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Abstract. In this article, we prove the following theorem: A complete hypersurface of the hyperbolic
space form, which has constant mean curvature and non-negative Ricci curvature ¢, has non-negative
sectional curvature. Moreover, if it is compact, it is a geodesic distance sphere; if its soul is not reduced
to a point, it is a geodesic hypercylinder; if its soul is reduced to a point p, its curvature satisfies
[[VQ]| < co, and the geodesic spheres centered at p are convex, then it is a horosphere.
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1. Introduction

In 1899, H. Liebmann proved that spheres are the only surfaces with constant
Gaussian curvature. In 1900, he also proved that spheres are the only ovaloids
with constant mean curvature in Euclidean space (see [Hop83] for example). Gen-
eralizations of these classical rigidity results were made by many authors (D.
Hilbert, H. Hopf, S. S. Chern, among others). K. Nomizu and B. Smyth [NS69]
proved in 1969 that a non-negatively curved compact hypersurface with constant
mean curvature of Euclidean space or a sphere, is a standard sphere, or a product
of two spheres. In 1975, S. T. Yau improved this result when the hypersurface
of Euclidean space has non-negative Ricci curvature, showing that, in this case,
the hypersurface is a sphere [Yau74]. Recently, R. Walter [Wal85] gave the clas-
sification of non-negatively curved compact hypersurfaces in space form, with
constant r-mean curvature. In this paper, we shall deal with the same problem
in the hyperbolic space, under the weaker assumptions that the hypersurface is
only complete, and its Ricci curvature is non-negative. Our conjecture is as fol-
lows (we denote by H"t! the simply connected space form of constant sectional
curvature-1):

* A part of this work has been done when the second author visited Université Claude Bernard
Lyon 1, and was supported by a grant of the People’s Republic of China.
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CONJECTURE. Let M be a complete hypersurface of the hyperbolic space
form H™' with non-negative Ricci curvature, and constant mean curvature.
Then, M is a geodesic distance sphere, a horosphere, or a geodesic hyper-
cylinder

(By a geodesic distance sphere in H™t! we mean the submanifold of points
which are at a fixed distance of a fixed point. Such a hypersurface is totally
umbilical. A hypercylinder is isometric with R x §"~2, a product of a line with
a sphere, and embedded in H™*! as the normal sphere bundle of a geodesic.
Finally, to define a horosphere, we begin to remember that H™*! has a standard
embedding in Minkowsky space E™t2, A horosphere of H"™*! is a flat (umbilical)
hypersurface of H™*! obtained as the intersection of a hyperplane of E™*2 with
H”+1.)

We cannot prove the conjecture in general. Our main observation is that the
assumptions imply that the hypersurface M has non-negative curvature and we
deal with its soul. If the soul is not a point, we can conclude that its dimension is
1 or (n — 1), and we show that M is isoparametric. When its soul is reduced to
a point p we cannot conclude. In this case, to prove that M is isoparametric, we
must add the following geometric conditions:

@ [[VQ]| < oo,
(b) the geodesic spheres centered at p are convex.

Then, we use the classical classification of isoparametric hypersurfaces of
space forms (see [CR85] for instance). The way to prove that M is
isoparametric consists in applying the Hopf lemma and its generalization to com-
plete manifolds (due to S. T. Yau [Yau75b]), to suitable functions. We have
no problem when this function is a square of the norm of the second funda-
mental form: it is a smooth function, and we can apply standard methods
to compute its Laplacian and apply the Hopf lemma. However, we need to
compute the Laplacian of the first eigenvalue of the second fundamental form,
which is not smooth in general. That is why we consider a sequence of
smooth functions, which approach locally the first principal curvature function,
and work with the Laplacian of this sequence. The method used here may be
regarded as an attempt to solve the classifying problems under completeness
conditions.

2. Local Study of Hypersurfaces of the Hyperbolic Space Form

First of all, we derive from Gauss equation the local behavior of hypersurface of
H™! with non-negative Ricci curvature. we can summarize the results in the
following
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PROPOSITION 1. Let M be a hypersurface with non-negative Ricci curvature,
of a space of constant sectional curvature —1. Then, at p.

1. The second fundamental form h of M is positive semi-definite, of negative
semi-definite.

2. H > 1,and if H is equal to 1 at p, then p is an umbilical and flat point.

3. Let A\; > -+ > Ap 2> O be the principal curvatures at p, and (ey,. .., e,)
be a corresponding local frame of principal vectors, that we extend on a
neighborhood of p. The sectional curvature tensor K;; = K(e;, e;) satisfies
at p, in this frame:

Ki; = MiA; — 1 ifi # j. In particular,
Kij 2 Kin—iyn ifi#4.
4. The Ricci curvature tensor Q; = Q(e;) satisfies in this frame:

Qi=—(n—-1)+Xi(nH - X;).

Moreover,
G 2= 26 2=+ 2100,
and
n = inf v
@ {v.IEvi|=1}Q( )
5. 1fQn=0,thenKipn =+ = Kn_1)n = 0,and Ay = - -+ = Mg, An = ATL.

6. i ;(Ai— )\j)zf(,;_,' > 0.

Remark. In the following, we shall always assume that h is positive semi-
definite. (If not, we replace the normal vector field of the hypersurface by its
opposite.)

Proof of Proposition 1. Consider the second fundamental form A asa (1 — 1)-
tensor. From the Gauss equation, we deduce immediately:

nH (h(v),v) = Q(v) + (n — 1)(v,v) + (h(v), h(v)),

for every vector v, tangent to the hypersurface. (1)—(5) are consequences of this
equality. (6) is a consequence of the following

LEMMA 1. Let
ay 2 -+ 2 an,
by 22 by,

be two sequences of real numbers. Then,
Y aibi > aib;, > aiba;
i i i

for any permutation ji, ..., jn.
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PROPOSITION 2. Let M be a hypersurface with non-negative sectional curvature,
of a space of constant sectional curvature —1. Let p be a point of M and let
u,v, € ST, M be two unit vectors such that:

Then,

H,-1
Max(Q(u), Q(0))p > 5eE Ty

Proof. Take any point p of M. At p, we have:

An—l/\n =1 Z 01
/\n-—] 2 Ana

hence A,,_; > 1, and moreover
M > H.

Then,

n
Gy = Hmidi =14 3 Bien ) & B =1,
=2

Let « and v be two unit tangent vectors at p such that:

T & <( - 3r
= 1 =
g S0
We put:
T i T .
u= Zu‘e,-, = Zv‘ei.
i=1 i=1
We shall prove that:

n—1 5 1 n=1 5 1

e > ——— e > ——
?;(u) = 8(n—1) o ;(v) ~8(n—-1)
In fact, if

n—1 1 n—1 1

Z(‘U.i)" < g(—n—_T)‘, and ;(l‘i)z < S_(Fﬁ?
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then,

()2 >1- (V"2 > 1 -

8(n—1) 8(n—1)

This would imply:

|cos(< (u,0))] 2 [umo"] -

n—1 e
5 i
=1

> o] - (ﬂi(u"mf)z)
i=1
1 V2
T R

This leads to a contradiction. Finally,

n—1

n—1
Max(Q(u), Q(v)) > Max (Z(u“’f@f, Z(v")zczg)
=1

=1

n—1 -1

> Max (Z(u‘f@n_l,Z(v*’)an_I)
1=1 i=1

% H-1

- 8(n—-1)

The following Proposition is well known ([Che73], for example):

PROPOSITION A. Let M be a hypersurface with non-negative Ricci curvature,
of a space of constant sectional curvature —1. Suppose that M has constant mean
curvature. Let De denote the Laplace—Beltrami operator. Then, we have:

Ah.g'_}' = nHégJ’ — ‘nh{j +nH Zhilhlj = “h||2h1;j,
l

AllR]]> = 2| VR|* + D (A — X)) K.

i,

3. Complete Hypersurfaces with Constant Mean Curvature in the
Hyperbolic Space Form

3.1. THE COMPACT CASE

In this section, we begin by the simplest case: we assume that the hypersurface is
compact, and prove the following
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THEOREM 1. Let M be a compact hypersurface of H"+! with non-negative Ricc
curvature, and constant mean curvature. Then M is a (totally umbilic) geodesi,
distance sphere.

Proof. The proof of Theorem 1 is standard: Assume that M is compact. Apply
ing Proposition 1(6) and the Hopf lemma, we deduce from Proposition A that b
has a parallel second fundamental form. Then M is isoparametric ([Law69]). Now
since M is compact in H™t!, we know from [Wal85] that M is a geodesic sphere
(Remark that this result is related to a special case of the theorem of Alexandro!
which says that any compact hypersurface embedded in a Euclidean or hyperboli
space with constant mean curvature, is a round sphere [Esc89]).

3.2. THE COMPLETE CASE

We continue the discussion and give results on complete hypersurfaces in a hype:
bolic space form with constant mean curvature, and non-negative Ricci curvature
Although we cannot get a general complete theorem of classification, we are abl
to solve completely the problem when the soul of the hypersurface is not a poin
or when the gradient of the Ricci curvature is finite at infinity. We state our mai
theorems:

THEOREM 2. Let M be a complete (non-compact) hypersurface of H nt 1 wit
non-negative Ricci curvature @, and constant mean curvature. Then, M has nor
negative sectional curvature. Moreover, suppose that one of the two followin
conditions hold:

1. The soul of M is not reduced to a point.
2. The soul of M is reduced to a point p, and

IVQIl < o,
and the geodesic spheres centered at p are convex.
Then, M is a geodesic hypercylinder, or a horosphere.

The proof of this theorem will be done in many steps. It will be a consequence
Theorems 3 and 4 below (Sections 3.7 and 3.8).

3.3. BEHAVIOR AT INFINITY

3.3.1. Study of the First Principal Curvature of a Complete
Hypersurface of H™*!

On any hypersurface M of any manifold (with oriented normal bundle), we cz
define the function A; which associates to each point p of M the largest princip
curvature at p. Of course, this function is not of class C? in general, but it

continuous. We shall say that the point p is A1-regularif A\ is C 2 on a neighborhoc
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of p. It is well known that the measure of the set of points ¢ which are not Aj-regular
is zero in M. We shall say that M is Aj-regular if Ay is of class C? in M.

LEMMA 2. Let M be a hypersurface of M™+! with non-negative Ricci curvature,
and constant mean curvature. Let p be a \i-regular point of M. Then at p:

1
e - A)Qi = 0.
Az o= (=A@ 2

Proof. From Proposition A, we have:

Ahy = nH —nh +nHX} = A\ )M,
= 3 (A= A) (A - 1),

Using Proposition 1(4), and the fact that the Ricci curvature of M is non-
negative, we have:

Qi=(n-1D(MI-1)>0.

From this, we deduce immediately that
1
AX > = Z‘_:(/\l - A)Qi = 0.

Now, we need the following:
DEFINITION 1. We put

A = sup Ai(p),
peM

§ = sup |[hl*(p)-
pEM
Since H is constant and the principal curvatures are non-negative (see Propo-
sition 1.3), A and § are finite. In particular, if M is A;-regular, we can apply the
generalized maximum principle of S. T. Yau [Yau75a] and immediately get the
following

PROPOSITION 3. Let M be a complete (non-compact) Ay-regular hypersurface
of H™*! with non-negative Ricci curvature and constant mean curvature. Then
there exists a sequence () such that:

1. Iimk_,m )\](.?:k) = A,



