A cohomology class for totally real surfaces in $\ensuremath{\mathbb{C}}^2$

By Bang-yen Chen and Jean-Marie Morvan

Reprinted from
JAPANESE JOURNAL OF MATHEMATICS
Vol. 21, No. 1, pp. 189–205
June 1995

A cohomology class for totally real surfaces in \mathbb{C}^2

By Bang-yen Chen and Jean-Marie Morvan

(Received December 7, 1992) (Revised April 19, 1994)

§1. Introduction

Let \widetilde{M} be a Kaehler surface endowed with almost complex structure J and inner product \langle , \rangle and M an oriented surface immersed in \widetilde{M} . We denote the tangent space and the normal space of M in \widetilde{M} at p by T_pM and $T_p^{\perp}M$, respectively. For a given positive orthonormal basis $\{e_1, e_2\}$ of T_pM , we put

(1.1)
$$\theta(T_p M) = \arccos(\langle Je_1, e_2 \rangle).$$

Then $\theta(T_pM) \in [0,\pi]$ is independent of the choice of the positive orthonormal basis $\{e_1,e_2\}$ and θ is a continuous function on M. $\theta(T_pM)$ is called the Wirtinger angle of M at p (or the holomorphic angle by A. Lichnerowicz [7]). If $\theta(T_pM) = 0$ (respectively, $\theta(T_pM) = \pi$, or $\theta(T_pM) = \frac{\pi}{2}$), then the point p is called a complex (respectively, anti-complex, or Lagrangian) point of M in \widetilde{M} . A surface M in \widetilde{M} is said to be holomorphic (respectively, anti-holomorphic or Lagrangian) if $\theta(T_pM) = 0$ (respectively, $\theta(T_pM) = \pi$ or $\theta(T_pM) = \frac{\pi}{2}$), for any $p \in M$. Furthermore, a surface M in \widetilde{M} is called slant if its Wirtinger angle is constant.

Throughout this article, by totally real surface in \widetilde{M} we mean a surface without complex points and anti-complex points. (Hence, the meaning of totally real surfaces in this article is different from the one given in [5]). Since the Wirtinger function θ fails to be differentiable only at complex and anti-complex points, θ is a differentiable function on a totally real surface.

Recall that a regular homotopy is a family of immersions π_t , $t \in [0, 1]$ from a manifold into another such that π_t and all its derivatives depend continuously on the parameter t. Immersions π_0 and π_1 are regularly homotopic if there exists a regular homotopy connecting π_0 to π_1 . It is known that every totally real immersion of a surface in \mathbb{C}^2 is regularly homotopic to a Lagrangian immersion (Gromov [6]). Moreover, all totally real immersions of a surface in \mathbb{C}^2 are regularly homotopic to each other. In particular, this result implies that there exist no regularly homotopic invariants for totally real surfaces in \mathbb{C}^2 through regular homotopy.

In this article, we define a differentiable 1-form on a totally real surface in a Kaehler surface \widetilde{M} . (In fact, this 1-form can be defined on any surface in \widetilde{M} by removing all complex and anti-complex points on the surface.) When \widetilde{M} is flat, this 1-form is closed and hence it defines a cohomology class on M. In §4 we prove that this cohomology class is indeed an integral class when the ambient space \widetilde{M} is \mathbb{C}^2 which is nothing but an extension of the Maslov class. As a consequence, this integral cohomology class gives rise to a homotopic invariant for totally real immersions of a surface in \mathbb{C}^2 through totally real regular homotopy.

As applications we derive some isoperimetric inequalities for totally real surfaces in \mathbb{C}^2 .

§2. Preliminaries

Let M be an oriented surface immersed in a Kaehler surface \widetilde{M} . We denote by A, D, h, and H the Weingarten map, the normal connection, the second fundamental form, and the mean curvature vector of M in \widetilde{M} , respectively. Let $\widetilde{\nabla}$ and ∇ denote the Levi-Civita connections of \widetilde{M} and of M with the induced metric, respectively.

For a tangent vector $X \in T_pM$, we put

where PX and FX are the tangential and the normal components of JX, respectively. Consequently, we have an endomorphism $P:TM\to TM$ and a linear map $F:TM\to T^\perp M$.

For a normal vector $\xi \in T_p^{\perp}M$, we put

$$(2.2) J\xi = t\xi + f\xi,$$

where $t\xi$ and $f\xi$ are the tangential and the normal components of $J\xi$, respectively. In the following we assume that M is an orientable totally real surface in \widetilde{M} unless mentioned otherwise.

For a given positively oriented local orthonormal frame field $\{e_1, e_2\}$ on M, we choose a local orthonormal frame field $\{e_3, e_4\}$ such that

(2.3)
$$e_3 = (\csc \theta) F e_1, \quad e_4 = (\csc \theta) F e_2.$$

Then we have $Pe_1 = (\cos \theta)e_2$, $Pe_2 = -(\cos \theta)e_1$. We call such a local frame field $\{e_1, e_2, e_3, e_4\}$ an adapted frame field. From (2.3) we have

(2.4)
$$te_3 = -\sin\theta e_1$$
, $te_4 = -\sin\theta e_2$, $te_3 = -\cos\theta e_4$, $te_4 = \cos\theta e_3$.

Let $\{e_1, e_2, e_3, e_4\}$ be a local orthonormal frame field on \widetilde{M} such that, restricted to M, it is an adapted frame field. Let $\{\omega^1, \omega^2, \omega^3, \omega^4\}$ be the field of dual frames. The structure equations of \widetilde{M} are given by

(2.5)
$$d\omega^A = -\sum_B \omega_B^A \wedge \omega^B, \quad \omega_B^A + \omega_A^B = 0, \quad 1 \le A, B, C, D \le 4,$$

and

(2.6)
$$d\omega_B^A = -\sum_C \omega_C^A \wedge \omega_B^C + \widetilde{\Omega}_B^A, \quad \widetilde{\Omega}_B^A = \frac{1}{2} \sum_{C,D} \widetilde{R}_{BCD}^A \omega^C \wedge \omega^D.$$

If we restrict these forms to M, then $\omega^r = 0$, r = 3, 4. Since

(2.7)
$$0 = d\omega^r = -\sum_i \omega_i^r \wedge \omega^i, \quad 1 \le i, j, k, \ell \le 2,$$

Cartan's lemma yields

(2.8)
$$\omega_i^r = \sum_j h_{ij}^r \omega^j, \quad h_{ij}^r = h_{ji}^r,$$

where

(2.9)
$$h_{ij}^r = \omega_i^r(e_j) = \langle A_{e_r}e_i, e_j \rangle = \langle h(e_i, e_j), e_r \rangle.$$

From these formulas we obtain

(2.10)
$$d\omega^{i} = -\sum_{j} \omega_{j}^{i} \wedge \omega^{j}, \quad \omega_{j}^{i} + \omega_{i}^{j} = 0,$$

(2.11)
$$d\omega_j^i = -\sum_k \omega_k^i \wedge \omega_j^k + \Omega_j^i, \quad \Omega_j^i = \frac{1}{2} \sum_{k,\ell} R_{jk\ell}^i \omega^k \wedge \omega^\ell,$$

(2.12)
$$R_{jk\ell}^{i} = \widetilde{R}_{jk\ell}^{i} + \sum_{r} (h_{ik}^{r} h_{j\ell}^{r} - h_{i\ell}^{r} h_{jk}^{r}),$$

(2.13)
$$d\omega_i^r = -\sum_j \omega_j^r \wedge \omega_i^j - \sum_s \omega_s^r \wedge \omega_i^s + \widetilde{\Omega}_i^r.$$

We need the following two lemmas from [2].

Lemma 2.1. Let M be a totally real surface immersed in a Kaehler surface \widetilde{M} . Then for any vector fields X, Y tangent to M, we have

$$(\nabla_X P)Y = th(X, Y) + A_{FY}X,$$

$$(\nabla_X F)Y = fh(X, Y) - h(X, PY),$$

where
$$(\nabla_X P)Y = \nabla_X (PY) - P(\nabla_X Y)$$
 and $(\nabla_X F)Y = D_X (FY) - F(\nabla_X Y)$.

Lemma 2.2. Let M be a totally real surface immersed in a Kaehler surface. Then, with respect to an adapted frame $\{e_1, e_2, e_3, e_4\}$ we have

$$(\nabla_X P)e_1 = X(\cos\theta)e_2, \quad (\nabla_X P)e_2 = -X(\cos\theta)e_1.$$

PROOF. By the definition of ∇P , we have

$$(\nabla_X P)e_1 = \nabla_X (Pe_1) - P(\nabla_X e_1)$$

= $\nabla_X ((\cos \theta)e_2) - P(\omega_1^2(X)e_2) = X(\cos \theta)e_2.$

Similarly we obtain the corresponding formula for $(\nabla_X P)e_2$.

We also need the following.

Lemma 2.3. Let M be an oriented totally real surface immersed in a Kaehler surface M. Then, with respect to an adapted frame, we have

- (i) $h_{12}^3 = h_{11}^4 d\theta(e_1)$, $h_{12}^4 = h_{22}^3 + d\theta(e_2)$,
- (ii) $\omega_3^4(e_1) \omega_1^2(e_1) = -\cot\theta(\operatorname{trace} h^3 + d\theta(e_2)),$
- (iii) $\omega_3^4(e_2) \omega_1^2(e_2) = -\cot\theta(\operatorname{trace} h^4 d\theta(e_1)).$

PROOF. (i) follows easily from Lemma 2.1 and Lemma 2.2. By using (2.3) and (2.4), we get

$$\begin{split} D_{e_1}e_3 &= D_{e_1}(\csc\theta Fe_1) = (\csc\theta)De_{e_1}(Fe_1) - (\cot\theta)(e_1\theta)e_3\\ &= (\csc\theta)\{F(\nabla_{e_1}e_1) + fh(e_1,e_1) - h(e_1,Pe_1)\} - (\cot\theta)(e_1\theta)e_3\\ &= (\csc\theta)\{\omega_1^2(e_1)Fe_2 + h_{11}^3fe_3 + h_{11}^4fe_4 - \cos\theta(h_{12}^3e_3 + h_{12}^4e_4)\}\\ &\qquad - (\cot\theta)(e_1\theta)e_3\\ &= \omega_1^2(e_1)e_4 - (\cot\theta)((\operatorname{trace} h^3)e_4 + d\theta(e_2))e_4. \end{split}$$

This implies (ii). Similarly, we may obtain (iii).

§3. 1-form Φ

For an oriented Riemannian surface M with volume form *1, there exists a canonical endomorphism $j:TM\to TM$ defined by

$$(3.1) \langle jX,Y\rangle = 2(*1)(X,Y), \quad X,Y \in TM.$$

This endomorphism j is the canonical almost complex structure of the Riemannian surface M. In particular, if e_1 , e_2 is a positive orthonormal frame field of M, we have $je_1 = e_2$, $je_2 = -e_1$.

We recall that a Kaehler surface \widetilde{M} admits a canonical symplectic structure Ω given by

(3.2)
$$\Omega(X,Y) = \langle X, JY \rangle, \quad X,Y \in T\widetilde{M}.$$

For an oriented totally real surface M immersed in a Kaehler surface \widetilde{M} , we introduce a 1-form Φ on M defined by

(3.3)
$$\Phi(X) = \frac{1}{2\pi \sin^2 \theta} \{2\Omega(H, X) + \sin \theta (d\theta \circ j)(X)\}, \quad X \in TM,$$

where θ is the Wirtinger function on M and $H = \frac{1}{2}\operatorname{trace} h$ is the mean curvature vector field.

In this section we shall prove the following.

Theorem 3.1. Let M be an oriented totally real surface in a Kaehler surface \widetilde{M} . With respect to an adapted frame, we have

(3.4)
$$d\Phi = \frac{1}{2\pi \sin \theta} \left(\widetilde{\Omega}_1^3 + \widetilde{\Omega}_2^4 \right).$$

In particular, if \widetilde{M} is flat, then $d\Phi = 0$; and hence Φ defines a cohomology class: $[\Phi] \in H^1(M; \mathbb{R})$.

PROOF. Let e_1, e_2, e_3, e_4 be an adapted frame field on the oriented totally real surface M in \widetilde{M} and let $X = X^1e_1 + X^2e_2$ be a tangent vector field of M. Then, from (2.3), (3.1), and (3.2), we have

(3.5)
$$2\Omega(H,X) = \sin\theta \left((h_{11}^3 + h_{22}^3)X^1 + (h_{11}^4 + h_{22}^4)X^2 \right),$$

$$(3.6) \qquad (d\theta \circ j)(X) = X^1 d\theta(e_2) - X^2 d\theta(e_1).$$

Thus, by (3.3), (3.5), and (3.6), we get

$$\Phi(X) = \frac{1}{2\pi \sin \theta} \{ (h_{11}^3 + h_{22}^3) X^1 + (h_{11}^4 + h_{22}^4) X^2 + X^1 e_2 \theta - X^2 e_1 \theta \}.$$

By combining this with (i) of Lemma 2.3, we may obtain

$$\Phi(X) = \frac{1}{2\pi \sin \theta} (h_{11}^3 X^1 + h_{12}^3 X^2 + h_{21}^4 X^1 + h_{22}^4 X^2).$$

This implies

$$\Phi = \frac{1}{2\pi \sin \theta} (\omega_1^3 + \omega_2^4).$$

By (2.13), we find

(3.8)
$$d(\omega_1^3 + \omega_2^4) = (\omega_1^2 - \omega_3^4) \wedge (\omega_2^3 - \omega_1^4) + \widetilde{\Omega}_1^3 + \widetilde{\Omega}_2^4.$$

Therefore, by (3.7) and (3.8), we get

$$2\pi d\Phi = d(\csc\theta) \wedge (\omega_1^3 + \omega_2^4) + \csc\theta \{ (\omega_1^2 - \omega_3^4) \wedge (\omega_2^3 - \omega_1^4) + \widetilde{\Omega}_1^3 + \widetilde{\Omega}_2^4 \}.$$

This yields

$$2\pi d\Phi(e_1, e_2) = -\frac{\cos \theta}{2\sin^2 \theta} \{ d\theta(e_1)(h_{12}^3 + h_{22}^4) - d\theta(e_2)(h_{11}^3 + h_{12}^4) \}$$
$$+ \csc \theta \{ (\omega_1^2 - \omega_3^4) \wedge (\omega_2^3 - \omega_1^4) + \widetilde{\Omega}_1^3 + \widetilde{\Omega}_2^4 \} (e_1, e_2).$$

Combining this formula with Lemma 2.3 imply (3.4).

If L is a Lagrangian surface in \mathbb{C}^2 , then L has no complex points and anticomplex points. Since $\theta = \frac{\pi}{2}$ in this case, (3.3) reduces to

(3.9)
$$\Phi = \frac{1}{\pi} \langle JH, \rangle.$$

Since the Maslov class m(L) of a Lagrangian surface L in \mathbb{C}^2 is also represented by $\frac{1}{\pi}\langle JH, \rangle$ (cf. [8]), we have the following.

THEOREM 3.2. If L is a Lagrangian surface in \mathbb{C}^2 , then the cohomology class $[\Phi]$ of L is equal to the Maslov class m(L) of L.

As an application of Theorem 3.1 we have the following.

Theorem 3.3. Let M be a totally real minimal surface in a flat Kaehler surface \widetilde{M} . If M is compact, then M is a slant surface (in the sense of [2]). Moreover, we have $\Phi = 0$.

PROOF. Since M is a totally real minimal surface in \widetilde{M} , (3.3) gives

(3.10)
$$\Phi = \frac{1}{2\pi} \left(d \left(\ln \left(\tan \frac{\theta}{2} \right) \right) \circ j \right).$$

Because \widetilde{M} is flat, $d\Phi = 0$ by Theorem 3.1. Hence, by the Poincaré lemma, Φ is locally exact. By passing, if necessary, to the two-fold covering surface, we may assume M is orientable. It is then possible to choose a system of isothermal coordinates $\{x,y\}$ covering M with the metric tensor g given by $g = E(dx^2 + dy^2)$. Because Φ is locally exact, there exists a local function f such that

(3.11)
$$d\left(\ln\left(\tan\frac{\theta}{2}\right)\right) \circ j = df.$$

From (3.11), we see that $\ln\left(\tan\frac{\theta}{2}\right)$ and f are harmonic conjugates, *i.e.*,

$$(3.12) \qquad \frac{\partial f}{\partial x} = \frac{\partial}{\partial y} \left(\ln \left(\tan \frac{\theta}{2} \right) \right), \quad \frac{\partial f}{\partial y} = -\frac{\partial}{\partial x} \left(\ln \left(\tan \frac{\theta}{2} \right) \right).$$

Since the Laplacian of M is given by $\Delta = -\frac{1}{E} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$, (3.12) implies that $\ln \left(\tan \frac{\theta}{2} \right)$ is a harmonic function on M. Since M is compact, θ is constant. Hence M is a slant surface in \widetilde{M} . In particular, from (3.3), we get $\Phi = 0$.

Remark 3.1. Although there exist no compact minimal surfaces in \mathbb{C}^2 , there do exist compact minimal slant surfaces in flat Kaehler surfaces with an arbitrarily prescribed slant angle.

§4. The cohomology class of totally real surfaces in \mathbb{C}^2

The main purpose of this section is to prove the following two theorems.

THEOREM 4.1. Let M be an oriented totally real surface in \mathbb{C}^2 . Then the cohomology class $[\Phi]$ of M is an integral class, i.e., $[\Phi] \in H^1(M; \mathbb{Z})$.

Theorem 4.2. Let M be an oriented totally real surface in \mathbb{C}^2 . Then the cohomology class $[\Phi]$ is an invariant through totally real regular homotopy.

In order to prove these two results, we need to derive a precise expression of the canonical 1-form Φ in terms of the Gauss map. Thus we need to recall some basic facts concerning the geometry of the Grassmannian G(2,4) which consists of all oriented 2-planes in the Euclidean 4-space E^4 (see, for instances [2, 3], for more details).

Assume E^4 is oriented by its canonical orthonormal frame:

$$\epsilon_1 = (1, 0, 0, 0), \quad \epsilon_2 = (0, 1, 0, 0), \quad \epsilon_3 = (0, 0, 1, 0), \quad \epsilon_4 = (0, 0, 0, 1).$$

Let \langle , \rangle be the canonical inner product on E^4 . Denote by $\{\theta^1, \theta^2, \theta^3, \theta^4\}$ the dual frame of $\{\epsilon_1, \epsilon_2, \epsilon_3, \epsilon_4\}$. Let $\wedge^2 E^4$ be the space of 2-vectors of E^4 and $D_1(2,4)$ the

set consisting of all unit decomposable 2-vectors in $\wedge^2 E^4$. $\wedge^2 E^4$ is a 6-dimensional real vector space with its canonical inner product given by

$$(4.1) \langle X_1 \wedge X_2, Y_1 \wedge Y_2 \rangle = \det(\langle X_i, Y_j \rangle).$$

It is known that the Grassmannian G(2,4) can be identified with the set $D_1(2,4)$ via the map $\phi: G(2,4) \to D_1(2,4)$ defined by $\phi(V) = e_1 \wedge e_2$, for a positive orthonormal basis $\{e_1, e_2\}$ of $V \in G(2,4)$.

The Hodge star operator $*: \wedge^2 E^4 \to \wedge^2 E^4$ is defined by

$$(4.2) (*\alpha, \beta)\Psi = \alpha \wedge \beta,$$

for any $\alpha, \beta \in \wedge^2 E^4$, where Ψ denotes the volume element of E^4 . If we regard an oriented 2-plane $V \in G(2,4)$ as an element in $D_1(2,4)$ via ϕ , then $*V = V^{\perp}$, where V^{\perp} is the oriented orthogonal complementary subspace of the oriented 2-plane V in E^4 .

Since $*^2 = 1$ and * is a self-adjoint endomorphism of $\wedge^2 E^4$, we have the following orthogonal decomposition:

(4.3)
$$\wedge^2 E^4 = \wedge^2_+ E^4 \oplus \wedge^2_- E^4$$

of eigenspaces of * with eigenvalues 1 and -1, respectively. Let π_+ and π_- denote the natural projections: $\pi_{\pm}: \wedge^2 E^4 \to \wedge^2_{\pm} E^4$, respectively.

If $\alpha \in D_1(2,4)$, we have

$$\pi_+(\alpha) = \frac{1}{2}(\alpha + *\alpha), \quad \pi_-(\alpha) = \frac{1}{2}(\alpha - *\alpha).$$

If S_+^2 (respectively, S_-^2) denotes the 2-sphere of $\wedge_+^2 E^4$ (respectively, of $\wedge_-^2 E^4$) centered at the origin and with radius $\frac{1}{\sqrt{2}}$, then $\pi = (\pi_+, \pi_-)$ gives rise to the following indentification of $G(2,4) \cong D_1(2,4)$ with $S_+^2 \times S_-^2$:

$$\pi: G(2,4) \cong D_1(2,4) \to S_+^2 \times S_-^2; \quad \alpha \mapsto \left(\frac{1}{2}(\alpha + *\alpha), \frac{1}{2}(\alpha - *\alpha)\right).$$

Associated with the canonical frame field of E^4 , we have a canonical orthonormal frame field of $\wedge^2 E^4$ given by

$$\eta_1 = \frac{1}{\sqrt{2}} (\epsilon_1 \wedge \epsilon_2 + \epsilon_3 \wedge \epsilon_4), \quad \eta_2 = \frac{1}{\sqrt{2}} (\epsilon_1 \wedge \epsilon_3 - \epsilon_2 \wedge \epsilon_4),$$

$$\eta_3 = \frac{1}{\sqrt{2}} (\epsilon_1 \wedge \epsilon_4 + \epsilon_2 \wedge \epsilon_3), \quad \eta_4 = \frac{1}{\sqrt{2}} (\epsilon_1 \wedge \epsilon_2 - \epsilon_3 \wedge \epsilon_4),$$

$$\eta_5 = \frac{1}{\sqrt{2}} (\epsilon_1 \wedge \epsilon_3 + \epsilon_2 \wedge \epsilon_4), \quad \eta_6 = \frac{1}{\sqrt{2}} (\epsilon_1 \wedge \epsilon_4 - \epsilon_2 \wedge \epsilon_3).$$

 $\{\eta_1, \eta_2, \eta_3\}$ and $\{\eta_4, \eta_5, \eta_6\}$ form orthonormal bases of $\wedge_+^2 E^4$ and $\wedge_-^2 E^4$, respectively. We shall orient the spaces $\wedge_+^2 E^4$ and $\wedge_-^2 E^4$ in such way that these two bases are positive, *i.e.*, they give positive orientations for $\wedge_+^2 E^4$ and $\wedge_-^2 E^4$, respectively.

In general, if $\{e_1, e_2, e_3, e_4\}$ is a positive orthonormal basis of E^4 , we can build an orthonormal basis for $\wedge^2 E^4$ by

$$\begin{split} \gamma_1 &= \frac{1}{\sqrt{2}}(e_1 \wedge e_2 + e_3 \wedge e_4), \quad \gamma_2 = \frac{1}{\sqrt{2}}(e_1 \wedge e_3 - e_2 \wedge e_4), \\ \gamma_3 &= \frac{1}{\sqrt{2}}(e_1 \wedge e_4 + e_2 \wedge e_3), \quad \gamma_4 = \frac{1}{\sqrt{2}}(e_1 \wedge e_2 - e_3 \wedge e_4), \\ \gamma_5 &= \frac{1}{\sqrt{2}}(e_1 \wedge e_3 + e_2 \wedge e_4), \quad \gamma_6 = \frac{1}{\sqrt{2}}(e_1 \wedge e_4 - e_2 \wedge e_3). \end{split}$$

It is clear that $\{\gamma_1, \gamma_2, \gamma_3\}$ and $\{\gamma_4, \gamma_5, \gamma_6\}$ also form orthonormal bases of $\wedge_+^2 E^4$ and $\wedge_-^2 E^4$, respectively.

Put

$$\widetilde{\gamma}_i = \frac{1}{\sqrt{2}} \gamma_i; \quad 1 \le i \le 6.$$

Then $\tilde{\gamma}_1, \tilde{\gamma}_2, \tilde{\gamma}_3$ belong to S^2_+ and $\tilde{\gamma}_4, \tilde{\gamma}_5, \tilde{\gamma}_6$ belong to S^2_- .

Let \mathbb{C}^2 be the complex Euclidean 2-plane endowed with the canonical almost complex structure J. For a given Lagrangian plane L in \mathbb{C}^2 , we identify \mathbb{C}^2 with the real 4-space $E^4 = L \oplus J(L)$. We orient \mathbb{C}^2 via this identification, *i.e.*, if $\{\epsilon_1, \epsilon_2\}$ is an orthonormal basis of L, then $\epsilon_1 \wedge \epsilon_2 \wedge J \epsilon_1 \wedge J \epsilon_2$ gives the positive orientation of \mathbb{C}^2 .

Let M be an oriented surface in \mathbb{C}^2 . We denote by

$$\nu: M \to G(2,4)$$

the Gauss map of M in \mathbb{C}^2 which is defined by

$$\nu(p) = (e_1 \wedge e_2)_p$$

where $\{e_1, e_2\}$ is a positive orthonormal basis of T_pM . We put

$$\nu_{+} = \pi_{+} \circ \nu, \quad \nu_{-} = \pi_{-} \circ \nu.$$

Then $\nu_+: M \to S^2_+ \subset \wedge^2_+ E^4$ and $\nu_-: M \to S^2_- \subset \wedge^2_- E^4$. We need the following.

LEMMA 4.3. Let M be an oriented totally real surface in \mathbb{C}^2 . Then, with respect to an adapted frame field $\{e_1, e_2, e_3, e_4\}$, we have

$$(\nu_+)_*(X) = \frac{1}{\sqrt{2}} \{ (\omega_1^4 + \omega_2^3)(X)\gamma_2 + (-\omega_1^3 + \omega_2^4)(X)\gamma_3 \},$$

and

$$(\nu_{-})_{*}(X) = \frac{1}{\sqrt{2}} \{ (-\omega_{1}^{4} + \omega_{2}^{3})(X)\gamma_{5} + (\omega_{1}^{3} + \omega_{2}^{4})(X)\gamma_{6} \}$$

for any X tangent to M.

PROOF. We have

$$\begin{split} \nu_*(X) &= (\widetilde{\nabla}_X e_1) \wedge e_2 + e_1 \wedge (\widetilde{\nabla}_X e_2) \\ &= \omega_1^3(X) e_3 \wedge e_2 + \omega_1^4(X) e_4 \wedge e_2 + e_1 \wedge \omega_2^3(X) e_3 + e_1 \wedge \omega_2^4(X) e_4 \\ &= \frac{1}{\sqrt{2}} \{ (\omega_1^4 + \omega_2^3)(X) \gamma_2 + (-\omega_1^3 + \omega_2^4)(X) \gamma_3 \\ &\quad + (-\omega_1^4 + \omega_2^3)(X) \gamma_5 + (\omega_1^3 + \omega_2^4)(X) \gamma_6 \}, \end{split}$$

from which we obtain the lemma.

The canonical almost complex structure J on \mathbb{C}^2 gives a unique 2-vector $\zeta_J \in \wedge^2 E^4$, defined by

$$\langle \zeta_J, X \wedge Y \rangle = \langle JX, Y \rangle$$

for X, Y tangent to \mathbb{C}^2 . It is easy to check that

$$\zeta_J = \epsilon_1 \wedge \epsilon_3 + \epsilon_2 \wedge \epsilon_4 = \epsilon_1 \wedge J\epsilon_1 + \epsilon_2 \wedge J\epsilon_2 = \sqrt{2}\eta_5.$$

Moreover, from the definition of S_{-}^2 , we see that $\widetilde{\zeta}_J = \frac{1}{\sqrt{2}}\eta_5$ is an element in S_{-}^2 .

Let $\widetilde{\gamma} \in \overline{S_-^2} = S_-^2 - \{\pm \widetilde{\zeta}_J\}$ and let α be the angle between $\widetilde{\gamma}$ and $\widetilde{\zeta}_J$. Denote by $S^1(\alpha)$ the intersection of S_-^2 with the 2-plane in $\wedge_-^2 E^4 = E^3$ containing the endpoint of $\widetilde{\gamma}$ and which is orthogonal to ζ_J . So $S^1(\alpha)$ is a circle of radius $\frac{1}{\sqrt{2}}\sin \alpha$. If $\alpha = \frac{\pi}{2}$, the circle is an equator of S_-^2 .

For each $\widetilde{\gamma} \in \overline{S_{-}^2}$, we define a tangent vector of S_{-}^2 at $\widetilde{\gamma}$ by

(4.5)
$$T(\widetilde{\gamma}) = \left(\frac{\sqrt{2}}{\pi \sin^2 \alpha}\right) \widetilde{\gamma} \times \widetilde{\zeta}_J$$

where \times denotes the cross-product on $\wedge_{-}^{2}E^{4} \cong E^{3}$. It is clear that $T(\tilde{\gamma})$ is tangent to the circle $S^{1}(\alpha)$ at $\tilde{\gamma}$. Let ω be the dual 1-form of T on $\overline{S_{-}^{2}}$, *i.e.*,

(4.6)
$$\omega(Z) = \langle T, Z \rangle, \quad \forall Z \in T\overline{S_{-}^2}.$$

By direct computation, we have

$$\int_{S^1(\alpha)} \omega = 1$$

for any fixed $\alpha \in (0, \pi)$.

Lemma 4.4. For an oriented totally real surface M in \mathbb{C}^2 , the 1-form Φ satisfies

(4.8)
$$\Phi(X_p) = \frac{\sqrt{2}}{\pi \sin^2 \theta_p} \det(\nu_{-}(p), \widetilde{\zeta}_J, (\nu_{-})_*(X_p))$$

for any $X_p \in T_pM$, where the determinant is computed with respect to the orientation of $\wedge^2_-E^4 \cong E^3$ given by $\{\eta_4, \eta_5, \eta_6\}$. Moreover, the 1-form Φ is the pullback of the 1-form ω by ν_- , i.e., $\Phi = (\nu_-)^*\omega$, where ω is the 1-form on \overline{S}^2_- defined by (4.6).

PROOF. For each point $p \in M$, we have

(4.9)
$$\nu_{-}(p) = \frac{1}{2}(e_1 \wedge e_2 - e_3 \wedge e_4) = \frac{1}{\sqrt{2}}\gamma_4.$$

Thus, $|\nu_{-}(p)| = \frac{1}{\sqrt{2}}$. Since $|\zeta_J| = \sqrt{2}$, (4.4) yields

$$\cos \alpha = \langle \nu_{-}(p), \zeta_J \rangle = \frac{1}{2} \langle e_1 \wedge e_2 - e_3 \wedge e_4, \zeta_J \rangle = \cos \theta(p)$$

where $\theta(p)$ is the Wirtinger angle of M at p and α is the angle between $\nu_{-}(p)$ and ζ_{J} .

From (4.5) and (4.6), we have

$$(4.10) \qquad ((\nu_{-})^*\omega)(X_p) = \omega((\nu_{-})_*(X_p)) = \langle T(\nu_{-}(p)), (\nu_{-})_*(X_p) \rangle$$
$$= \frac{\sqrt{2}}{\pi \sin^2 \theta} \langle \nu_{-}(p) \times \zeta_J, (\nu_{-})_*(X_p) \rangle.$$

On the other hand, we have

$$\langle \zeta_J, \gamma_6 \rangle = \frac{1}{\sqrt{2}} \langle \zeta_J, e_1 \wedge e_4 - e_2 \wedge e_3 \rangle = 0,$$

therefore, γ_6 is perpendicular to both ζ_J and $\nu_-(p)$. Hence, by (4.5), we may obtain

(4.11)
$$T(\nu_{-}(p)) = \left(\frac{1}{\sqrt{2}\pi \sin \theta(p)}\right) \gamma_{6}.$$

Here we remark that the orientation of γ_6 and $\widetilde{\gamma} \times \widetilde{\zeta}_J$ are the same. By applying (3.7), (4.10) and Lemma 4.3, we get

$$((\nu_{-})^{*}\omega)(X_{p}) = \langle T(\nu_{-}(p)), (\nu_{-})_{*}(X_{p}) \rangle = \frac{1}{\sqrt{2}\pi \sin \theta} \langle \gamma_{6}, (\nu_{-})_{*}(X_{p}) \rangle$$
$$= \frac{1}{2\pi \sin \theta} (\omega_{1}^{3} + \omega_{2}^{4})(X_{p}) = \Phi(X_{p}).$$

These imply the lemma.

PROOF OF THEOREMS 4.1 AND 4.2. To show that the cohomology class $[\Phi]$ is an integral class, i.e., $[\Phi] \in N^1(M; \mathbb{Z})$, we choose a Cartesian coordinate system (x,y,z) on $\wedge_-^2 E^4$ such that $\widetilde{\zeta}_J$ and $-\widetilde{\zeta}_J$ are given by $\left(0,0,\frac{1}{\sqrt{2}}\right)$ and $\left(0,0,-\frac{1}{\sqrt{2}}\right)$, respectively. We consider $\widetilde{\zeta}_J$ and $-\widetilde{\zeta}_J$ as the north and south poles of S_-^2 . For a point $\widetilde{\gamma} \in \overline{S_-^2}$, we denote by F the half-plane containing $\widetilde{\gamma}$ and the north and south poles. We define β to be the angle measured from the half-plane $\{(x,y,z): x \geq 0, y = 0\}$ to the half-plane F. From (4.5) and (4.6), we can prove by direct computation that $\omega = \frac{1}{2\pi}d\beta$ on $\overline{S_-^2}$.

Now, if Γ is a loop in surface M. Then, by Lemma 4.4, we have

$$\int_{\Gamma} \Phi = \int_{\Gamma} (\nu_{-})^* \omega = \int_{\nu_{-}(\Gamma)} \omega = \frac{1}{2\pi} \int_{\nu_{-}(\Gamma)} d\beta.$$

From this we see that the value of $\int_{\Gamma} \Phi$ of the loop Γ in M is equal to the turning number of Γ around the north-south axis of S^2_- under the map ν_- which is an integer. Hence, $[\Phi]$ is an integral cohomology class.

Theorem 4.2 follows easily from Theorem 4.1, since integers are isolated in the real line \mathbb{R} .

EXAMPLE 1. Let \mathbb{C}^2 be the complex plane given by E^4 endowed with the canonical complex structure J defined by J(x, y, z, w) = (-z, -w, x, y) and $U = E^2 - \{(0,0)\}$. And let ϕ and ψ be the two totally real imbeddings of U in \mathbb{C}^2 defined by

(4.12)
$$\phi(u,v) = (u,u,v,0),$$

(4.13)
$$\psi(u,v) = \left(\frac{2u}{1+u^2+v^2}, \frac{u^2+v^2-1}{1+u^2+v^2}, \frac{2v}{1+u^2+v^2}, 0\right),$$

respectively. The imbedding ψ is obtained from the stereographic projection of the xz-plane into the unit sphere in E^3 centered at the origin.

By direct straight-forward computation, we can verify that the cohomology class $[\Phi]_{\phi}$ of ϕ is trivial and the cohomology class $[\Phi]_{\psi}$ of ψ is non-trivial. Thus, by applying Theorem 4.2, we conclude that the two totally real imbeddings ϕ and ψ are regularly homotopic through totally real regular homotopy, although ϕ and ψ are regularly homotopic through regular homotopy.

Example 2. (Enneper's Minimal Surface) Consider the following surface in \mathbb{C}^2 defined by

(4.14)
$$\phi(u,v) = \left(u - \frac{u^3}{3} + uv^2, u^2 - v^2, v - \frac{v^3}{3} + vu^2, 0\right),$$
$$(u,v) \in U = E^2 - (0,0),$$

(4.15)
$$\frac{\partial}{\partial u} = (1 - u^2 + v^2, 2u, 2uv, 0),$$

(4.16)
$$\frac{\partial}{\partial v} = (2uv, -2v, 1 - v^2 + u^2, 0).$$

From (4.15) and (4.16) it follows that (u, v) is an isothermal coordinate system and ϕ is a totally real minimal immersion whose Wirtinger angle θ is given by

(4.17)
$$\theta = \cos^{-1}\left(\frac{1-u^2-v^2}{1+u^2+v^2}\right).$$

Let (r, α) be the polar coordinates on U with $u = r \cos \alpha$, $v = r \sin \alpha$. By (3.3), (4.17) and straight-forward computation, we may obtain

$$\Phi = -\frac{1}{2\pi}d\alpha.$$

This implies $[\Phi] \neq 0$. This example shows that not all minimal totally real surfaces in \mathbb{C}^2 have trivial canonical homology class $[\Phi]$, although all Lagrangian minimal surfaces in \mathbb{C}^2 have trivial Maslov class [8].

Example 3. (Catenoid) Consider the catenoid defined by

$$(4.19) \psi(u,v) = (\cosh u \cos v, u, \cosh u \sin v, 0), (u,v) \in E^2.$$

It is easy to verify that (u, v) is an isothermal coordinate system and ψ is a totally real minimal immersion whose Wirtinger angle is given by

$$\theta = \cos^{-1}(\tanh u).$$

From these together with (3.3) we may obtain

$$\Phi = -\frac{1}{2\pi}dv.$$

Thus $[\Phi] = 0$.

§5. Applications and remarks

5.1: Complex Curves in \mathbb{C}^2 . If M is a complex curve in \mathbb{C}^2 , then the 1-form Φ is obviously undefined. However, we can modify this situation slightly as follows: First, according to [3], we know that there exists an almost complex structure J_1 on \mathbb{C}^2 such that M becomes a minimal Lagrangian surface with respect to the new almost complex structure. Since M is minimal and θ is constant, (3.3) shows that the 1-form Φ associated with M in (E^4, J_1) is trivial.

5.2: Slant Surfaces. A totally real surface M in \mathbb{C}^2 is called a proper slant surface if its Wirtinger function θ is constant (cf. [2]). In this case formula (3.3) reduces to

(5.1)
$$\Phi = \frac{1}{\pi \sin^2 \theta} \langle JH, \rangle.$$

From (5.1) it follows that the integral cohomology class $[\Phi]$ is trivial if the slant surface is a minimal surface in \mathbb{C}^2 .

Although the cohomology class $[\Phi]$ is not necessary trivial for an arbitrary minimal totally real surface in \mathbb{C}^2 , however, by applying Theorem 4.2, we have the following result.

COROLLARY 5.1. An oriented totally real surface in \mathbb{C}^2 has trivial cohomology class $[\Phi]$ if it is regularly homotopic to a minimal proper slant surface in \mathbb{C}^2 through totally real homotopy.

5.3: Φ -index. Let M be an oriented totally real surface in \mathbb{C}^2 . For an oriented loop γ in M, we put

(5.2)
$$i_{\Phi}(\gamma) = \int_{\gamma} \Phi.$$

We call the integer $i_{\Phi}(\gamma)$, the Φ -index of the loop γ . If $\overline{\gamma}$ is another oriented loop in M such that γ is homotopic to $\overline{\gamma}$ through orientation-preserving homotopy in M; then $i_{\Phi}(\gamma) = i_{\Phi}(\overline{\gamma})$ by $d\Phi = 0$. Thus, the Φ -index of loops is a homotopic invariant.

Take an arbitrary surface M in \mathbb{C}^2 , the surface may contain complex and anti-complex points. According to Thom's transversality theorem, generically, the complex and anti-complex points are isolated. In particular, if M is compact without boundary, the number of such points is, generically, finite. Let $\{p_1, \ldots, p_n\}$ be the set of complex and anti-complex points on M. Then $\overline{M} = M - \{p_1, \ldots, p_n\}$ is a totally real surface in \mathbb{C}^2 and hence we have the canonical closed 1-form Φ defined on \overline{M} . For each $i \in \{1, \ldots, n\}$, let γ_{r_i} be a small circle of radius r_i around p_i and D_i the disk centered at p_i enclosed by γ_{r_i} . By using the orientation of M, each γ_{r_i} is endowed with a canonical orientation. We define the Φ -index of M by $i_{\Phi}(M) = \sum_{i=1}^n i_{\Phi}(\gamma_{r_i})$. It is easy to see that $i_{\Phi}(M)$ is well-defined.

By Stokes' theorem we have

(5.3)
$$i_{\Phi}(M) = \sum_{i=1}^{n} \int_{\gamma_{r_i}} \Phi = \int_{M - \bigcup_{i=1}^{n} D_i} d\Phi = 0.$$

This implies that the Φ -index $i_{\Phi}(M)$ of M in \mathbb{C}^2 vanishes when M is compact and it has only a finite number of complex and anti-complex points.

5.4: Isoperimetric inequalities. Let M be an oriented totally real surface in \mathbb{C}^2 . Then, with respect to an adapted frame field, we have

$$\|\omega_1^3 + \omega_2^4\| \le \sqrt{2}\|h\|.$$

Therefore, by (3.7), (5.2) and (5.4), we may obtain the following

COROLLARY 5.2. Let M be an oriented totally real surface in \mathbb{C}^2 . Then, for any loop γ in M, the length of γ satisfies

(5.5)
$$L(\gamma) \ge \left(\frac{\sqrt{2\pi}\sin\theta_0}{\sup\|h\|_{\gamma}}\right)|i_{\Phi}(\gamma)|,$$

where

$$\sin \theta_0 = \min_{p \in \gamma} \sin \theta(p), \quad \sup ||h||_{\gamma} = \sup_{p \in \gamma} ||h||(p).$$

In particular, this implies the following

COROLLARY 5.3. Let M be a totally real surface in \mathbb{C}^2 with non-trivial cohomology class $[\Phi]$ and α a positive real number with $\sin \theta \geq \sin \alpha$ on M. Then there exists a homology class in $H_1(M;R)$ such that the length of each loop γ in the homology class satisfies

(5.6)
$$L(\gamma) \ge \left(\frac{\sqrt{2}\pi \sin \alpha}{\sup \|h\|}\right).$$

If M is a minimal totally real surface in \mathbb{C}^2 , then (5.4) can be sharpened to

$$\|\omega_1^3 + \omega_2^4\| \le \|h\|.$$

Thus we obtain the following

COROLLARY 5.4. We have

(5.7)
$$L(\gamma) \ge \left(\frac{2\pi \sin \theta_0}{\sup \|h\|_{\gamma}}\right) |i_{\Phi}(\gamma)|,$$

for any loop γ in a totally real minimal surface M in \mathbb{C}^2 .

COROLLARY 5.5 Let M be a totally real, minimal surface in \mathbb{C}^2 with non-trivial cohomology class $[\Phi]$ and α a positive real number with $\sin \theta \geq \sin \alpha$ on M. Then there exists a homology class in $H_1(M;\mathbb{R})$ such that the length of each loop γ in the homology class satisfies

(5.8)
$$L(\gamma) \ge \left(\frac{2\pi \sin \alpha}{\sup \|h\|}\right).$$

If T^2 is a Lagrangian imbedded torus in \mathbb{C}^2 , it is known that the Maslov class $m(T^2)$ of T^2 is even and there exists a simple loop γ on T^2 such that (Viterbo [9])

$$\int_{\gamma} \Psi = 2$$

where $\Psi = \frac{1}{\pi} \langle JH, \rangle$ is the Maslov 1-form on T^2 . Therefore, by Theorem 3.2 and Corollary 5.2 we obtain the following

COROLLARY 5.6. Let M be a totally real torus in \mathbb{C}^2 . If M is regularly homotopic to a Lagrangian torus through totally real homotopy, then there exists a homology class in $H_1(M;\mathbb{R})$ such that the length of each loop in the homology class satisfies

(5.9)
$$L(\gamma) \ge \frac{2\sqrt{2}\pi\sin\theta_0}{\sup\|h\|}.$$

ACKNOWLEDGEMENT. The authors would like to take this opportunity to express their thanks to Prof. C. Viterbo for the valuable discussions.

References

- M. Audin, Fibres normaux d'immersions en dimension double, point doubles d'immersions Lagrangiennes et plongement totalement réel, Comment. Math. Helv., 93 (1988), 593–
- [2] B.Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, 1990.
- [3] B.Y. Chen and J.M. Morvan, Géométrie des surfaces Lagrangiennes de C², J. Math. Pures Appl., 66 (1987), 321–335.
- [4] B.Y. Chen and J.M. Morvan, Cohomologie des sous-variétés obliques, C. R. Acad. Sci. Paris, 314 (1992), 931–934.
- [5] B.Y. Chen and K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc., 193 (1974), 257–266.
- [6] M. Gromov, Convex integration of differential relations, Math. USSR-Izv., 7 (1973), 329–344.
- [7] A. Lichnerowicz, Applications harmoniques et variétés Kählériennes, Symposia Mathematica, (Academic Press) III (1970), 341–402.
- [8] J.M. Moryan, Classe de Maslov d'une immersion Lagrangienne et minimalité, C. R. Acad. Sc. Paris, 292 (1981), 633-636.
- [9] C. Viterbo, A new obstruction to embedding Lagrangian tori, Invent. Math., 100 (1990), 301–320.

B.-Y. CHEN
DEPARTMENT OF MATHEMATICS
MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN
48824-1027, U.S.A.

JEAN-MARIE MORVAN
INSTITUT DE MATHÉMATIQUES
UNIVERSITÉ CLAUDE BERNARD
LYON I, 43, BOULEVARD DU 11, Nov. 1918
F-69622 VILLEURBANNE, CEDEX
FRANCE