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§1. Introduction

Let M be a Kaehler surface endowed with almost complex structure J and
inner product { , ) and M an oriented surface immersed in M. We denote the
tangent space and the normal space of M in M at p by T, M and TI}M , respectively.

For a given positive orthonormal basis {e1, ez} of T, M, we put

(1.1) (T, M) = arccos(({Jey,ea)).

Then 6(T,M) € [0,n] is independent of the choice of the positive orthonormal
basis {e1, ez} and 6 is a continuous function on M. 8(T, M) is called the Wirtinger
angle of M at p (or the holomorphic angle by A. Lichnerowicz [7]). If §(T, M) =0
(respectively, 0(T,M) = =, or (T, M) = %), then the point p is called a complex
(respectively, anti-complex, or Lagrangian) point of M in M. A surface M in M is
said to be holomorphic (respectively, anti-holomorphic or Lagrangian) if (T, M) =
0 (respectively, (T, M) = m or 8(T,M) = %), for any p € M. Furthermore, a
surface M in M is called slant if its Wirtinger angle is constant.

Throughout this article, by totally real surface in M we mean a surface with-
out complex points and anti-complex points. (Hence, the meaning of totally real
surfaces in this article is different from the one given in [5]). Since the Wirtinger
function @ fails to be differentiable only at complex and anti-complex points, € is a
differentiable function on a totally real surface.

Recall that a regular homotopy is a family of immersions 7y, ¢t € [0,1] from
a manifold into another such that m; and all its derivatives depend continuously
on the parameter ¢. Immersions 7y and m are regularly homotopic if there exists a
regular homotopy connecting my to my. It is known that every totally real immersion
of a surface in C? is regularly homotopic to a Lagrangian immersion (Gromov [6]).
Moreover, all totally real immersions of a surface in C? are regularly homotopic to
each other. In particular, this result implies that there exist no regularly homotopic
invariants for totally real surfaces in C? through regular homotopy.
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In this article, we define a differentiable 1-form on a totally real surface in a
Kachler surface M. (In fact, this 1-form can be defined on any surface in M by
removing all complex and anti-complex points on the surface.) When M is flat,
this 1-form is closed and hence it defines a cohomology class on M. In §4 we prove
that this cohomology class is indeed an integral class when the ambient space M
is C? which is nothing but an extension of the Maslov class. As a consequence,
this integral cohomology class gives rise to a homotopic invariant for totally real
immersions of a surface in C? through totally real regular homotopy.

As applications we derive some isoperimetric inequalities for totally real sur-
faces in C2.

§2. Preliminaries

Let M be an oriented surface immersed in a Kaehler surface M. We denote
by A, D, h, and H the Weingarten map, the normal connection, the second funda-
mental form, and the mean curvature vector of M in M. , respectively. Let V and
V denote the Levi-Civita connections of M and of M with the induced metric,
respectively.

For a tangent vector X € T, M, we put

(2.1) JX = PX +FX

where PX and F'X are the tangential and the normal components of JX, respec-
tively. Consequently, we have an endomorphism P : TM — TM and a linear map
F:TM —T+M.

For a normal vector £ € TPJ‘ M, we put

(2:2) JE = t€ + fe,

where t£ and f€ are the tangential and the normal components of J¢, respectively.
In the following we assume that M is an orientable totally real surface in M

unless mentioned otherwise.

For a given positively oriented local orthonormal frame field {e;,e2} on M,
we choose a local orthonormal frame field {es, e4} such that

(2.3) e3 = (cscO)Fe;, e4 = (csch)Fes,.

Then we have Pe; = (cos@)ey, Pe; = —(cosf)e;. We call such a local frame field
{e1,€2,€e3,e4} an adapted frame field. From (2.3) we have

(2.4) tes = —sinfle;, tey = —sinfey, fez = —cosfey, feq = cosfes.
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Let {ej, 2, €3, €4} be a local orthonormal frame field on Eﬂ'g such that, restricted
to M, it is an adapted frame field. Let {w!,w?,w3,w*} be the field of dual frames.
The structure equations of M are given by

(2.5) dw? ==Y whAw®, wh+wf=0, 1<ABCD<y,
B
and
- - 1 -
(2.6) dofy = - wiAwg+03, QAZEZRECDwCAwD‘
C Cc.D

If we restrict these forms to M, then w”™ = 0, » = 3, 4. Since

(2.7) 0=dw" =-)Y w]Aw, 1<4,5,ke<L2,

Cartan’s lemma yields

(2.8) wi=>_ hLw, hj=h},
j
where
(2.9) hi; = w](e) = (Ae,€i,€5) = (hlei, €;), €r).

From these formulas we obtain

(2.10) do' = =) wiAw!, wi+w! =0,
J
A : 3 ; 1 ;
(2.11) dof == wiAwf+ 0, Q= §Za;kfwk/\wf,
k k£

(2.12) Ripy = Ripe+ > (hihG, — highly),
™

(2.13) dwf ==Y wiAw! =) Wl Aw+ Q.
7 £l

We need the following two lemmas from [2].
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_ Lemwma 91. Let M be a totally real surface immersed in a Kaehler surface
M. Then for any vector fields X, Y tangent to M, we have

(VxP)Y =th(X,Y) + Ary X,
(VxF)Y = fh(X,Y) — h(X, PY),

where (Vx P)Y = Vx(PY) — P(VxY) and (VxF)Y = Dx(FY) - F(VxY).

LEMMA 2.2. Let M be a totally real surface immersed in a K aehler surface.
Then, with respect to an adapted frame {e1, €2, €3, eq} we have

(VxP)er = X(cost)ez, (VxP)eg = —X(cosB)ey.

ProoF. By the definition of VP, we have

(pr)el = VX{PE:l) = P(Vxel)
= Vx((cosb)ez) — P(wi(X)e2) = X (cosf)ea.

Similarly we obtain the corresponding formula for (VxP)ea. O

We also need the following.

LemMA 2.3. Let M be an oriented totally real surface immersed in a Kaehler
surface M. Then, with respect to an adapted frame, we have

(i) hi, =kt — do(er), hiy = h3y + db(e2),
(i) wi(er) — wi(er) = —cot B(trace h® + df(e2)),

(iii) wi(ez) — w?(e2) = —cotB(traceh® — df(e1)).

Proor. (i) follows easily from Lemma 2.1 and Lemma 2.2;
By using (2.3) and (2.4), we get

D.,e3 = D, (cscOFe;) = (csc8)Dee, (Fe1) — (cot B)(e10)es
= (cscO){F(Ve,e1) + fhler,er) — hler, Pey)} — (cot 8)(e16)es

= (csc0){w?(er)Feg + h3, fes + hi; fea — cos 0(h3,e3 + hizea)}
— (cot ) (e16)es

= w?(e1)eq — (cot O)((trace h3)es + df(ez))es.

This implies (ii). Similarly, we may obtain (iii). O
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§3. 1-form @

For an oriented Riemannian surface M with volume form =*1, there exists a
canonical endomorphism j : TM — TM defined by

(3.1) (GX,Y)=2(x1)(X,Y), X, YeTM.

This endomorphism j is the canonical almost complex structure of the Riemannian
surface M. In particular, if e;, es is a positive orthonormal frame field of M, we
have je; = eq, jea = —e;. .

We recall that a Kaehler surface M admits a canonical symplectic structure
Q) given by

(3.2) QX,Y)=(X,JY), X,YeTM.

For an oriented totally real surface M immersed in a Kaehler surface M, we
introduce a 1-form ® on M defined by

1 ;
(3.3) ®(X) = ——-{2QH, X) +sinf(dfo j)(X)}, X eTM,
2w sin” 0
where @ is the Wirtinger function on M and H = %tracch is the mean curvature
vector field.
In this section we shall prove the following.

TuEOREM 3.1. Let M be an oriented totally real surface in a Kaehler surface
M. With respect to an adapted frame, we have

(3.4) I (9 +04).

2w sin#

In particular, if M is flat, then d® = 0; and hence ® defines a cohomology class:
[®] € H'(M; R).

Proor. Let e,es,e3,e4 be an adapted frame field on the oriented totally
real surface M in M and let X = X'e; + X2%ey be a tangent vector field of M.
Then, from (2.3), (3.1), and (3.2), we have

(3.5) 20(H, X) = sind ((h + h) X" + ( + 1) X?),

(3.6) (d6 o )(X) = X'db(ez) — X2d6(ey).

Thus, by (3.3), (3.5), and (3.6), we get

B(X) = 5 { (s + A X" + (b + W) X* + X'esd — X610},

" 2rsind
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By combining this with (i) of Lemma 2.3, we may obtain

®(X) = (3, X 4+ R, X2 + hg, X' + htX2).

1
27 sin @
This implies

. 1 3, 4
(8.7) = Srmnp 1 T W)
By (2.13), we find
(38) d(w? +wd) = (W —wi) A (0] —uf) + OF + 05

Therefore, by (3.7) and (3.8), we get
2md® = d(cscO) A (W +w§) + cscOf (i — wi) A (w3 — Wy 08 + .
This yields

cosf
2sin” @
+ esc0{(w? — wi) A (w3 — wi) + O + D}er, e2).

27d®(ey,e2) = —

{d6(ex)(h3y + hiz) — db(e2) (k) + hiz)}

Combining this formula with Lemma 2.3 imply (3.4). O
If L is a Lagrangian surface in C2, then L has no complex points and anti-
complex points. Since § = 7 in this case, (3.3) reduces to
1
(3.9) ®=—(JH, ).
w
Since the Maslov class m(L) of a Lagrangian surface L in C? is also represented by
1(JH, ) (cf. [8]), we have the following.

TuroreM 3.2. If L is a Lagrangian surface in C2, then the cohomology class
[®] of L is equal to the Maslov class m(L) of L.

As an application of Theorem 3.1 we have the following.

THEOREM 3.3. Let M be a totally real minimal surface in a flat Kaehler
surface M. If M is compact, then M is a slant surface (in the sense of [2]).
Moreover, we have ® = 0.

Proor. Since M is a totally real minimal surface in M , (3.3) gives

o0 o 2 o i ).
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Because M is flat, d® = 0 by Theorem 3.1. Hence, by the Poincaré lemma, @ is
locally exact. By passing, if necessary, to the two-fold covering surface, we may
assume M is orientable. It is then possible to choose a system of isothermal co-
ordinates {x,y} covering M with the metric tensor g given by g = E(dz? + dy?).
Because ® is locally exact, there exists a local function f such that

(3.11) d (m (ta.n g)) sof =l

From (3.11), we see that In (tan g) and f are harmonic conjugates, i.e.,

IO IR R

Since the Laplacian of M is given by A = —% (35—:5 - %), (3.12) implies that
In (tan g) is a harmonic function on M. Since M is compact, 6 is constant. Hence

M is a slant surface in M. In particular, from (3.3), we get ® = 0. O

REMARK 3.1.  Although there exist no compact minimal surfaces in C2, there
do exist compact minimal slant surfaces in flat Kaehler surfaces with an arbitrarily
prescribed slant angle.

§4. The cohomology class of totally real surfaces in C?
The main purpose of this section is to prove the following two theorems.

TueoreM 4.1. Let M be an oriented totally real surface in C2. Then the
cohomology class [®] of M is an integral class, i.e., [®] € H(M;Z).

THEOREM 4.2. Let M be an oriented totally real surface in C?. Then the
cohomology class [®] is an invariant through totally real regular homotopy.

In order to prove these two results, we need to derive a precise expression of
the canonical 1-form @ in terms of the Gauss map. Thus we need to recall some
basic facts concerning the geometry of the Grassmannian G(2,4) which consists of
all oriented 2-planes in the Euclidean 4-space E* (see, for instances [2, 3], for more
details).

Assume E* is oriented by its canonical orthonormal frame:

€1 = (1, anu 0): €z = (0:13050)3 €3 = (0, 0$1s0)s €4 = (03 0,0,1)

Let (, ) be the canonical inner product on E*. Denote by {61,602,6% 6%} the dual
frame of {€1, €3, €3,€4}. Let A2E* be the space of 2-vectors of E* and D;(2,4) the
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set consisting of all unit decomposable 2-vectors in A2ZEY A2E* is a 6-dimensional
real vector space with its canonical inner product given by

(4.1) (X1 A X2, Y1AYR) = det({X;, Y;))-

It is known that the Grassmannian G(2,4) can be identified with the set D;(2,4) via
the map ¢ : G(2,4) — D1 (2.4) defined by d(V) =e1Neg, fora positive orthonormal

basis {e1,ea} of V € G(2,4).
The Hodge star operator * : A2E* — A2E4 is defined by

(4.2) (xa, BYT = a A B,

for any o, 8 € AZE*, where ¥ denotes the volume element of E*. If we regard an
oriented 2-plane V' € G(2,4) as an element in D1(2,4) via ¢, then ¥V = VL, where

VL is the oriented orthogonal complementary subspace of the oriented 2-plane V
in E*.
Since +2 = 1 and = is a self-adjoint endomorphism of A2E*, we have the

following orthogonal decomposition:
(4.3) A2EY = A2 E' & A2 E

of eigenspaces of * with eigenvalues 1 and —1, respectively. Let my and m— denote
the natural projections: my : A2E* — NLE*, respectively.

If @ € Dy(2,4), we have
1. 1
my(a) = §(a—|—*a), m_(a) = 5(0{—#05).

52 ) denotes the 2-sphere of A2 E* (respectively, of N2ZE*)

If 52 (respectively,
) gives rise to the

centered at the origin and with radius %, then m# = (my,7_
following indentification of G(2,4) = D1(2,4) with 8% whts

1
7 G(2,4) = D1(2,4) — ol ol (§(a+ *a), %(a = *a)) :

Associated with the canonical frame field of E*, we have a canonical orthonor-

mal frame field of A2E?* given by

1 1
m = —\/fi(ﬁl Nex +e3Ne), T = —\/—5(61/\&;—52 N €d),
1 1
7}3=\—/_.-2'(61/\€4+62/\63), M4 = ﬁ(el /\62—63/\64)1
it 1
7?52—\/5(61/\63-1'62/\54): 7?6:—\/5(51/\'54‘52/\53)‘
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{m,n2,n3} and {n4,ns,ne} form orthonormal bases of AZE* and A% E*, respec-
tively. We shall orient the spaces /\‘j_E‘1 and A2 E* in such way that these two bases
are positive, i.e., they give positive orientations for /\iE4 and A2 E*, respectively.

In general, if {e;, €3, €3, €4} is a positive orthonormal basis of E4, we can build
an orthonormal basis for A2ZE* by

71=%(61/\62+€3/\84)7 72:%((31/\(33—&2/\64),
1 1

7325(81/\34—1—62 Aes), 7425(31/\32_53/\84)’
1 1

5 = E(el/\e:;-i—ezf\eal), Y6 = ﬁ(el/\eﬂl_e’z/\eii)'

It is clear that {~1,72,73} and {~4,7s,7s} also form orthonormal bases of
AL E* and A% E*, respectively.
Put

o 1 .
Vi = E%; 1<:<6.

Then 71,72, 73 belong to Si and 74, 75,76 belong to S2.

Let C? be the complex Euclidean 2-plane endowed with the canonical almost
complex structure .J. For a given Lagrangian plane L in C?, we identify C? with
the real 4-space E* = L& J(L). We orient C? via this identification, i.e., if {€1, €2}
is an orthonormal basis of L, then € A ez A Jey A Jes gives the positive orientation
of C2.

Let M be an oriented surface in C%. We denote by

v:M— G(2,4)
the Gauss map of M in C? which is defined by
v(p) = (e1 Aea)y
where {e;,es} is a positive orthonormal basis of T, M. We put
Vy =ML 0V, V_=T_0OM

Then vy : M — S_?_ = /\iE4 and v_ : M — 82 Cc A2 E4.
We need the following.

LemMma 4.3. Let M be an oriented totally real surface in C2. Then, with re-
spect to an adapted frame field {eq,eq, e3,e4}, we have

(ri)e(X) = %Hui‘ +wd) (X )12 + (—wd + wd) (X)),
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and
(1200 (X) = 7l + ) (X + (63 + ) (X))
for any X tangent to M.
Proor. We have
vo(X) = (Vxer) Aea+er A (Vxes)

= wf’(X)63 Neg +wi(X)es Aex +er /\wg(X)eg +ey /\wé(X)e4

o %{(m‘f + W) (X )72 + (—w? + wh)(X)vs

+ (—wi + w3) (X )5 + (@] +w3)(X) %6},

from which we obtain the lemma. O

The canonical almost complex structure J on C? gives a unique 2-vector {y €
A2E*, defined by

(4.4) (5, X AY) = (JX,Y)
for X, Y tangent to C?. It is easy to check that
(j=€1Negt+eaNeg=¢e1 N Jey +€2/\J62 = \/E’r,l5.

Moreover, from the definition of S2, we see that ¢y = %7}5 is an element in S2.

Let 7€ S2 = 52 — {igﬁ;} and let o be the angle between v and C;. Denote
by S!(a) the intersection of S% with the 2-plane in A2 E* = E3 containing the

endpoint of 5 and which is orthogonal to ¢;. So §'(e) is a circle of radius % sin .

If a = I, the circle is an equator of 52,
For each 5 € S, we define a tangent vector of 52 at 5 by
5 V2 .. =
(4.5) T(v) = ( —— | ¥
msin® a

where x denotes the cross-product on A2 E* = E3. It is clear that T'(y) is tangent
to the circle S*(a) at 3. Let w be the dual 1-form of T on S2, i.e.,

(4.6) w(Z)=(T,Z), VZeTSe.

By direct computation, we have

(4.7) / w=1
St(a)
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for any fixed a € (0, 7).

LEMMA 4.4. For an oriented totally real surface M in C?, the 1-form &
satisfies

(49 2(Xy) = —V2det(v_ (), &, (). (,)
P

for any X, € T,M, where the determinant is computed with respect to the orien-
tation of N2E* = E3 given by {na,ns,ne}. Moreover, the 1-form ® is the pullback
of the 1-form w by v_, i.e., ® = (v_)*w, where w is the 1-form on S? defined by
(4.6).

Proor. For each point p € M, we have

1
(4.9) v_(p) = 5(61 Neg —ezAes) = —=74.

Sl

Thus, |v_(p)| = % Since |(;| = V2, (4.4) yields

cosa = (v_(p),(s) = %{el Neg —e3 Aeq,(y) = cosb(p)

where 0(p) is the Wirtinger angle of M at p and « is the angle between v_(p) and

¢
From (4.5) and (4.6), we have

(4.10) (r-)* W) (Xp) = w((v-)u(Xp)) = (T (v-(p)), (v-)+(Xp))

= o () % G o))

On the other hand, we have

1
{1y v8) = ﬁ(@;el Neg—egAes) =0,

therefore, ¢ is perpendicular to both ¢; and v_(p). Hence, by (4.5), we may obtain

(1) T(_(p)) = (7%111—9@) -

Here we remark that the orientation of v¢ and F x E_,r are the same. By applying
(3.7), (4.10) and Lemma 4.3, we get

(- ) (%) = (T (), (X)) = e 05, (00 ()

(@i +wp)(Xp) = @(X,).

- 2mwsiné
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These imply the lemma. O

Proor oF THEOREMS 4.1 AND 4.2. To show that the cohomology class [®]
is an integral class, i.e., [®] € N1(M;Z), we choose a Cartesian coordinate system
1

(z,y,2) on A2 E* such that ¢; and —C; are given by (U,O, W) and (0,0, -—%),
respectively. We consider 5 7 and —E  as the north and south poles of 52 . For a point
¥ e S2 . we denote by F the half-plane containing 5 and the north and south poles.
We define 3 to be the angle measured from the half-plane {(z,y, z): x>0, y=0}
to the half-plane F. From (4.5) and (4.6), we can prove by direct computation that
w = 3-df on R

Now, if ' is a loop in surface M. Then, by Lemma 4.4, we have

1
/@:/(V_)*w:f w=— dgs.
r r v_(T) 21 Ju_(r)

From this we see that the value of [;. ® of the loop T in M is equal to the turning
number of T' around the north-south axis of S2 under the map v_ which is an
integer. Hence, [®] is an integral cohomology class.

Theorem 4.2 follows easily from Theorem 4.1, since integers are isolated in the

real line R. |

ExampLe 1. Let C2 be the complex plane given by E* endowed with the
canonical complex structure J defined by J(z,y,z,w) = (-2, ~w,z, y) and U =
E?—{(0,0)}. And let ¢ and ¥ be the two totally real imbeddings of U in C? defined

by

(4.12) o(u,v) = (u,u,v,0),

2u u? +v? -1 v
4,13 1 == 3 ] v }0 Y
(1) b, ) (1+u2+v2'1+u2+v? 14 u? 4 v? )

respectively. The imbedding t is obtained from the stereographic projection of the
xz-plane into the unit sphere in E? centered at the origin.

By direct straight-forward computation, we can verify that the cohomology
class [®]4 of ¢ is trivial and the cohomology class [®]y, of ¢ is non-trivial. Thus, by
applying Theorem 4.2, we conclude that the two totally real imbeddings ¢ and
are not regularly homotopic through totally real regular homotopy, although ¢ and
1 are regularly homotopic through regular homotopy.

ExampLE 2. (Enneper’s Minimal Surface) Consider the following surface in
C? defined by

(4.14) o(u,v) = (u = Ei + u?,u? — v v — f + vu? 0)
. 1 ] - 3 ? G 3 ¥ »

(u,v) € U = E% — (0,0),
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a

(4.15) L= u? 4 v?, 2u, 2uv, 0),
u
d

(4.16) e (2uv, —2v,1 — v? + u?, 0).
o

From (4.15) and (4.16) it follows that (u,v) is an isothermal coordinate system and
¢ is a totally real minimal immersion whose Wirtinger angle 4 is given by

1—u?_—9?
R e
(41?) 9 = COs (m) .

Let (7,a) be the polar coordinates on U with u = rcosa, v = rsina. By (3.3),
(4.17) and straight-forward computation, we may obtain

. 1
(4.18) &=~ —da.

This implies [®] # 0. This example shows that not all minimal totally real surfaces
in C? have trivial canonical homology class [@], although all Lagrangian minimal
surfaces in C? have trivial Maslov class [8].

ExampLE 3. (Catenoid) Consider the catenoid defined by
(4.19) ¥(u,v) = (coshucosv,u,coshusinv,0), (u,v) € E%

It is easy to verify that (u,v) is an isothermal coordinate system and 1 is a totally
real minimal immersion whose Wirtinger angle is given by

(4.20) 6 = cos™'(tanhu).

From these together with (3.3) we may obtain

i
‘I) — —%d'ﬂ

Thus [®] = 0.

§5. Applications and remarks

5.1: Complex Curves in C2. If M is a complex curve in C2, then the
1-form @ is obviously undefined. However, we can modify this situation slightly
as follows: First, according to [3], we know that there exists an almost complex
structure J; on C? such that M becomes a minimal Lagrangian surface with respect
to the new almost complex structure. Since M is minimal and 6 is constant, (3.3)
shows that the 1-form ® associated with M in (E?,.J;) is trivial.
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5.2: Slant Surfaces. A totally real surface M in C? is called a proper
slant surface if its Wirtinger function 6 is constant (cf. [2]). In this case formula
(3.3) reduces to

1

msin? 0

(5.1) d = (JH, ).
From (5.1) it follows that the integral cohomology class [®] is trivial if the slant
surface is a minimal surface in C*.

Although the cohomology class [@] is not necessary trivial for an arbitrary
minimal totally real surface in C2, however, by applying Theorem 4.2, we have the
following result.

COROLLARY 5.1. An oriented totally real surface in C?2 has trivial cohomology
class [®) if it is regularly homotopic to a minimal proper slant surface in C* through
totally real homotopy.

5.3: ®-index. Let M be an oriented totally real surface in C2. For an
oriented loop v in M, we put

(5.2) in() = L 0.

We call the integer ig(7), the ®-index of the loop ~y. If 7 is another oriented loop in
M such that ~ is homotopic to 7 through orientation-preserving homotopy in M,
then ig(y) = ia(¥) by d® = 0. Thus, the ®-index of loops is a homotopic invariant.

Take an arbitrary surface M in C?, the surface may contain complex and
anti-complex points. According to Thom's transversality theorem, generically, the
complex and anti-complex points are isolated. In particular, if M is compact without
boundary, the number of such points is, generically, finite. Let {p1,... ,Pn} be the
set of complex and anti-complex points on M.Then M = M — {p1,...,pn} is a
totally real surface in C? and hence we have the canonical closed 1-form @ defined
on M. For each i € {1,...,n}, let v, be a small circle of radius r; around p;
and D; the disk centered at p; enclosed by 7. By using the orientation of M,
each 7y, is endowed with a canonical orientation. We define the ®-index of M by
ig(M) =Y iy ia(7r,). It is easy to see that ip(M) is well-defined.

By Stokes’ theorem we have

(5.3) (M) = é / &= fM_ =0

This implies that the ®-index ig (M) of M in C? vanishes when M is compact and
it has only a finite number of complex and anti-complex points.
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5.4: Isoperimetric inequalities. Let M be an oriented totally real sur-
face in C2. Then, with respect to an adapted frame field, we have

(5.4) o + w3l < V2]l
Therefore, by (3.7), (5.2) and (5.4), we may obtain the following

COROLLARY 5.2. Let M be an oriented totally real surface in C2. Then, for
any loop v in M, the length of v satisfies

V2mrsing \ |
(5.5) L(v) > (W) lie (7)],

where
sinfy = minsinf(p), sup ||k|, = sup | h||(p)-
PEY pEY
In particular, this implies the following

COROLLARY 5.3. Let M be a totally real surface in C? with non-trivial co-
homology class [®] and o a positive real number with sin@® > sina on M. Then
there exists a homology class in Hi(M;R) such that the length of each loop v in
the homology class satisfies

(5.6) L(y) > (M) |

sup ||A|

If M is a minimal totally real surface in C2, then (5.4) can be sharpened to
lw + w3l < [1All-
Thus we obtain the following

COROLLARY 5.4. We have

(5.7) L(v) 2 ( j%}jf;%) lia (7)l,

for any loop ~ in a totally real minimal surface M in C2.

COROLLARY 5.5 Let M be a totally real, minimal surface in C? with non-
trivial cohomology class [®] and a a positive real number with sin@ > sina on M.
Then there exists a homology class in Hy(M;R) such that the length of each loop
in the homology class satisfies

(58) L(y) > (M) .

sup || h||
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If T2 is a Lagrangian imbedded torus in C2, it is known that the Maslov class
m(T?) of T? is even and there exists a simple loop y on T2 such that (Viterbo [9])

f@z?
=

where ¥ = 1(JH, ) is the Maslov 1-form on T2, Therefore, by Theorem 3.2 and
Corollary 5.2 we obtain the following

COROLLARY 5.6. Let M be a totally real torus in C2. If M is regularly ho-
motopic to a Lagrangian torus through totally real homotopy, then there exists a
homology class in Hy(M;R) such that the length of each loop in the homology class
satisfies

2/27 sin By

e K0 2 =T
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