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1Université de Lyon, CNRS
2Ecole Centrale de Lyon, LIRIS UMR5205, F-69134, Lyon, France
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ABSTRACT
This paper presents a mesh-based approach for 3D face recog-
nition using a novel local shape descriptor and a SIFT-like
matching process. Both maximum and minimum curvatures
estimated in the 3D Gaussian scale space are employed to de-
tect salient points. To comprehensively characterize 3D facial
surfaces and their variations, we calculate weighted statisti-
cal distributions of multiple order surface differential quanti-
ties, including histogram of mesh gradient (HoG), histogram
of shape index (HoS) and histogram of gradient of shape in-
dex (HoGS) within a local neighborhood of each salient point.
The subsequent matching step then robustly associates corre-
sponding points of two facial surfaces, leading to much more
matched points between different scans of a same person than
the ones of different persons. Experimental results on the
Bosphorus dataset highlight the effectiveness of the proposed
method and its robustness to facial expression variations.

Index Terms— mesh-based 3D face recognition, his-
tograms of multiple order surface differential quantities, 3D
shape descriptor

1. INTRODUCTION

Face is potentially one of the best biometrics for people iden-
tification related applications, since it is non-intrusive, con-
tactless and socially well accepted. The past several decades
have witnessed tremendous efforts firstly focused on 2D face
images [1] and more recently on 3D face scans [2]. Despite
the great progress achieved so far in the field [1], 2D images
are still not reliable enough [3], especially in the presence of
pose and lighting changes [4]. Along with the development
of 3D imaging systems, 2.5D or 3D scans have emerged as a
major solution to deal with these unsolved issues in 2D face
recognition, i.e. pose and illumination variations. Meanwhile,
although 3D face scans capture accurate facial surface shape,
thereby theoretically reputed to be robust to lighting varia-
tions, they are likely to be more sensitive to facial expression
variations.

Many methods have been proposed to address the prob-
lem caused by expression changes. They can be roughly cat-
egorized into three main streams, i.e. region based, model
based and learning based. The first category claims that facial
distortions due to expressions do not have impact on the entire
surface, and proposes to segment a facial surface into relative
rigid and non-rigid regions. The rigid regions were generally
adopted for an improved matching result [5] [6]. Meanwhile,
automatic segmentation of facial surface into rigid and mimic
regions is still problematic [2]. The second stream builds a
generic face model and for a given non-neutral face, a virtual
face is generated by this model with reduced facial expression
effects. Recognition is then performed on virtual 3D faces [7]
[8] [9]. These techniques improve the performance to some
extent but they are rather computationally expensive. The last
stream proposes to learn the distributions of intra-class and
inter-class variations across expression changes [10] [11], and
generally leads to better performance. The downside is that it
requires a large training dataset with at least several expres-
sive face models for each subject.

In this paper, we make the assumption that, when a facial
expression occurs, there are always some small local areas
that vary slightly or keep invariant as compared to the neutral
expression, and these local areas can be found in both rela-
tive rigid and elastic facial regions. Once located and char-
acterized, these local regions can be used to achieve 3D face
recognition, which is robust to facial expressions and partial
occlusion through a proper matching process.

This paper proposes to characterize these local regions
as salient points, which are local extrema in terms of maxi-
mum and minimum curvatures within a 3D Gaussian scale s-
pace. Once located, the local region around each salient point
is then described by histograms of multiple order surface d-
ifferential quantities, including histograms of mesh gradient
(HoG, 1st order), shape index (HoS, 2nd order) and gradi-
ent of shape index (HoGS, 3rd order), to comprehensively
describe the local facial surface. The descriptors of detected



local regions are further used in local matching for 3D face
recognition.

The whole framework is thus a region-based approach
but in contrast to the previous works, all these local regions
are not only in static regions but can be distributed over the
entire face including elastic regions. The proposed frame-
work is similar to SIFT [12] and their extensions in 3D [13]
[14]. Meanwhile, our approach differs from the previous ones
by the use of surface differential quantities both in salient
point localization and their geometric description. As salien-
t point detection and their description are directly operated
on 3D meshes, the proposed approach is pose independen-
t, thus avoids costly alignment which is widely required by
facial range image based methods. Moreover, the use of lo-
cal matching also endows the proposed approach with some
tolerance to occlusions. The effectiveness of the proposed ap-
proach was demonstrated on the Bosphorus dataset.

The remainder of this paper is organized as follows:
multiple order differential quantities estimated on surface is
introduced in section 2, and section 3 presents the proposed
shape descriptor. Section 4 describes the matching scheme.
Experimental results are discussed in section 5. Section 6
concludes the paper.

2. ESTIMATING MULTIPLE ORDER
DIFFERENTIAL QUANTITIES ON TRIANGULAR

MESHES BY LOCAL SURFACE FITTING

There are three main approaches to calculate curvature on tri-
angular meshes [15]: a. local fitting; b. discrete estimation of
curvature directly on triangular meshes; c. estimation of cur-
vature tensor. In this paper, we make use of the local cubic-
order fitting method as in [16] which has better behaviour than
discrete estimation method for facial expression analysis [17].

For each vertex p of a triangular mesh, this method first
defines a local 3D coordinate frame with its origin at the ver-
tex and z axis along the normal vector of the vertex. The ver-
tex normal can be computed as the average of normal vectors
of the faces adjacent to the vertex. Given two orthogonal axes,
x and y, randomly chosen in the tangent plane perpendicular
to the normal vector, vertices in the neighborhood (two-ring)
of the vertex p are then transformed and rotated to the local
coordinate system, in which a cubic polynomial function:

z(x, y) = A
2 x

2+Bxy+ C
2 y

2+Dx3+Ex2y+Fxy2+Gy3 (1)

is approximated by the coordinates of the vertices within the
local neighborhood. And it’s normal :

(zx, zy ,−1) = (Ax+By + 3Dx2 + 2Exy + Fy2,

+Bx+ Cy + Ex2 + 2Fxy + 3Gy2,−1) (2)

is approximated by the normal vectors of the vertices within
the local neighborhood. By using least-square fitting method
to solve the approximated equations (1) and (2), we can get
the local fitting function z(x, y). The maximum curvature

κmax and minimum curvature κmin (κmax ≥ κmin) can be
estimated as the eigenvaules of the Weingarten matrix (shape
operator). Then the shape index can be estimated as:
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After the local coordinate system is transformed to the
original global one, we estimate the surface gradient by the
normal vector of each point. Let z(x, y) be the fitting function
of a local surface patch at a point p, the normal vector np =

(nx, ny , nz)T can be written as (−nx
nz
,−ny

nz
,−1)T . Thus, the

surface gradient direction θ equals to arctan(ny
nx

), and gradient
magnitude can be estimated as follows:
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We compute the gradient of shape index instead of
derivative of curvature as the 3rd order differential quantity,
which is a quantitative measurement of the shape variation of
a surface. Shape index can be taken as a scalar field defined
on 3D discrete surface as proposed in [13]. For a triangular
mesh, the gradient of scale field S(p) at p defined in its local
tangent plane is generally approximated by solving an op-
timization problem using the finite element method (FEM)
[18]. Let qi ∈ N1(p) be the one-ring neighborhood of vertex
p, the gradient ∇S(p) can be estimated by minimizing the
following error:

∇S(p) = argmin
∑

qi∈N1(p)

|∇S(p)TP(−→pqi)−
S(p)− S(qi)

||p− qi||
| (5)

where P(−→pqi) is the projected unit vector of −→pqi in the local
tangent plane TpS.

3. MULTIPLE ORDER DIFFERENTIAL
QUANTITIES BASED LOCAL DESCRIPTORS

Similar to the mesh-SIFT algorithm [14], salient points are
detected in the 3D Gaussian scale space. The original mesh
is firstly smoothed by a Gaussian filter with different values
of standard deviation σ. Curvature is then estimated for each
vertex on the original and smoothed meshes. Given a vertex
p, we compute the difference of estimated curvatures of the
same vertex for each pair of adjacent scales. Finally, this dif-
ference of curvature at a vertex on a given scale is compared
to the differences of its one-ring neighbors on its own scale
as well as the corresponding ones on upper and lower scales.
The vertex is selected as a salient point only if its value is
a local extrema within the neighborhood. In this paper, we
propose to make use of maximum and minimum curvatures
instead of the mean curvature as in [14], since using both the
maximum and minimum curvatures characterizes the shape of
a local region more accurately than only using their average
value i.e. mean curvature. Fig.1 shows the detected salient
points by maximum and minimum curvature respectively.

We extract multiple order surface differential quantities
based local descriptor at the scale where salient points are de-
tected. Around each salient point, a local geodesic disk with



Fig. 1. Salient points detected by κmax (left) and κmin (right).

a radius R is considered. As the same scheme in section 2, we
firstly transform the local patch points to the local coordinate
system, where the salient point is the origin, and its normal
vector is along the positive z axis. In order to make the de-
scriptor invariant to rotation, each salient point is assigned one
or several canonical orientations according to the dominant
direction(s) of gradients in the local tangent plane with 360
bins. Once the canonical orientations are assigned, the local
coordinate system rotates in the local tangent plane, making
each canonical orientation as new x axis. New y axis can be
computed by cross product of z and x. In this new local coor-
dinate system, we project all the neighbors of a salient point to
its tangent plane. Eight projected points along to eight quan-
tized directions starting from canonical orientation with a dis-
tance of r1 to the salient point are fixed. Nine circles centered
at the salient point and its eight neighbors with a radius r2
can be further located. Fig.2 shows this arrangement. In each
circle, we calculate three histograms including surface gra-
dient (HoG), shape index (HoS) and gradient of shape index
(HoGS). For HoG and HoGS, we compute histogram of gra-
dient angle weighted by gradient magnitude. This histogram
is with 8 bins representing 8 main orientations ranging form
0 to 360 degree. For HoS, the values of shape index ranging
from 0 to 1 are also quantized to 8 bins. Then, all the values
of histograms are weighted by Gaussian with the Euclidian
distance to the center point of the circle as the standard de-
viation. Every histogram is then normalized, and the feature
vectors of the three histograms are formed as follows:

HoG = (hog1, hog2, . . . , hog9) (6)

HoS = (hos1, hos2, . . . , hos9) (7)

HoGS = (hogs1, hogs2, . . . , hogs9) (8)

Finally, we concatenate HoG, HoS and HoGS as:

HoG+HoS +HoGS =

(hog1hos1hogs1, hog2hos2hogs2, . . . , hog9hos9hogs9) (9)

which is normalized and used as local descriptor for the fol-
lowing facial surface matching.

4. SURFACE MATCHING BY COUNTING THE
CORRESPONDING POINTS

In order to find the corresponding salient points between two
surfaces, we compare the set of local descriptors by comput-
ing their angles. Let FVi and FVj be the same kind of feature
vectors defined in section 3, the angle of each pair of feature

Fig. 2. Canonical orientation (arrow), salient point and its 8
neighborhood vertices (+) assigned with 9 circles.
vectors is computed as follows:

α = arccos(
< FVi, FVj >

||FVi||||FVj ||
) (10)

The angles of all candidates are ranked in ascending order.
We set two vertices as matched only if the rate between their
first and second angles is smaller than a pre-defined threshold
µ. After this matching step, the number of matched points
between two facial surfaces can be counted. This number is
then used as the similarity measurement.

5. EXPERIMENTAL RESULTS

We tested our method on the Bosphorus database [19], which
contains 4666 textured 3D face models of 105 subjects in var-
ious facial expression, pose and occlusion conditions. In our
experiments, we extracted the depth maps from all face mod-
els and down-sampled them by a factor of 2 for speeding up.
Then, they were converted to 3D triangular meshes simply
by connecting each pair of neighborhood. Fig.3 shows some
samples of the database with six different expressions.

Fig. 3. Some samples with six different expressions, from left
to right, anger, disgust, fear, happy, sadness and surprise.

For each subject, the first neutral face was used as
gallery. For salient point detection, we set σi, (i = 1, 2, 3) to
1.83, 2.5 and 4.8 respectively. Using this configuration of pa-
rameters, the average number of salient points detected based
on κmax and κmin is 293 and 355 respectively. To calculate
descriptors, we set R, r1 and r2 equal to 22.50 mm, 15 mm
and 7 mm respectively. Matching threshold µ was set to 0.70
for HoG and 0.75 for the others.

The matching process was carried out based on the
salient points detected by κmax and κmin respectively, and
the sum of their matched point numbers was then used as
the final decision score. Fig.4 shows two matching results:
the left one is between two neutral faces of the same subject
while the right one is between a neutral and a non-neutral
face of the same person.

Rank one recognition rates of different experiments are
given in Table 1. It shows that the performances of HoG, HoS
and HoGS are 82.50%, 92.11% and 81.93% respectively on
the whole database, and the performance is further improved



Fig. 4. Matched points between neutral to neutral(left) and
neutral to non-neutral (right), salient points detected by κmax.

Table 1. Recognition rates of different descriptors
HoG HoS HoGS HoG+HoS +HoGS

All meshes(4561) 82.50 % 90.11 % 81.93 % 94.10 %
Neutral(194) 99.48% 100% 100% 100 %
Anger(71) 69.01 % 87.32 % 76.06 % 88.73 %
Disgust(69) 50.72 % 56.52 % 60.87 % 76.81 %
Fear(70) 71.43% 88.57 % 84.29 % 92.86 %
Happy(106) 79.25 % 85.85 % 75.47 % 95.28 %
Sadness(66) 80.30% 90.91 % 86.36 % 95.45 %
Surprise(71) 81.69% 97.18 % 84.51 % 98.59 %
LFAU(1549) 88.96 % 95.09 % 90.70% 97.22%
UFAU(432) 94.21 % 98.15 % 95.14 % 99.07%
CAU(169) 92.90 % 97.04 % 95.86 % 98.82%
YR(735) 55.37 % 69.25 % 51.84 % 77.96%
PR(419) 94.27% 96.90% 84.73 % 98.81%
CR(419) 60.66% 79.62% 48.34 % 94.31%
O(381) 92.65% 97.38% 93.96 % 99.21%

to 94.10% by fusing all of them, i.e. HoG+HoS+HoGS. This
result is slightly better than mesh-SIFT [14] which is 93.66%.

In the case of neutral probes, all the descriptors per-
form very well, and their recognition rates are 99.48%,
100%,100%, and 100% respectively. When only consid-
ering the probes with six different expressions, HoG and HoS
achieved the best results (81.69% and 97.18%) in the subset of
surprise expression and HoGS obtained the best one (86.36%)
for face scans displaying sadness. However, the subset with
disgust expression is the most difficult for all of them. When
considering face scans displaying lower facial action unit
(LFAU), upper facial action unit (UFAU), and combined ac-
tion unit (CAU), the performances of HoG+HoS+HoGS are
97.22%, 99.07% and 98.82% respectively. All these results
thus demonstrate the robustness of our descriptor to facial
expression variations. Additionally, the results on the subset
of occlusions (O) show that the proposed method also has
some tolerance to occlusions.

6. CONLUSION

In this paper, we presented a mesh-based 3D face recognition
approach and evaluated it on the Bosphorus database. Our ap-
proach is based on a novel shape descriptor named multiple
order surface differential quantities, (HoG+HoS+HoGS) and
a SIFT-like matching scheme. The surface differential quanti-
ties are extracted on the local neighborhoods of salient points,
which are detected by maximum and minimum curvatures re-
spectively. The matching scores based on both salient point
detection methods are fused for final decision. Experimental
results show the effectiveness of the proposed method and its
robustness to facial expression variations.
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