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Abstract Image and geometry processing applications es-
timate the local geometry of objects using information lo-
calized at points. They usually consider information about
the tangents as a side product of the points coordinates. This
work proposes parabolic polygons as a model for discrete
curves, which intrinsically combines points and tangents.
This model is naturally affine invariant, which makes it par-
ticularly adapted to computer vision applications. As a direct
application of this affine invariance, this paper introduces an
affine curvature estimator that has a great potential to im-
prove computer vision tasks such as matching and register-
ing. As a proof-of-concept, this work also proposes an affine
invariant curve reconstruction from point and tangent data.

Keywords Affine differential geometry · Affine curvature ·
Affine length · Curve reconstruction

1 Introduction

Computers represent geometric objects through discrete
structures. These structures usually rely on point-wise in-
formation combined with adjacency relations. In particular,
most geometry processing applications require the normal
of the object at each point: either for rendering [10], defor-
mation [13], or numerical stability of reconstruction [14].
Modern geometry acquisition processes for curves or sur-
faces usually provide measures of the normals together with
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the point measures. These normals can also be robustly es-
timated only from the point coordinates [12, 17], or from
direct image processing [7, 11].

However, the normal or tangent information is usually
considered separately from the point coordinate, and the de-
finition of geometrical objects such as contour curves or dis-
crete surfaces depends rather on the point coordinates. Al-
though modeling already makes intensive use of this infor-
mation, in particular with Bézier curves, only recent devel-
opments in reconstruction problems proposed to incorporate
these tangents as part of the point set definition [14].

This work proposes a discrete curve representation that
intrinsically combines points and tangents: the parabolic
polygons (Fig. 1), introduced in Sect. 3. This model is natu-
rally invariant with respect to affine transformations of the
plane. This makes it particularly adapted to computer vi-
sion applications, since two contours of the same planar ob-
ject obtained from different perspectives are approximately
affine equivalent [19]. For example, based on this parabolic
polygon, estimators for the affine length and the affine cur-
vature are defined (see Sect. 4). These estimators, being

Fig. 1 Parabolic polygon (right) obtained from a Lissajous curve with
10 samples vs. straight line polygon ignoring tangents (left)
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affine invariant, have a great potential to improve computer
vision tasks like matching and registration [18].

The affine length estimator considered in this paper is
well-known: It has been adapted from [4, 5], and shown to
be optimal in [16]. With respect to affine curvature estima-
tors, the only works we are aware dealing with this issue
are [4, 5] and [2]. They all estimate affine curvature from
five consecutive samples only in convex position, interpo-
lating them by a conic. The affine curvature estimator that
is proposed in this paper is more concise. It estimates the
affine curvature from just three consecutive samples, which
is well suited for applications such as reconstruction, inter-
polation and blending. The convergence properties of both
estimators are described at Sect. 4.

The application to curve reconstruction presented in
Sect. 5 is a variation of [8], where the Euclidean distance
computation is replaced by affine estimates. This leads to
an affine invariant curve reconstruction, which works well
at least on synthetic examples. Moreover, it was observed
that the introduction of the curvature in the algorithm sig-
nificantly improves the stability of the reconstruction, thus
pledging for the validity of the affine curvature estimator.

This paper is an extension of [6], where we handled
mainly convex curves. The main new aspect of the present
paper is the inclusion of double parabolic connections in the
construction of parabolic polygons for non-convex curves,
and the corresponding extensions of the reconstruction al-
gorithm. Subsequently a local, affine invariant criterion for
locating these double parabolic connections is introduced.
This new aspect, although delicate in affine geometry, is crit-
ical to the practical use of the proposed model in computer
vision.

2 Review of Affine Geometry

This section quickly recalls the definitions of affine quan-
tities that are relevant to this work. The reader can find a
detailed presentation of affine geometry of plane curves in
Buchin’s book [3].

Affine Invariance Consider a smooth curve γ in the plane
and A an arbitrary linear transformation of the plane with
determinant 1. A scalar function g on γ is affine invariant
if, for every p ∈ γ , g(A(p)) = g(p). Similarly, a vector-
valued V on γ is affine invariant if, for every p ∈ γ ,
V (A(p)) = A · V (p). This notion is more precisely referred
to as equiaffine invariant, ant it is the only affine invari-
ance considered in this paper. If one considers also invert-
ible linear transformations with arbitrary determinant, then
the transformed functions are multiplied by constants.

2.1 Basic Affine Invariant Quantities

Affine Length Consider a curve γ parameterized by x(t),
t0 ≤ t ≤ t1, and assume that it is convex, i.e., that x′(t) ∧
x′′(t) does not change sign, where the cross product X ∧ Y

denotes the determinant of the 2 × 2 matrix whose columns
are the vectors X and Y . Assuming that x′(t) ∧ x′′(t) > 0,
the number

s(t) =
∫ t

t0

(x′(t) ∧ x′′(t))
1
3 dt

is called the affine parameter and L = s(t1) − s(t0) is called
the affine length of the curve.

Affine Tangent and Normal The affine invariant vectors
v(s) = x′(s) and n(s) = x′′(s) are called affine tangent and
affine normal, respectively. The affine tangent is tangent to
the curve, but the affine normal is not necessarily perpendic-
ular to the curve in the Euclidean sense. In fact, these vectors
are characterized by the equation

v(s) ∧ n(s) = 1. (1)

Affine Curvature Differentiating (1), one can see that x′(s)
and x′′′(s) are co-linear: x′′′(s) = −μ(s)x′(s). The factor
μ(s) is called the affine curvature. Equivalently, one can de-
fine the affine curvature by μ(s) = x′′(s) ∧ x′′′(s).

Comparison with Euclidean Geometry In Euclidean geom-
etry, points have zero length, lines have zero curvature and
circles have constant curvature. By comparison, in affine
geometry, lines have zero length, parabolas have zero curva-
ture and conics have constant curvature.

2.2 Affine Behavior Close to Inflection Points

In order to extend [6] to non-convex curves, it is important to
understand the behavior of the affine quantities near a higher
order tangent. Considering a convex arc x(s) beginning at an
inflection point x(0), its affine length remains finite close to
the inflection, while the affine curvature μ(s) tends to ∞,
when s → 0, and

∫ s1
0 μ(s)ds = ∞ for any s1 > 0.

This behavior can be well observed on the curve x(t) =
(t, tn), n ≥ 3, 0 ≤ t ≤ 1, which has a higher order tangent at
t = 0. Easy calculations lead to an affine parameterization
of the curve:

x(s) = (cs
3

n+1 , cns
3n

n+1 ) with c =
(

(n + 1)3

27n(n − 1)

) 1
n+1

.

The affine tangent and normal are obtained by derivation:

v(s) =
(

3c

n + 1
s

2−n
n+1 ,

3ncn

n + 1
s

2n−1
n+1

)
,



J Math Imaging Vis (2007) 29: 131–140 133

Fig. 2 Affine tangents and normals close to an inflection point

n(s) =
(

3c(2 − n)

(n + 1)2
s

1−2n
n+1 ,

3ncn(2n − 1)

(n + 1)2
s

n−2
n+1

)
.

Observe that the affine tangent tends to an infinite length
vector in the positive x-direction, when s → 0, while the
affine normal tends to an infinite length vector in the x-
direction, but in the negative sense (see Fig. 2). The affine
curvature is given by

μ(s) = (n − 2)(2n − 1)

(n + 1)2
s−2.

Hence μ(s) → ∞, when s → 0, and
∫ s1

0 μ(s)ds = ∞, for
any s1 > 0.

3 Parabolic Polygons

A discrete curve model usually consists of a discrete set of
ordered samples in the plane. When each sample carries only
its coordinates, straight line polygons are natural continuous
representations for it, since line segments have Euclidean
curvature 0. When the samples carry also the information of
the direction of the tangent line, parabolas are a natural con-
nection between two consecutive samples since they have
null affine curvature.

To be more precise, consider ordered samples (xi , li ), 1 ≤
i ≤ n, where li is a line passing through point xi representing
the tangent (see Fig. 1(left)). In this section we shall define
the parabolic polygon of these samples, which is a curve
consisting of arcs of parabolas passing through the points
and tangent to the lines of the samples (see Fig. 1(right)).

The parabolic polygon is constructed in two steps
(Fig. 3): The basic parabolic polygon (Sect. 3.1) is a con-
catenation of single parabolas between consecutive sam-
ples. However, this concatenation may generate incoheren-
cies in the tangent orientation. These incoherencies can be
corrected by choosing one of the parabolas and replacing it
by a double parabolic connection (Sect. 3.2).

3.1 Basic Parabolic Polygon

Parabola between Two Samples Let us first construct a
continuous interpolation between two consecutive samples
(xi , li ) and (xi+1, li+1). If li is not parallel to li+1, there ex-
ists a unique parabola Pi passing through xi and xi+1 and

Fig. 3 A parabolic polygon: the basic parabolas (thin lines), with the
double parabolic connection (bold lines). Observe that the basic part
contains inflection points

Fig. 4 The support points and
triangles of a parabola sampling

tangent to li and li+1 at these points. Denote by zi the point
of intersection of the lines li and li+1. The triangle whose
vertices are xi , zi and xi+1 is called the support triangle (see
Fig. 4). The orientation of the support triangle is defined by
the sign of �i = (zi − xi ) ∧ (xi+1 − zi ), and its area will be
denoted by Ai .

If the orientation of the support triangle is positive, the
affine tangent vectors of Pi at points xi and xi+1 are respec-
tively

vi,1 = − 2

Li

(xi − zi ) and vi,2 = 2

Li

(xi+1 − zi )

where Li = 2A
1/3
i is the affine length of Pi . If the orien-

tation of the support triangle is negative, the signs must be
interchanged. In both cases, the affine normal and the affine
parameterization of Pi are given by

ni = 2

L2
i

(xi +xi+1 −2zi ) and γi(s) = xi + svi,1 + s2

2
ni .

Coherence in Parabolas Concatenation To concatenate
properly two parabolas Pi−1 and Pi , the tangent vectors at
the common point xi must have the same orientation. This
coherence can be checked by the relative positions of points
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Fig. 5 Criterion to construct
connections from an incoherent
sample: substituting the wrong
connection by a double
parabolic arc may create
self-intersection. A pair of
parabolas at the inflection point
can then be constructed in an
affine invariant manner

zi−1, xi and zi in the line li (see Fig. 4). Denote by λi be the
collinearity factor,

zi − xi = λi(xi − zi−1).

If λi > 0, sample i will be called coherent. If λi < 0, then
sample i will be called incoherent (see Fig. 5(a)). Observe
that, if the curve is convex, all the samples are coherent, al-
though the concatenation of parabolas at coherent samples
may also contain inflection point, as shown on Fig. 3.

3.2 Double Parabolic Connections

Simplifying Hypothesis This section describes how to han-
dle incoherent parabolas or parallel tangent lines at consec-
utive samples. In what follows, we shall assume that these
problems do not occur for three consecutive samples. This
hypothesis is not essential, but it makes the description of the
model close to inflection points easier. Besides, if the sam-
ples are obtained with sufficiently density from a smooth
curve with a finite number of inflection points, the hypothe-
sis is valid.

Connections at Incoherent Samples Incoherent samples
always appear close to an inflection point of the original
curve. If λi < 0, the parabolas Pi−1 and Pi cannot be con-
catenated. One should then substitute one of the parabolas,
Pi−1 or Pi , by a pair of parabolas concatenated at a virtual
inflection point that will be called a double parabolic con-
nection.

The criterion to decide which parabola to discard is il-
lustrated on Fig. 5: If zi and xi−1 are on different sides of
the line connecting xi and xi+1, then one substitutes Pi−1. If
they are in the same side, then one substitutes Pi . This proce-
dure was proposed in order to avoid local self-intersections
of the curve.

Constructing Double Parabolic Connections To construct
the double parabolic connection between Pi−1 and Pi+1,
one must find a reasonable point-tangent position to repre-
sent an inflection point and its tangent. The choice of the
exact inflection point has too many degrees of freedom to be
determined only from (xi , li ) and (xi+1, li+1). We thus pro-
pose here a simple, affine invariant heuristic based on the
previous and next sample (see Fig. 5(d)).

Consider the support points zi−1 and zi+1 and define
zi−1 = xi +α(xi − zi−1) and zi+1 = xi+1 +α(xi+1 − zi+1),
where α is fixed to 0.46, which approximates optimally a
regularly sampled cubic (see Fig. 5(d)). The point of inter-
section of the diagonals of the quadrilateral xizi−1xi+1zi+1

is denoted x
i+ 1

2
and the line that passes through zi−1 and

zi+1 is denoted l
i+ 1

2
. The double parabolic polygon is then

the concatenation of the parabola defined by (xi , li ) and
(x

i+ 1
2
, l

i+ 1
2
) with the parabola defined by (x

i+ 1
2
, l

i+ 1
2
) and

(xi+1, li+1).
We can summarize the double parabolic connection pro-

cedure as follows:
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Fig. 6 Affine length estimations on a spiral with 100 samples, before and after an affine transformation

1. [Coherence test] Compute the sign of λi for each sample
(xi , li ).

2. [Valid parabola test] When λi < 0, if (zi−1 − xi ) ∧ (xi −
xi−1) and (xi+1 − xi ) ∧ (xi − xi−1) have opposite signs,
discard Pi−1. Otherwise discard Pi .

3. [Double parabola construction] For each discarded
parabola Pi , insert the sample (x

i+ 1
2
, l

i+ 1
2
) between sam-

ples i and i + 1.

4 Affine Estimators

This section proposes an affine length estimator for any
smooth curve and an affine curvature estimator for convex
curves, both based on the parabolic polygon approximation
of the curve. We further study the convergence of these esti-
mators from the theoretical and experimental points of view.

4.1 The Affine Length and Affine Curvature Estimators

The affine length of a parabolic polygon P is the sum of the
affine lengths Li of the parabolic arcs Pi , where Li was de-
fined from the area of the support triangle at Sect. 3.1. This
affine length can be used as an estimate of the affine length
of any curve. The affine invariance of this affine length esti-
mator can be seen in Fig. 6.

To obtain an estimator for the integral of the affine cur-
vature of a convex curve C, observe that the affine curvature

integral can be approximated by

μ(P ) =
∫

C

μds =
∫

C

(n′(s) ∧ n(s))ds

≈
∑(

n(s + �s) − n(s)

�s
∧ n(s)

)
�s

≈
∑

n(s + �s) ∧ n(s) =
n−1∑
i=2

ni−1 ∧ ni .

For a parabolic polygon, the affine curvature is zero except
at the samples, where it is concentrated. One can define the
affine curvature at a convex sample i by

μi = ni−1 ∧ ni

1
2 (Li−1 + Li)

.

The affine curvature at an inflection point is ∞. These esti-
mators have the important property of being affine invariant
(see Fig. 7).

4.2 Convergence: Theoretical Results

Consider a convex arc C in the plane. Let S = ((xi , li )),1 ≤
i ≤ n be a sampling of C, where li is the line tangent to
C at xi . Denote by h the maximum affine length between
sample points along C. We say that the affine length es-
timator is convergent if L(S) = ∑n−1

i=1 Li converges to the



136 J Math Imaging Vis (2007) 29: 131–140

Fig. 7 Affine estimations on a lemniscate with 51 samples, before and after an affine transformation

affine length L of the curve, when h → 0. Similarly, the
affine curvature estimator is said to be convergent if μ(S) =∑n−1

i=2 ni−1 ∧ ni converges to
∫
C

μ(s)ds, when h → 0.
In [5], it is shown the convergence of the affine length

estimator. The same paper proves that if S1 ⊂ S2, then
L(S1) > L(S2). Moreover, [16] proves that this estimator is
of order 4: |L(S)−L| = O(h4). In the rest of this subsection
we prove the convergence of the affine curvature in the par-
ticular case of constant affine curvature curves and equally
spaced samples. A general proof in the convex case can be
found in [15].

Constant Positive Curvature In this example, we consider
the case of a curve with constant positive affine curvature.
By making an affine transformation of the plane, we can
assume that this curve is a circle. Consider points (xi, yi),
1 ≤ i ≤ n, in a circle of radius R at an affine distance
s = L/n, where L = 2πR

2
3 is the affine length of the cir-

cle [3]. The affine curvature of this circle is μ = R− 4
3 .

The central angle determined by two consecutive points is
2α = 2π

n
.

Simple calculations shows that the affine length of the arc
of parabola Pi is given by

Li = 2R
2
3 sinα

(cosα)
1
3

and that the affine normal is orthogonal to the chord
connecting (xi, yi) and (xi+1, yi+1), with norm ‖ni‖ =
(R cosα)− 1

3 . Thus the estimated affine curvature is given

by ni ∧ ni+1 = (R cos(α))− 1
3 sin(2α). The estimated affine

length of the circle is then

n−1∑
i=1

Li = 2R
2
3 (n − 1)

sin(π
n
)

(cos(π
n
))

1
3
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Fig. 8 Convergence of the affine estimators when the number of samples grows

which converges to the affine length of the circle when
n → ∞. And the estimated affine length

μ(P ) = (n − 2)

(
R cos

(
π

n

))− 2
3

sin

(
2π

n

)

converges to 2πR− 2
3 = Lμ, when n → ∞.

Constant Negative Curvature In this example, we consider
the case of a curve with constant negative affine curvature.
By making an affine transformation of the plane, we can as-
sume that this curve is a hyperbola xy = c, for some c > 0
[3]. Consider points (xi, yi), 1 ≤ i ≤ n, in the hyperbola at

an affine distance s = L/n, where L = (2c)
1
3 ln(xn/x1) is

the affine length of the arc of hyperbola between (x1, y1)

and (xn, yn). The affine curvature of this hyperbola is μ =
−(2c)− 2

3 .
Denote by r = xi+1

xi
= yi

yi+1
. From the fact that the affine

lengths between (xi, yi) and (xi+1, yi+1) along the hyper-

bola is (2c)
1
3 ln(r), one conclude that r does not depend on i.

Straightforward calculations shows that the area of the sup-
port triangle defined by (xi, yi) and (xi+1, yi+1) is given by

c
(r−1)3

2r(r+1)
and so the affine length of Pi is given by

Li =
(

4c

(r + 1)r

) 1
3

(r − 1).

Also, the affine normal to Pi is given by

ni =
(

r2

2(r + 1)c2

) 1
3

(xi, yi+1),

thus

ni−1 ∧ ni =
(

r + 1

4cr2

) 1
3

(1 − r).

We conclude that

n−1∑
i=1

Li = (n − 1)

(
4c

(r + 1)r

) 1
3

(r − 1)

converges to L. And that the estimated affine curvature of
the arc

n−1∑
i=2

ni−1 ∧ ni = (n − 2)

(
r + 1

4cr2

) 1
3

(1 − r)

converges to (2c)− 1
3 ln(xn/x1) = Lμ.

4.3 Convergence: Experimental Results

The proposed estimators were tested with samples of smooth
curves, sometimes with isolated singular points. The affine
lengths were estimated for all curves, but the total curva-
ture,

∫
C

μds, only for convex curves. The local curvature
at a fixed point was calculated for all curves. The results
confirm the theoretically proved convergence of the affine
length and curvature estimators (see Fig. 8).

Calabi et al. [5] estimate, from 5 points, the affine curva-
ture at the central point, while in our method, this estimation
is obtained from 3 pairs (xi , li ). The experimental compari-
son of both methods is shown in Fig. 9. In these experiments,
our method had shown a faster convergence.
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Fig. 9 Comparison of the relative total curvature error using [5] and our technique

5 Affine Curve Reconstruction

This section proposes a curve reconstruction algorithm from
points and tangents to test the validity of the proposed model
and estimators on a simple and practical application. This is
the typical case, for example, of a shape extracted by edge
detection from an image, or from direct measures produced
by laser scanner. Given a finite set of point-line samples
{(x1, l1), . . . , (xn, ln)}, where li represent the tangent line at
point xi , how to sort these pairs to obtain a parabolic poly-
gon representing a “reasonable” curve? If the samples are
obtained from a smooth curve, one expects the reconstructed
parabolic polygon to be “close” to the original curve. The
solution proposed here uses intrinsically the tangent infor-
mation and is affine invariant. It is a greedy method adapted
from [8] for the parabolic polygon model. It further uses our
affine curvature estimator in a way similar to [9].

5.1 The Reconstruction Algorithm

The algorithm starts with the pair ((xi , li ), (xj , lj )) which
have the smallest affine distance. The algorithm then pro-
ceeds greedily, looking for the pair (xk, lk) which is at a
minimum affine distance of (xj , lj ), with three restrictions:

1. it avoids samples which were already connected to two
other samples;

2. it rejects big changes in affine length, say L(xj ,xk) >

rL(xi ,xj ), for some r > 0;
3. it rejects big affine curvatures, say μ(xi ,xj ,xk) > κ , for

some κ > 0.

This last condition is added to avoid undesirable deviations
as illustrated on Fig. 10, but it can also indicate proximity
of an inflection point. Observe that the affine length compu-
tation uses the double parabolic connection in case of inco-
herence at a sample. The algorithm can get stuck when all

Fig. 10 Point x5 is at the smallest affine distance of x, but it is re-
jected because it would induce a big affine curvature (left area), while
connection with x1 induces a smaller curvature (right area)

the free samples would induce big curvatures or big affine
length. In such case, the algorithm returns to the initializa-
tion phase, looking for the smallest available connection.

5.2 Reconstruction Results on Synthetic Examples

Figure 11 provides a visual comparison between the pro-
posed algorithm and the Euclidean reconstruction algorithm.
The algorithm used for the Euclidean reconstruction is based
on [8]. As expected, the use of the tangent information im-
proves dramatically the result. It is also interesting to ob-
serve the affine invariance of the proposed algorithm. The
effect of the parameter k, that controls undesirable devia-
tions, can be observed in Fig. 12 and Fig. 13.

6 Conclusion and Future Work

Conclusion In this work the parabolic polygon is proposed
as a model for discrete curves that takes into account the
position and the tangent line at each sample. Based on this
model, an affine length estimator and an affine curvature
estimator are proposed. The model and the estimators are
affine invariant, which shows they have a great contribution
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Fig. 11 (Color online)
Euclidean and affine
reconstructions of a singular
curve, before and after an affine
transformation: colors indicate
the reconstruction order, from
blue to red

Fig. 12 Influence of the
curvature threshold on the
reconstruction of a Lissajous
curve

Fig. 13 Influence of the
curvature threshold on the
reconstruction of a rosace

potential in computer vision tasks like matching and regis-
tering. This work proposes also a curve reconstruction algo-
rithm based on the model. The validity of the affine length
and affine curvature estimators were checked in this algo-
rithm.

Future Work From the theoretical point of view, an inter-
esting problem, related to the use of projective differential
invariants in computer vision, is to look for the delicate
problem of projective invariant models and projective invari-
ant estimators [1].

Another interesting generalization is related to the recon-
struction problem for surfaces in 3D: given a set of sample
points and normals in 3D, how to describe an affine invariant
model of the corresponding surface. Closely related to this
question is the definition of good estimators for the affine
area and affine curvatures of a surface.

From the practical point of view, the effective use of the
estimators in computer vision tasks is certainly a possibility
that should be explored.
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