v) = r(u,v)+ s(u,v)n(u,v),

direct computation shows

〈qu×qv,n〉= (1+2Hs+Ks2)〈ru× rv,n〉, (15)

wheres=O(ε2). Whenε is small enough, the above equation
is close to 1, which meansπ|U(P)| is a piecewise diffeomor-
phism.

Secondly, we show thatπ is a global homeomorphism. We
have shown thatπ is a covering map. At each vertex ofT,
the closest point equals itself, therefore the degree ofπ is 1.
So π is a global homeomorphism.

Note that, the estimation of the Jacobian of the closest point
projection in Eqn. 15 can be applied to show the following.
SupposeB⊂ R3 is a Borel set, then

|area(B∩T)−area(π(B)∩M)|= Kε2.

4.4.4 Proof of the Main Theorem
The proof of the main Theorem 3.4. associated with the closest
point projectionπ is a simple corollary of the following main
theorem in [17].

Theorem 4.11:SupposeT is a bounded aspect ratio trian-
gulation projecting homeomorphically onM, if B is a relative
interior of a union of triangles ofT, then

|φG
T (B)−φG

M(π(B))| ≤ Kε (16)

|φH
T (B)−φH

M (π(B))| ≤ Kε (17)

where for fixedM

K = O( ∑
{t∈T,t⊂B̄}

r(t)2)+O( ∑
{t∈T,t⊂B̄,t∩∂B6= /0}

r(t)),

r(t) is the circumradius of trianglet.
Proof (Closest point projection):By Lemma 4.10, the

closest point projection is a homeomorphism. By Theorem 3.3,
the triangulationT has a bounded aspect ratio, therefore the
conditions of Theorem 4.11 are satisfied, and consequently,
Eqns. 16 and 17 hold. According to Eqn. 7 in Lemma 4.1,
therefore the main theorem holds.

The proof of the main Theorem 3.4. associated with the
natural projectionη is more direct and more adapted to our
framework.

Proof (Natural projection): The natural projectionη :
T → M can be lifted to a mapping between the two normal
cycles f : N(T) → N(M), such that the following diagram
commutes:

N(M)
f←−−−− N(T)

i

x









y

p1

M
η←−−−− T

,

where p1 is the projection fromEp×En to Ep, and i(q) =
(q,n(q)) for all q∈M. Namely, given a pointq∈ T, andn(q)
in its normal cone,(q,n(q)) ∈N(T),

f : (q,n(q))→ (η(q),n◦η(q)) ∈ N(M).

By Lemma 4.8,

|(q,n(q))− f (q,n(q))|= O(ε). (18)

It is obvious thatf is continuous.
Let B⊂ Ep, we denote the currentN(T)∩ (B×En) by D,

and the currentN(M)∩ (η(B)×En) by E, as shown in Fig. 7.
Consider the affine homotopyh betweenf and the identity,

D = N(T ) ∩ (B × En)

E = N(M) ∩ (B × En)

C

O(ε)

(q,n)

f(q,n)

Fig. 7: Homotopy between the normal cyclesN(T) andN(M).

h(x, ·) = (1− x)id(·)+ x f(·),x∈ [0,1].

We define the volume swept by the homotopy as

C= h#([0,1]×D),

whose boundary is

∂C= E−D−h#([0,1]× ∂D).

Intuitively, C is a prism, the ceiling isE, the floor isD, and
the walls areh#([0,1]× ∂D).

φG
M(η(B))−φG

T (B) =
∫

E−D
ωG =

∫

∂C
ωG+

∫

h#([0,1]×∂D)
ωG.

By Stokes’ Theorem,
∫

∂C
ωG =

∫

C
dωG.

Both ωG and its exterior derivativedωG are bounded, there-
fore, we need to estimate the volume of blockC and the area
of the wall h#([0,1]× ∂D). We useM(·) to denote the flat
norm (volume, area, length).

The volume of the prismC is bounded by the height and
the section area. The height is bounded bysup| f − id|. The
section area is bounded by the product of the bottom area
M(D) and the square of the norm

‖Dh(x, ·)‖2 = ‖xD f +(1− x)id‖2≤ (xsup‖D f‖+(1− x))2.

In later discussion, we will see that sup‖D f‖ ≥ 1, therefore

‖Dh(x, ·)‖ ≤ sup‖D f‖.

We obtain

M(C) ≤ M(D)sup| f − id|sup‖D f‖2,
M(h#([0,1]× ∂D)) ≤ M(∂D)sup| f − id|sup‖D f‖.

Now we estimate each term one by one.
1) Eqn. 18 shows

sup| f − id|= O(ε).



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. , NO. , 2013 10

2) Since the triangulation has a bounded ratio of circum-
radius to edge length, we obtain

M(D) = O(∑t∈T,t⊂B̄ r(t)2)
M(∂D) = O(∑t∈T,t⊂B̄,t∩∂B6= /0 r(t)).

Let K be the summation of the two terms above.
According to Lemma 4.1,K is bounded by the area of
B and the length of∂B.

3) For the estimation of‖D f‖, we observe that on each
triangle t ∈ D , the mappingτ converges todϕ , so D f
on each triangle converges to

(ru,0)du+(rv,0)dv→ (ru,nu)du+(rv,nv)dv,

where r(u,v) and n(u,v) are the position and normal
vectors of the smooth surfaceM, (u,v) the conformal
parameters, namely,|ru|= eλ , |rv|= eλ andru⊥ rv.
Assume(du,dv) = (cosθ ,sinθ ) for any angleθ , we
obtain that the norm of the tangent vector on the left
hand side iseλ . The norm of the vector on the right
hand side is bounded by the eigenvalues of the following
matrix
[

〈(ru,nu),(ru,nu)〉 〈(ru,nu),(rv,nv)〉
〈(rv,nv),(ru,nu)〉 〈(rv,nv),(rv,nv)〉

]

= e2λ id+ III ,

(19)
where the third fundamental form is

III =

[

〈nu,nu〉 〈nu,nv〉
〈nv,nu〉 〈nv,nv〉

]

.

From III −2HII +GI = 0, where the first fundamental
form I = e2λ id, the second fundamental formII = e2λW,
W is the Weigarten matrix, we get

III = 2HII −GI = e2λ (2HW−Gid).

Plugging into Eqn. 19, we get‖D f‖2 bounded by the
eigenvalues of

(1−G)id+2HW,

therefore on each face

‖D f‖2≤max{1+ k2
1,1+ k2

2}.

So ‖D f‖2 is globally bounded.

Putting all the estimates together, we obtain

|φG
M(η(B))−φG

T (B)| ≤ Kε.

According to Lemma 4.1,K is bounded by the area ofB and
the length of∂B. The proof for the mean curvature measure
is exactly the same.
Remark 1. In our proofs, perfect conformality is unneces-
sary. All the proofs are based on one requirement: the max
circumcircle of the triangles of the tessellations converge to
zero. This only requires the parameterization to be K-quasi-
conformal, whereK is a positive constant, less than∞.

2. It is well known that the Gauss curvature is defined on
any (abstract) Riemannian surface. By the Nash theorem [48]
[49], any (abstract) Riemannian surface can be isometrically
embedded in a high-dimensional Euclidean space. Using the
theory of normal cycle for large codimension submanifolds

of Euclidean space, the inequalities (3) and (5) in Theorem
3.4 can be extended to any abstract Riemannian surface, the
approximation depending on the chosen embedding.

5 COMPUTATIONAL ALGORITHM

We verified our theoretical results by meshing spline surfaces
and comparing the Gaussian and mean curvature measures.

Each spline patchM is represented as a parametric smooth
surface defined on a planar rectangleγ : R → R3, whereR

is the planar rectangle parameter domain, the position vector
γ is C2 continuous, therefore the classical curvatures are well
defined. Letϕ : D →M be the conformal mapping from the
unit disk D to the spline surfaceM. As shown in the left-
hand diagram in Diagram (20), the mappingf is from D to
R, which makes the diagram commute, thereforef = γ−1◦ϕ .

R M

D

-γ

6
f

�
�
��
ϕ

Tk
R Tk

M

Tk
D

-γ

6
f̄

�
���

ϕ̄
(20)

(a) regular gridT0
R ⊂R (b) M

(c) T0
M (d) T0

D ⊂D

(e) Delaunay triangulationT1
D ⊂D (f) T1

M

Fig. 8: Pipeline for meshing a Bézier patch of Utah teapot.

As shown in Fig. 8, in our experiments, each planar domain
or surfaceS (S∈ {D ,R,M}), is approximated by two triangle
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meshes,Tk
S ,k = 0,1, where theT0

S is induced by the regular
grid on the rectangle;T1

S is induced by the Delaunay triangu-
lation on the unit disk. Both the conformal parameterization
ϕ and the parameter domain mappingf are approximated by
piecewise linear (PL) mappings,̄ϕ and f̄ , respectively, which
are computed on the meshes.

5.1 Algorithm Pipeline
5.1.1 Conformal Parametrization
In the first stage, the conformal parameterization is computed
as follows:

f̄−1 : T0
R T0

M T0
D

-γ -ϕ̄−1

T0
R is a triangulation induced by the regular grid structures on

the rectangleR. Each vertex onT0
R is mapped to the spline

surfaceM by γ, each face is mapped to a Euclidean triangle,
this gives the meshT0

M. If the grid tessellation is dense, the
quality of the meshT0

M is good enough for performing the
Ricci flow and we get the PL mappinḡϕ−1, which mapsT0

M
to a triangulation of the diskT0

D. The composition ofϕ̄ and
γ−1 gives the PL mappinḡf = γ−1◦ ϕ̄ : T0

D → T0
R .

5.1.2 Resampling and Remeshing
The process in the second stage is described in the following
diagram:

ϕ̄ : T1
D T1

R T1
M

-f̄ -γ

First, we apply Ruppert’s Delaunay refinement method to gen-
erate the triangulationT1

D with good quality on the unit disk.
The triangulation on the diskT1

D is mapped to a triangulation
T1

R on the rectangle by the PL mappinḡf : T0
D → T0

R . The
connectivity of T1

R is the same as that ofT1
D. The vertices

of T1
R are the images of the vertices ofT1

D under the PL
mapping f̄ , which are calculated as follows. Supposeq is
a Delaunay vertex ofT1

D on the disk, covered by a triangle
[p0, p1, p2] ∈ T0

D . Assume the barycentric coordinates ofq are
(α0,α1,α2), q= ∑k αkpk, then

f̄ (q) = ∑
k

αk f̄ (pk).

The triangulationT1
R induces a triangle meshT1

M, whose
connectivity is that ofT1

R, vertices ofT1
M are the images of

those of T1
R under the spline mappingγ. The discrete PL

conformal mapping is given by

ϕ̄ = γ ◦ f̄ : T1
D → T1

M.

The triangle mesh generated by the Delaunay refinement based
on conformal parameterization isT1

M.
Fig. 9 shows the meshing results using the proposed method

for a car model. In this experiment, the conformal parameter
domain D is also a rectangle. Frame (a) shows a B-spline
surface patchM; Frame (b) shows the initial triangle meshT0

M;
Frame (c) shows the triangulations on the conformal parameter
domain,T0

D
on the top andT1

D
at the bottom; Frames (d), (e)

and (f) illustrate the triangle meshes generated by the Delaunay
refinement on a conformal parameter domain with a different
number of samples, 1K, 2K, and 4K, respectively.

6 EXPERIMENTAL RESULTS

The meshing algorithms are developed using generic C++ on
a Windows platform, all the experiments are conducted on a
PC with Intel Core 2 CPU, 2.66GHz, 3,49G RAM.

6.1 Triangulation Quality

The patch on the Utah teapot (see Fig. 8) is meshed with differ-
ent sampling densities, the meshes are denoted as{Tn}11

n=1 as
in Tab. 2. The statistics of the meshing quality are reportedin
Fig. 10. Frame (a) shows the maximal circumradius of all the
triangles of each mesh. Frame (b) is the average circumradius
of all the triangles of each mesh. Because the sampling is
uniform, we expect the circumradiusεn vs. the number of
verticessn to satisfy the relation

εn ∼
1√
sn
.

The curve in Frame (b) perfectly meets our expectations.
Frames (c) and (d) show the minimal angles on all meshes.
According to the theory of Rupert’s Delaunay refinement, the
minimal angle should be no less than 20.7◦. Frame (c) shows
the minimal angles; in our experiments they are no less than
20.9◦. Frame (d) illustrates the means of the minimal angles,
which exceed 46.5◦.

6.2 Curvature Measure Comparisons

For each triangle meshTk produced by our method, for each
vertex q ∈ Tk, we define a small ball inR3, B(q, r) centered
at q with radiusr. We then calculate the curvature measures
φG

Tk
(B(q, r)) and φH

Tk
(B(q, r)) using the formulae Eqn. 1 and

Eqn. 2, respectively.
We also compute the curvature measures on the smooth

surfaceM, φG
M(B(q, r)) and φH

M (B(q, r)) using the following
method,

φG
M(B(q, r)) :=

∫

γ(u,v)∈B(q,r)
G(u,v)g(u,v)dudv,

whereγ(u,v) is the point on the spline surface,G(u,v) is the
Gaussian curvature atγ(u,v), andg(u,v) is the determinant of
the metric tensor. Because the spline surface isC2 continuous,
all the differential geometric quantities can be directly comput-
ed using the traditional formulas. Note that, becauseM andTk

are very close, we useB(q, r)∩Tk to replaceπ(B(q, r))∩M in
practice. In all our experiments, we setr to be 0.05area(M)

1
2

and 0.08area(M)
1
2 for Gaussian and mean curvature measures,

respectively.
We define the average errors between curvature measures

as
eG

n =
1
|Vn| ∑

v∈Vn

|φG
M(B(v, r))−φG

Tn
(B(v, r))|,

and
eH

n =
1
|Vn| ∑

v∈Vn

|φH
M (B(v, r))−φH

Tn
(B(v, r))|,

whereVn is the vertex set ofTn.
Figure 11 shows the errors between curvature measures with

respect to sampling densities, or equivalently, the numberof
samples and the average circumradius. Frames (a) and (b)
show that the curvature measure errors are approximately
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Fig. 9: Remeshing of the Car spline surface model.

mesh T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

# vertex 1021 2045 4093 6141 8189 10237 12285 14333 16381 18429 21876
# triangle 1904 3910 7950 11973 16040 20118 24192 28249 3231636372 43202

TABLE 2: The numbers of vertices and triangles of the sequence of meshes{Tn} with different resolutions.
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Fig. 10: The maximal and average circumradii{εn} (a-b), and the minimal and average of minimal angles of{Tn} (c-d).
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n of {Tn} converge to zeros as the number of sample points goes to infinity (a-b), and as
the average of the circumradii{εn} goes to zero (c-d).

proportional to the inverse of the square root of the number
of sample points; Frames (c) and (d) show the curvature
measure errors are approximately linear with respect to the
circumradius. This again matches our main Theorem 3.4.

Figure 12 visualizes the curvature distributions on the
smooth patchM (left column), and the triangle meshT11

(right column). The histograms show the distributions of the
relative curvature errors at the vertices of the mesh. From the
two left-hand columns, we can see that the curvatures ofM
look very similar to their counterparts onT11. Moreover, from
the right-hand column, we can find that the overwhelming
majority of vertices have relative curvature errors very close
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Fig. 12: Illustration of the curvature values on the Utah teapot spline surface patchM, (a, d), and on its approximate meshT11

(b, e). Their relative curvature error distribution histograms are shown in (c) and (f).

to zeros. In particular, for Gaussian curvature measure, more
than 97% of vertices are fall into the relative error range of
(-0.05, 0.05). For mean curvature measure, more than 95% of
vertices are included in the relative error range of (-0.05,0.05).
This demonstrates the accuracy of the proposed method.

7 CONCLUSION

This work analyzes the surface meshing algorithm based on
the conformal parameterization and the Delaunay refinement
method. By using the normal cycle theory and the conformal
geometry theory, we rigorously prove the convergence of
curvature measures, and estimate the Hausdorff distance and
the normal deviation. According to [50], these theoretical
results also imply the convergence of the Riemannian metric
and the Laplace-Beltrami operator.

The method can be generalized to prove the curvature con-
vergence of other meshing algorithms, such as the centroidal
voronoi tessellation method, and so on. The normal cycle
theory is general to arbitrary dimension. We will generalize the
theoretical results of this work to include higher dimensional
discretizations, such as volumetric shapes. We will explore
these directions in the future.
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