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Conformally flat submanifolds

JEAN-MARIE MORVAN(Y) et GEORGES ZAFINDRATAFA ()

RESUME. — Nous étudions les propriétés locales et globales des sous-
variétés conformément plates d’un espace euclidien. Nous étudions en par-
ticulier les relations entre la platitude conforme et la quasiombilicalité.

ABSTRACT.— We study local and global properties of conformally flat
submanifolds in Euclidean space, and the relations between conform flatness
and quasiumbilicity.

1. Introduction

A submanifold M™ of an Euclidean space E™*? is conformally flat. if,
when it is endowed with the induced metric, each point belongs to a
neighborhood which possesses coordinates (1, - -, z,) such that the metric
tensor ¢ satisfies

g =e*dz1 @ dey + -+ + dzp @ dz,),

where A is a C'*°® function. These submanifolds have been extensively stu-
died these last 20 years, (cf Bibliography). The local structure of confor-
mally flat hypersurfaces has been discovered by E.CarTaN [Cal] in 1919.
These hypersurfaces are generically foliated by codimension one spheres.
In 1972, B.Y.CrEN and K.YANO gave a more precise description of these
submanifolds [Ch-Yal]. Finally in 1984, M.Do Carmo, M. DaJjczER and
F.MERCURI, [Do-Da-Me] classified the compact conformally flat hypersur-
faces. In particular, under some regularity conditions on the foliation, they
proved that such an hypersurface is a topological product S?~! x S of a
sphere by a cercle. When the codimension is larger, B.Y.CHEN and K.YANO

(1) Faculté des Sciences d’Avignon, Département de Mathématiques 33, rue Louis Pasteur
84000 Avignon
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defined in 1972 the notion of quasiumbilicity [Ch-Ya2]. This extrinsec pro-
perty of the second fundamental form of an immersion is sufficient to obtain
a conformally flat submanifold. In 1979, J.D.MooORE and the first author
proved that this condition was also necessary for n > 7 and p < 4 [Mo-
Mo]. Moreover, B.Y.CHEN and L.VERSTRALEN proved in 1978 [Ch-Ve] that
a conformally flat submanifold M™ of E™*P with flat normal connexion,
is quasiumbilical. Finally, in 1976, using Morse theory, J.D.MOORE gave
topological restrictions of a compact conformally flat submanifold M™ of
E™*? when p < n — 3. He proved that, in this case, M™ possesses a CW
decomposition with no cells of dimension k, where p < k < n — p, [Moo3].
In view of these results, many problems remained open :

i) What is the shape of the second fundamental form of a conformally
flat submanifold of large codimension ?

ii) What is the extrinsec geometric structure of a conformally flat
submanifold of low codimension ? (Generalisation of [Do-Da-Me]).

ili) What is the geometric meaning of quasiumbilicity ?

iv) What is the global structure of a “regular” compact conformally flat
submanifold ?

In this work, we give complete or partial answers to these questions :

In §3, we study the Gauss equation of flat or conformally flat submani-
folds of the Euclidean space. This leads us to give an example of submanifold
M™ of codimension 6 (in E™*®) which is flat at some point but not quasium-
bilical. However, we don’t have the general solution of the Gauss equation
in this case. This gives a partial answer to i).

In 84, 5, we study the local structure of a conformally flat submanifold
of low codimension, and obtain a generalisation of [Do-Da-Me].

In §6, we study the notion of quasiumbilicity in terms of focal points. In
particular, we obtain a new definition of quasiumbilicity which does not use
a particular frame of the normal bundle.

In §7, we give the classification of compact conformally flat submanifolds
of low codimension, with parallel second fundamental form.

In §8, we prove that compact regular conformally flat submanifolds are
sphere-bundles.

Finally, in §9, we extend a result of [Do-Da-Me| which gives a necessary
and sufficient condition for a manifold foliated by spheres to be conformally
flat.
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2. Notations

Let 2 : M™ — E™P be an isometric immersion of a manifold M" of
dimension n in the Euclidean space E™=P. We shall denote by <, > the
scalar product in E™*?, and use the same notation for i*(<,>), the metric
on M™. If V is the canonical connexion on E™*? and V the levi Civita on
M™, we put, for every vector fields X,Y belonging to TM™, the tangent

space of M™, 5
VxY =VxY + h(X,Y) (1)

where h is the second fundamental form associated to 7. It is well known that
h is a symetric bilinear tensor which takes its values in T+ M™, the normal
bundle of M™. Let £ a normal vector field and X a tangent vector field on
M™. We can decompose 6X§ in the following way : 6){5 = —AeX + V%€,
where —A¢ X and V%¢ are the tangential and normal components of v x€.
A is called the Weingarten tensor associated to 7, and is related to h by the
formula :

< AeX\)Y > = < h(X,Y), £ >VX,Y € TM" V¢ € T M (2)

V<1 is a metric connexion in T+M", with respect to the induced metric. If
h =0, M™ is said totally geodesic.

The mean curvature vector field of M™ is defined by H = 1/n trace
(h) (M™ is locally minimal for the volume if H = 0). Let m € M", and
€m € TLM™. &, is called a quasiumbilical direction if there exists a one
form w, and two constant A, u such that

<h(X,Y),€ >m= o(X)w(¥) + 4 < X,Y >m (3)

This is equivalent to the fact that A¢ admits an eigenvalue, with order n—1.
If A =0,¢ is called an umbilical direction. If u = 0, &, is called a cylindrical
direction. M™ is totally umbilical or umbilical if there exists a normal vector
field € such that A(X,Y) = p < X,V > £, VX,Y € TM™. In this case, it is
well known that M™ is an open set of a round sphere (of constant curvature).
M™ is totally quasiumbilical (or quasiumbilical), if there exists at each point
an orthonormal frame of quasiumbilical directions. M™ is totally cylindrical,
or cylindrical if there exists at each point an orthonormal frame of cylindrical
directions.
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Let R be the curvature tensor of M™. We denote by Ricc the Ricci tensor
and r the scalar curvature of M™. The Gauss-Codazzi-Ricci equations are
given by :

< R(X,Y)Z,W >=< WX, Z), (Y, W) >

- <MX,W),h(Y,2) >VX,Y,Z,W € TM™  (Gauss) (4)
(Vxh)(Y,2) = (Vyh)(X,Z)VX,Y,Z € TM", (Codazzi) (5)

where V is defined by

(Vxh)(Y,Z) = Vx(h(Y, Z)) - h(VxY, Z) — WY, VxZ)
RHYX,Y)E, p >=< Ag(X), Au(Y) >

— < Au(X),Ae(Y) (Ricci) (6)
VX,Y € TM™, V¢, p € TM™,

where R the curvature of the normal bundle.

In particular, if we assume that M™ is conformally flat (n > 4), we know
that the curvature tensor of M™ satisfies the following equation

<RX,Y)Z,W > =X, W)<Y,Z>+(Y,Z) < X,W >

- (X, Z) <Y, W > -4V, W)< X,Z > ™

where 1 is the (2,0) tensor defined by

r<X,Y>}

2(n-1)

$(X,Y) = nlj {Rz’cc(X, Y) -

VX,Y,Z,W € TM". Remark that the sectional curvature of plane spanned
by two orthonormal vectors X,Y is given by K(X,Y) = (X, X)+4(Y,Y).

In this case, the Gauss equation can be written
PX,W)<Y,Z>+y(V,2) < X, W >
- (X, Z) <Y, W> - ¢p(Y,W)< X,Z > = (8)
<hX,Z),MY,W)>— < h(X,W),h(Y,2Z) >.

3. The Gauss equation of a flat submanifold

In this paragraph, we will recall well known properties of flat syme-
tric bilinear forms. They where discoverd by E.CArRTaN [Ca2]. (See also
J.D.MoORE [Moo2] for an extended study of these forms).
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THEOREM 3.1.— Let h : E™ x E™ — EP? be a flat symmetric bilinear
form. Then

i) dimkerh >p—1
i) If kerh = {0}, then there exzists a direction £ in EP such that
< h(-,-),€ > 1s positive definite.
i) If € 1s a cylindrical direction, then the projection of h on £+ is also
o flat symmetric bilinear form.

THEOREM 3.2.— Let h : E™ x E® — E" be a flat symmetric bilinear
form. If ker h = {0} then h is cylindrical.

THEOREM 3.3.— Let h : E® x E® — EP, where n < 3, be a flat
symmetric bilinear form. Then h is cylindrical.

Different proofs of theorem 3.1 and 3.2 can be found in the litterature
(cf. [Ca2] or [Moo2] for instance). The first author and J.D.MOORE used
theorem 3.3 in [Mo-Mo]. A proof of this last theorem can be found in [Ca2].
However, we will give here an alternative proof of it.

Proof of theorem 3.3 .— Let K = ker h, and factorize h through E™/ ker h.
Obviously, we obtain a new flat symmetric bilinear form, without kernel.
Then, without restriction, we can assume that ker h = {0}. Let us examine
the three cases, n = 1, n = 2, and n = 3. We denote by S2(E?) the space
of symetric bilinear forms of E?.

First case : n = 1. In this case, theorem 3.3 is obvious.

Second case : n = 2. Consider (&1,---,§,) an orthonormal frame in EP. Let
R =< h(,),& > Vi, 1 < i < p. Since S3(E?) has dimension 3, there are
at most three linearly independant A*, and then, the image of h lies in EF,
k < 3. If £ =1, the proofs is trivial. If £ = 2, the theorem is a direct
application of theorem 3.2.

If £ = 3, then we can assume that k', h?, h® are linearly independant.
Then it is a frame of S;(E?), and any 2-forms w ® w (w € E?*) is a linear
combination of h!, h%, h%. Then we can write w @ w = a;h' + azh? +
ash3. This implies that < A(:,-), a1€; + a6y + @33 >= w ® w. Then
a6y + agés + a3és is a cylindrical direction. Now, let (71,72,73) be a new
orthonormal frame of E® such that 73 = a;€; + asé; + asés. By theorem
3.1, (iil), b = prysLh is flat and the dimension of Im k = 2. Then we can
apply theorem 3.2, to conclude that & is cylindrical, which implies that h is
cylindrical.
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Third case : n = 3. We can assume without loss of generality that ker h =
{0}, (otherwise we are in the case 1 or 2). Since S3(E?) has dimension 6,
dim[Im A] < 6. If dim[Im k] < 3, we can conclude by applying theorem 3.1
(i), 3.2, and the case 1 and 2. We will assume that dim[Im h] = 4,5 or 6.
(a) Suppose that dim[Im k] = 4. Let (&1, -+,&4) be an orthonormal frame

of [Im h]. We can write
4
h=> K@t
i=1

The dimension of the vector subspace V of §3(E?), spanned by {h!,---, h*}
is 4. On the other hand, by theorem 3.1 (ii), there exists a positive definite
form k which belongs to V. Let (e1,ez,e3) be a frame of E* which is
orthonormal with respect to k. Let wy, wy, w3 be the dual frame. We can
remark that

k=w; Quwi + w2 Qs + w3 Qus

Consider the (Veronese) surface of S2(E?), defined by the immersion j of
the unit sphere $? in E3*
Wy =wew

(j = j —1/3 Id is the standard immersion of the Veronese surface V' in the
Euclidean 5-space E®, as a minimal submanifold of the hypersphere of E%).
As a consequence of the fact that two quadric of E® with a null trace, have
a non trivial intersection, it is easy to prove that every 3-vector subspace P

of ES satisfies
PNV #0.

This is equivalent to the fact that every 4-vector subspace of Sz(E?),
containing Id, has a non trivial intersection with j(S$?).

This means that there exists a form of rank one, w ® w in V. We can
write

4
w®w=z,3ih"

i=1

which implies that
4
n=Y Pt
i=1

is a cylindrical direction.

By theorem 3-1 (iii), pr,+h is flat. Since
dim (n* N [Im &]) = 3
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we conclude, using theorem 3.2, that pr,. h and then h is cylindrical.

(b) Suppose that dim[Im k] = 5. We can apply exactly the same proof as
in (a). This shows that there exists in [Im A] a section v which is cylindrical.
Then pr ,.h is also a flat, with dim[Im pr ,. k] = 4. We apply (a) to
conclude that pr ,1 h is cylindrical, which implies that & is cylindrical.

(c) Suppose that dim[Im h] = 6. In this case, we can write h = £ ' ®¢;,
where {{1,---,&s} is an orthonormal frame of [Im h]. Then {h!,---,h%} is
a frame of S3(E?). Consequently, any form of rank 1, w ® w, can be written
as a linear combinaison of A!,--- A% Let w@w = £¢_; 4'A’. Then < h(,-),
$¢_, ¥'& > is cylindrical, and presh is cylindrical. Since dim(Im AN éL) is
five, we conclude by using (b).

Remark 3.4.—1In (b), we prove that any 5-vector subspace V of S;(E?)
which contains a positive definite form k contains also a form of rank one.
Another simple proof of this can be given as follows. Let (e;,ez,e3) be a
frame of E?, orthonormal with respect to k. In this frame, the matrix of &
is the Identity. Let the scalar product of S2(E?) defined by :

< A, B >= Trace AB,

where the trace is taken with respect to k. Let 1 = VL. We have < ¢,k >=
Trace ) = 0 which implies that 1 is not positive definite. Then there exists
a non null vector X, isotropic with respect to 1. Let X* be the one form
dual to X with respect to k. We have (X, X) =< ¢, X*® X* >= 0, which
implies that X* @ X* lies in V.

If n > 3, E.CARTAN announces, without proof, in [Cal] that theorem 3.3
is wrong. For n = 4, dim S;(E*) = 10. In this case, using the same technics
than in the proof of theorem 3.3, it is easy to see that if dim[Im A] €
{7,8,9,10}, there exists at least in [Im h] a cylindrical direction. On the
other hand, if dim[Im k] € {0,1,2,3,4}, h is cylindrical by theorem 3.2 and
3.3. Then, the unknown cases are the cases where dim[Im h] = 5 or 6. We
don’t have a general method to study these two cases. However, we give here
an example of a flat symmetric bilinear form from E* x E* into E® which does
not have any cylindrical direction. Moreover, this form is not quasiumbilical.
In fact, consider in S;(E*) the space spanned by the six following symmetric
matrices, which can be considered as bilinear symmetric forms, written in
the canonical orthonormal frame of E*
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10 0 0) 0100
0100 1 00 0
Mi=19 011 M2_0000
00 1 1 0 000
0000 00 0 O
0010 01 0 0
M3_0100 Mi=14o 0 o _1
0000 0 0 -1 -1
001 1 0000
0000 0000
Ms=11 9 0 o M""0010
1000 000 1

Suppose that M; representents h; (1 < i < 6), and consider
i Bt % B* — E°

defined by k= T6RE @ €& o {&1,--+,&} is an orthonormal frame of ES.
A long computation shows that h is flat, and that there does not exist

any cylindrical direction with respect to A in E®. Moreover, L is not
quasiumbilical (cf. [Za] for details).

Application 3.5.— As an obvious application of this example, it is possible
to construct an immersion of an open set of E* in E°, such that, for the
induced metric, 0 € E* is a flat point an such that the second fundamental
form at 0 is not quasiumbilical (and without any cylindrical direction). For
instance, let f = (f1,--, fi0) : E* = E!° be given by :

1
Az y,z1) =5 (2% +9° +2° +17) +

fz(x,y,z,t) =Y
f3($ay,2,t) =Yz

f4(-’l),y,2,t) = % (yz = tz) — 2zt
f5(x7y>zvt) = .'E(Z +t)

1
fe(.”C,y,Z,t) = 5 (22 +t2)
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fi(z,y,z,t) = -z +y+z+1t
fo(z,y,z,t) =z —y+ 2+t
fo(z,y,z2,t) =z +y—2z+t
fio(z,y,z,t) =z +y+2—t
It is easy to show that f is an immersion. Its second fundamental form h

which is equal to h. Then, by the

0
at 0 satisfies (hij)o = pros(s(esy) fz:s;
Gauss equation, 0 is a flat point. On the other hand h, does not have any
cylindrical direction and is not quasi-umbilical.

4. The Gauss equation of a conformally flat
submanifold of low codimension

Let us consider 7 : M™ < E™*? an isometric immersion of a conformally
flat manifold M™ of codimension p. Using (7), J.D.MOORE proved the
following theorem, which gives a necessary condition for a submanifold of
low codimension to be conformally flat.

THEOREM [Moo3] 4.1.— Let M™ be a conformally flat submanifold of
E™"*? with 1 < p < n — 3. Then, for every m € M?™, there exists an
orthonormal frame in which the matriz of A¢ has the following expression,
for every ¢ € T+M™

Me
Ae 0
| (8)
0 Ae
where Mg is a k X k matriz with k < p, and A\¢ € R.

This condition is not sufficient. The simpliest example is the standard
immersion of $" x §™ in E"*! x E"*!. In this case, for every ¢ € T+(S"x S™)

(ag 0 0o ... O
0 af 0 0
A¢ =
0 0 Be 0
0 0 0 Be
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where ag, B¢ € R. However S™ x S™ is not conformally flat if n > 1. On the
other hand, if the immersion is quasiumbilical, B.Y.CHEN and K.YaNo [Ch-
Ya.2] proved that M™ is conformally flat. When the codimension is lower
that 4, J.D.MOORE and the first author proved in [Mo-Mo], as a consequence
of theorem 3.1 and 3.3, that this condition is also necessary.

THEOREM 4.2.— Let i : M™ — E™*P be an isometric immersion of M™
into E"*? with n > 7, p < 4. Then the immersion is quasiumbilical if and
. only if M™ is conformally flat.

On the other hand, B.Y.CHEN and L.VERSTRAELEN obtained a similar
result when the immersion has flat normal connexion [Ch-Ve].

THEOREM 4.3.— Let ¢ : M™ — E™P be an isometric immersion of a
conformally flat manifold, with 1 < p < n — 3. If the normal bundle of M™
s flat, then the immersion 1s quasiumbilical.

The example that we gave in § 3 shows that it is possible in large
codimension to construct submanifolds which are conformally flat at some
point but not quasiumbilical at this point. However, this notion is natural,
although its definition depends on the choice of a particular normal frame.

5. Local study of conformally flat submanifold
of low codimension

In this paragraph, we shall study the local shape of a conformally flat
submanifold of low codimension.

(a) FS2 : The class of submanifolds generically foliated by spheres

Let M™ be a submanifold of E**? (p < n). We shall say that M™ is
generically foliated by spheres if there exists a dense open set U of M™ such
that U = UP_, U,, where, for every r, U, is an open set of M™, which is
foliated by(n — p + r) umbilical submanifolds of E**?. We shall denote by
FS? this class of submanifolds. The points of U are called generical points.

Remark 5.1.— This definition implies in particular that the leaves of U,
are open set of standard spheres S®~P*". On the other hand, it is clear that
the second fundamental form of M™ satisfies, in each normal direction &,,,
m € M"™, with respect to a suitable frame of M™,

Me,. lem }p—-r
tmy < A &m > Id }n-—p+r

<h(e),&m >= ( 9)
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where M_ is a squared matrix of (p—r) order, M; isa (p—r)x (n—p—r)-
matrix. Id is the identity matrix, and @, is the projection on T:M of
the mean curvature vector of the leaf. The vector field a will be called the
canonical vector field of M™. (See [Mor], [Za] for interesting geometrical and
topological properties of a).

(b) SFS2 : The class of submanifolds strongly generically foliated by
spheres.

Let M™ be a submanifold of E**? (p < n). We shall say that M™ is

strongly generically foliated by spheres if the two following conditions are
satisfied :

i) M™ € FS?
ii) The restriction of T+ M to each leaf S of U is parallel in T S.

We shall denote by SFS? this class of submanifolds. We have obviously
SFSE C FSE. Moreover, it is clear that a submanifold M™ satisfies in each
direction £, m € M™, with respect to a suitable frame of M™,

Me.. 0 ) }p—r

0 <a’£>mIn—p+r }n——p+7‘

S h(" )y bm >= < (10)

(using the notation of (a)).
(c) Local structure of conformally flat submanifolds

Let CF? be the class of conformally flat submanifold M™ of E**?, We
shall prove the following.

THEOREM 5.2.—If1<p<n-3,CFE C SFSy.

Proof of theorem 5.2.— Theorem 4.1 shows that if 1 < p < n — 3, the
second fundamental form % of a conformally flat submanifold M™ of Er+?
satisfies, at each point m € M™, the following property : There exists a
subspace Ey,, of TM™ of dimension > n—p such that, VX € Ep,, h(X,Y) =<
X,Y > am for every Y € TM". Using a result of H.RECKZIEGEL [Re 1],
we can conclude that, when m varies on M", E™ is almost every where a
differentiable involutive distribution. On each open set where the dimension
of E is constant, E defines a foliation, the leaves of which are umbilical in
E"*+?_ This implies that M™ belongs to F. SP. Now, it is clear, by looking at
the shape of the second fundamental form given by theorem 4.1, that M™
belongs to SFSE.
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6. An alternative caracterisation
of quasiumbilicity

In this paragraph, we shall give a new caracterisation of quasiumbilicity,
in terms of focal set, which doesn’t use particular forms on the tangent
bundle of the submanifold. First of all, consider a submanifold M™ of E**?,
which belongs to the class SFSE. Using the notations of §5, the focal set
F, at the point m € M™ is defined by :

Fy, = {m+t{m, where £, is an unit normal vector such that det(Ase,, —
I) = det(My,, — I). (@m <,tém > —-1)""7 = 0}. We deduce that
Fyy = PmUVp,, where Py, is the affine subspace defined by P,,, = { m+£€/¢ €
TiM and < ap,€& >= 1}, and Vi, is the algebric variety defined by
Vim = {m+¢/¢ € T,f;M} and det(M¢ —1I) = 0. In particular the direction ¢
is quasiumbilical if Pp, N Vy, has an intersection point of multiplicity (n — 1)
in the direction €. (It is easy to see that the distance from this intersection

point to m is , where Cp, € T M™ is the point which is the

< Cm,¢/I¢]| >

projection of the center of the sphere which contains the leaf through m, of
the canonical foliation; CY, is a focal point which lies in the line m + Q).

Suppose, for simplicity, that the codimension is 2, and consider the
generic case where @,, # 0. We have, generically, three possibilities :

——
VA
EMEE RN 3

-

P
. . Vi

Case (I) : Vi NP, =0
Case (II) : V,, N Py, has two points I, and J,,.

Case (III) : V,, is reduced to two lines, one of which is the line P,,.

Vin N P = P

It is clear that I, and J,,, determines two quasiumbilical directions. More
generally, any point of V;,, NPy, determines a quasiumbilical direction. Then,
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the case (I) corresponds to the fact that no direction is quasiumbilical.
The case (II) corresponds to the fact that exactly two directions are
quasiumbilical. The case (III) corresponds to the fact that every direction
is quasiumbilical. Consequently, using theorem, we obtain that :

i) If M™ is locally of type (I), then M™ is not conformally flat.
ii) If M™ is locally of type (III), then M™ is conformally flat.
iii) If M™ is locally of type (II), then M™ is conformally flat if and only
if the angle Iy m Jm = L.

It is easy to find examples of these three types of immersion :

The standard immersion of §?(1) x $7(2) in E"*4, (n > 2) i of type (I).
Consider a conformally flat hypersurface M™ of a canal hypersurface M"+1
of E**2. Then M™ is a codimension 2 conformally flat submanifold of type
(II). Consider the standard immersion ¢ of the sphere S™ into E"**! and a
cylindrical immersion of E**! into E"*2. Then joi is of type (III). For a
detailed study of this view point, see [Za).

7. Conformally flat submanifolds with
parallel second fundamental form

In the previous paragraph, we gave a local description of the class of
conformally flat submanifold of Euclidean space, by using only the Gauss
equation. In this paragraph, we shall assume that the submanifold has
parallel second fundamental form. Using Codazzi equation, we shall deduce
important restrictions to the submanifold. Precisely, we shall prove the
following.

THEOREM 7.1.— Let i : M™ — E™P be an isometric immersion of a
conformally flat manifold M™ into E™*? 1 < p < n — 3, with parallel
fundamental form. Then

i) Either M™ is totally geodesic (and then, is an open set of a n-plane.

i) Or, M™ is properly umbilical (and then, is an open set of a round

sphere S™)

i) Or, M™ 1s locally a Rieamannian product ¥"~! x R, where $n~!

18 an open set of a (n — 1)-sphere and ¢ locally a product iy X i :
L1 x R — E" x EP, where i1 i3 an umbilical immersion and i2(R)
18 @ curve in EP.

w) Or, M™ is locally a Riemannian product £" % x H* (2 < k < p),
where £"F is an open set of a (n — k)-sphere of constant curvature
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p > 0, and H* is an open set of an hyperbolic space of constant
curvature (—p).

Moreover, 1 is locally a product iy x i3 : "% x H¥ — En—k+1 »
E?**=1 where iy is an umbilical immersion of "% into En—k+1
and iz is an immersion of H* into EPtF—1,

As a consequence, we obtain the following :

COROLLARY 7.2.— Let ¢ : M™ — E™P be an isometric immersion
of a compact simply connected conformally flat manifold M™ into E™t?,
(1 £ p £ n—38), with parallel second fundamental form. Then M™ is a
standard sphere (of constant curvature).

Proof of the theorem.— We need the following lemmas.

LEMMA 7.3.— Under the assumptions of the theorem, the integral distri-

bution which defines the foliation by spheres, is parallel. In particular, M™
—p—k

is locally a product of TPtk x M , where " 7PHE 45 an open set of a

(n —p+ k)-sphere and 7 (p — k) dimensional manifold.

Proof of Lemma 7.3.— Since the second fundamental form # is parallel,
the dimension of the integrable distribution E defined by E = {X €
TM" /| (M(X,Y) =< X,Y > a} hasa constant dimension. This dimension is
2> n—p, by theorem 4.1. Then, this distribution is everywhere differentiable.

On the other hand, the Weingarten tensor A satisfies (V xA)Y,§) =0
VX,Y € TM", V¢ € T+ M.

This implies : Vx(Ae(Y)) — Ae(VxY) — Agie(Y) = (X(X(€)-
AV%E)—(4e(VxY) — A(€)VxY) = 0, where A\(¢) =< a,¢ >. From this
equation, we deduce that VX € TM", VY € E, A¢(VxY) =< a,¢ >
VxY. Consequently, E is parallel. From De-Rham decomposition theorem
[Ko-No], we obtain that M™ is locally the product of an integral subma-
nifold of E and an integral submanifold of E+. From §4 we know that an
integral submanifold of E is an open set of a sphere.

The following lemma is an easy consequence of (7) (see also [La]).
LEMMA 7.4.— Let M™ be a Riemannian conformally flat manifold,
endowed with a non trivial parallel distribution (i.e. # {0} and TM™). Then,

for every point m € M™, there ezists a neighborhood U of M™ which has
one of the following ezpression :

i) U 1s an open set of E™
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#) U =T x Z*! is a product of a curve of M™ by an open set of a
(n —1)-sphere.

i) U =T x H™ ! is a product of a curve of M™ by an open set of a
(n — 1)-hyperbolic space.

w)U = "% x H¥(2 < k < n —2), is a product of an open set of
a (n — k)-sphere of constant curvature p > 0 by an open set of a
k-hyperbolic space of constant curvature —p.

Using lemma 7.3 and lemma 7.4, we conclude that M™ has locally one
of the previous expression i), ii), iii), iv), or is an open set of a sphere, in
the case where the dimension of the integral distribution is n. We shall use,
now, the fact that M" is a submanifold of E"*?. Let us recall the following
result, due to J.D.MooRE [Moo 1].

LEMMA 7.5.— Let M; and M, be two Riemannian manifolds and f :
M; x My — EN be an isometric immersion of the Riemannian product
My x M. If the second fundamental form h of f satisfies h(X1,Xs) =
0VX, € TM;, VX, € TM,, then there exists a decomposition of EV, EN =
EM x EN2) Ny + N, = N and two isometric immersions f, : M* — EN1
fa : M? — EN2 | such that f = f1 x fa.

From theorem 4.1 and lemma 7.4, the condition of lemma 7.5 are satisfied.
Since, by theorem 5.2 one of the two components of U is an open set of a
sphere, then U is an open set of S™ or satisfies i), ii), iii), iv) of lemma
7.4. Case iv) can occurs. In fact there exists local isometric immersions of
hyperbolic space H¥ in E?*~1 (cf. [K.N.] for instance). Then S™~? x HP?
can be locally isometrically immersed in E*~P*! x E??~! = E"*?P and the
theorem is proved.

Proof of the corollary.— We shall apply the global version of De Rham
theorem. Since M™ is compact, the leaves of the foliation are complete [Rec
2], then they are spheres. Since M™ is simply connected, we obtain from
lemma 7.4 that the only possibility for M™ is to be a sphere S™.

8. Global structure of regular conformally
flat submanifolds

We have seen in §5 that a conformally flat submanifold M™ of E**?
(p £ n—3)is “locally and generically” foliated by open sets of umbilical
spheres of dimension k > n—p. Such a submanifold will be called “k-regular”
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if this foliation is regular (and has dimension k everywhere). We shall prove
the following theorem, which is a direct generalisation of [Do.Da.Me].

THEOREM 8.1.— Let M™ be an oriented compact conformally flat sub-
manifold of E"?, (p < n — 3). If M™ is k-regular, then M™ is a sphere
bundle over an (n — k)-compact manifold.

Proof of theorem 8.1.— Since M™ is compact, the leaves of the foliation
are complete spheres [Rec 2]. Since p < n—3, and k > n —p, we have k > 3.
Then the spheres are simply connected. Consequently, M™ is foliated by
simply connected compact submanifolds. In particular, this foliation has no
holonomy. It follows directly from [Rec] or [Ep], that M™ is a fiber-bundle
over the space of leaves. The fibers of this foliation are spheres.

Remark.—1) It follows immediatly from the exact sequence of homotopy
of a fiber bundle that IT; (M™) = II;(B"~*), where B™~* is the base of this
fibration.

ii) Let S™2(1) be the k-sphere of curvature 1, and FZ(—l) be a compact
surface of constant curvature —1. Consider the standard immersion of
S™~2(1) in E®~! and any isometric immersion of _1172(-—1) into E17 (by Nash
theorem). The product S™~2(1) x _ﬁz( —1) is then isometrically immersed in
E™t16 If n > 19, we obtain an example of the situation studied in theorem
8.1. However, the codimension is not the best. In particular, we don’t know
examples of 2-regular compact conformally flat submanifolds M" of E*+2.

9. Remark : Conformally flat manifolds
foliated by spheres

In the previous parts of this work, we have seen that a conformally flat
submanifold M™ of an Euclidean space is, at least locally, foliated by open
sets of spheres of constant curvature. It is easy to see that the leaves are
umbilical in M™. In this paragraph, we shall deal with the converse problem.
Precisely we shall give a necessary and sufficient condition on a manifold,
which is foliated by umbilical spheres, to be conformally flat. This is a direct
generalisation of [Do.Da.Me]. We obtain the following.

THEOREM .— Let M™ be a Riemannian manifold of dimension n > 4,
foliated by k-umbilical submanifolds of positive constant curvature, 3 < k <

(n—1). Then M™ 1s conformally flat if and only if the sectionnal curvatures
of M satisfy :
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i) K(X,n) = K(Y,n) for every X,Y tangent to the foliation, and for
every 1 normal to the foliation.

u) K(X,Y)+ K(n,¢) = K(X,n) + K(Y,£)
for every orthonormal vectors (X,Y, €, n) such that (X,Y) are tangent
to the foliation, and (€,n) are normal to the foliation.

Proof of the theorem.— Suppose that M™ is conformally flat. Let m
be a point of M™ and denote by S the leaf through the point m.
Let {e1,-,e€k, €kt+1,",en} be an orthonormal frame at m, such that
{e1,- -, ex} is tangent to the leaf S, and such that {ex41,---,en} is normal
to F. Let A\? be the curvature of S, and H be the mean curvature vector of
S. Since S is umbilical, we deduce from the Gauss equation (4) that :

Ki=XN—|H|* Vije{l,---,k}, i#].

This implies that K;; = Ky Vi,5,¢,5' € {1,---,k}, ¢ # 7, ¢ # 5"
Let p = A? — ||H|%. Using the notations of §2, we obtain that K;; =
Y(ei,ei) + P(ej,ej) = p Vi,j € {1,---,k}. Since k > 3, this implies that
t}"'(‘531',‘3:') = ")b(ejaej) Vi,j € {1" ) "k} and ¢(ei7ei) = 1/2 pVie€ {1" e ak}'
On the other hand, Kia = ¥(ei,ei) + ¥(ea,ea) = 1/2 p + (ea,€a)
Vie{l,---,k},Va € {k+1,---,n}. Then K;, does not depend on ¢. Then
(i) is proved. We also have Kqp + Kij = ¥(eq, ea) + ¥(eg,e8) + ¢(ei, i) +
Y(ej,ej) = Kia + Kjp. (ii) is proved.

Conversely, assume that K; = Kj, and K;; + Kop = Kia + Kjg
Vi,j € {1,---,k}, Ya,3 € {k + 1,---,n}. Then, by an easy computation
we obtain (e;,e;) = 1/2 p Vi < k, ¢(eq,ea) = —1/2 p+ Kin Yo > k + 1.
This implies :

Kij = (e, i) +¥(ej, €5).
Kia = ¢(ei, ei) + "/)(eaa ea)~
Kop = Y(ea,a) + P(ep,ep),

VZ,JE{laak}) Va,ﬂe{k+1,,n}a7é,3, 1’74]

This implies immediately that M™ is conformally flat.
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