Géométrie différentielle/Differential Geometry

Classes caractéristiques des sous-variétés isotropes

Jean-Marie Morvan

Résumé — On définit de façon naturelle les classes caractéristiques d'une sous-variété isotrope M^n de \mathbb{C}^{n+k} , muni de sa structure symplectique standard. Ceci généralise directement la théorie des classes caractéristiques des sous-variétés lagrangiennes.

Characteristic classes of isotropic submanifolds

Abstract — Characteristic classes of isotropic submanifolds M^n of \mathbb{C}^{n+k} (endowed with its standard symplectic structure) are defined. This is a direct generalisation of the theory of characteristic classes of Lagrangian submanifolds.

Ce travail est la première partie d'une étude des classes caractéristiques d'une sousvariété isotrope de \mathbb{C}^{n+k} . Dans une deuxième partie nous exprimerons ces classes en fonction des invariants locaux (seconde forme fondamentale et courbure) liés à l'immersion.

1. La grassmannienne isotrope $\mathscr{F}G_k(\mathbb{C}^{n+k})$. -1.1. Généralités. - Soit \mathbb{C}^{n+k} l'espace vectoriel complexe de dimension réelle 2(n+k), muni de son produit scalaire canonique $\langle \ , \ \rangle$ de sa structure complexe J et de sa structure symplectique $\Omega(\ , \) = \langle \ J \ , \ \rangle$. Un k-plan [resp. (2n+k)-plan] vectoriel réel de \mathbb{C}^{n+k} est dit isotrope (resp. coïsotrope) si : $P \subset P^0$ (resp. $P^0 \subset P$) où « 0 » désigne l'orthogonal symplectique. La grassmannienne $\mathscr{F}G_k(\mathbb{C}^{n+k})$ des k-plans isotropes orientés de \mathbb{C}^{n+k} s'identifie naturellement à l'espace homogène $U(n+k)/U(n)\times SO(k)$. Son espace tangent à l'origine, $\mathscr{U}(n+k)/\mathscr{U}(n)\times\mathscr{SO}(k)$, s'identifie à l'espace des matrices carrées du type : $\begin{bmatrix} 0 & A \\ {}^t \overline{A} & B \end{bmatrix}$ où

A est une matrice complexe (k, n) et B est une matrice (k, k) symétrique imaginaire pure.

1.2. La cohomologie de De Rham de $\mathcal{F}G_k(\mathbb{C}^{n+k})$. — Soit $V[\mathcal{U}(n) \times \mathcal{FO}(k)]^*$ l'algèbre symétrique sur $[\mathcal{U}(n) \times \mathcal{FO}(k)]^*$. $(V[\mathcal{U}(n) \times \mathcal{FO}(k)]^*)$ s'identifie au produit tensoriel $\mathbb{R}[c] \otimes \mathbb{R}[a]$, où $\mathbb{R}[c]$ est l'anneau de polynômes sur \mathbb{R} engendré par les générateurs (c_2, \ldots, c_{2n}) , et $\mathbb{R}[a]$ est l'anneau de polynômes sur \mathbb{R} engendré par les générateurs $(a_4, \ldots, a_{4 \lceil k/2 \rceil}, e_k)$ (l'indice désigne le degré des générateurs). Ces générateurs sont liés par les seules relations :

$$e_k = 0$$
, si k est impair $e_k = a_{2k}$, si k est pair.

Notons $\Lambda P_{U(n+k)}$ l'algèbre extérieure sur le sous-espace gradué des éléments primitifs de $H^*(U(n+k), \mathbb{R})$. On sait que $\Lambda P_{U(n+k)}$ s'identifie à l'algèbre $\Lambda(x_1, \ldots, x_{2n+2k-1})$ (l'indice désigne encore le degré des générateurs), que nous noterons $\Lambda(x)$. Un résultat classique (cf. [1] par exemple) permet d'affirmer que la cohomologie réelle de $U(n+k)/U(n)\times SO(k)$ s'identifie à la cohomologie de l'algèbre graduée : $(\mathbb{R}[c]\otimes\mathbb{R}[a])\otimes\Lambda(x)$ munie du cobord d défini par :

(1)
$$d_{\mathbb{R}[c]} = 0, \qquad d_{\mathbb{R}[a]} = 0, \qquad dx_i = a_{i+1} + \sum_{s+t=i+1} a_s c_t + c_{i+1}$$

avec la convention que $a_s = 0$, si s n'est pas un multiple de 4.

Note présentée par André LICHNEROWICZ.

Remarquons que les éléments c_{4l+2} , $2 \le 4l+2 \le 2n$, sont des cobords. En effet, si l'on définit par récurrence les éléments y_{4l+1} par :

(2)
$$\begin{cases} y_1 = x_1 \\ y_5 = x_5 - y_1 a_4 \\ \vdots \\ y_{4l+1} = x_{4l+1} - y_{4l+3} a_4 - \dots - y_{4l+1-4 \lfloor k/2 \rfloor^a 4 \lfloor k/2 \rfloor} \\ \vdots \end{cases}$$

 $(1 \le 4l + 1 \le 2n + 2k - 1)$, (avec la convention que $y_s = 0$ si s est négatif), on a :

(3)
$$dy_{4l+1} = c_{4l+2} \ (1 \le 4l+1 \le 2n-1), \quad dy_{4l+1} = 0 \ (2n+1 \le 4l+1 \le 2n+2k-1).$$

Enfin, si k est pair, $x_{2n+2k-1}$ est un cocycle.

On déduit également de (1) :

(4)
$$(1+c_2+\ldots+c_{2n})(1+a_4+\ldots+a_{4\lceil k/2\rceil})=1.$$

Les calculs de cette cohomologie différent ensuite légèrement suivant les valeurs de k et n. Donnons des indications par exemple dans le cas où k est impair et n est pair, n > k. On déduit de (1), (2), (3),

$$H^*(\mathscr{I}G_k(\mathbb{C}^{n+k}),\mathbb{R}) \approx H^*(\mathbb{R}[a] \otimes \Lambda(x_{2n+3},\ldots,x_{2n+4u+3},\ldots,x_{2n+2k-3}))$$
$$\otimes \Lambda y_{2n+1},\ldots,y_{2n+4u+1},\ldots,y_{2n+2k-1})$$

où $\mathbb{R}[a] \otimes \Lambda(x_{2n+3}, \dots, x_{2n+2k-3})$ est munie de l'opérateur cobord d défini par :

$$d_{\mathbb{R}[a]} = 0$$
, $d_{|\Lambda(x_{2n+3}, \dots, x_{2n+2k-3})}$ est déduite de (1)

et où $dy_{2n+1} = \ldots = dy_{2n+2k-1} = 0$.

Le rang de $\mathbb{R}[a]$ est égal à celui de $\Lambda(x_{2n+3}, \ldots, x_{2n+2k-3})$. Ces deux espaces forment donc une paire de Cartan.

La cohomologie de $\mathbb{R}[a] \otimes \Lambda(x_{2n+3}, \ldots, x_{2n+2k-3})$ est engendrée par des générateurs $p_4, p_8, \ldots, p_{4[k/2]}$ dont le degré est multiple de 4. Son polynôme de Poincaré est :

$$P(t) = \frac{(1-t^{2n+4})}{(1-t^4)} \cdot \cdot \cdot \frac{(1-t^{2n+2k-2})}{(1-t^{2k-2})}.$$

On en déduit immédiatement la cohomologie de De Rham de $\mathscr{I}G_k(\mathbb{C}^{n+k})$.

D'une façon générale, on a le résultat suivant :

- 1.3. Théorème. $H^*(\mathcal{I} G_k(\mathbb{C}^{n+k}), \mathbb{R})$ est engendré, en tant qu'anneau,
- (i) en dimension paire, par les générateurs suivants (dont l'indice désigne le degré) $(p_4, \ldots, p_{4|k/2}, e_k, c_k, \ldots, c_{2|n})$, soumis aux seules relations

$$(l+p_4+\ldots+p_{4[k/2]})(l+c_2+\ldots+c_{2n})=l,$$
 $e_k=0$, si k est impair,
et $e_k=p_{4[k/2]}$ si k est pair;

(ii) en dimension impaire, par les générateurs

$$(y_{4[(n+1)/2]+1}, \dots, y_{4t+1}, \dots, y_{2n+2k-1})$$
 si k est impair $(y_{4[(n+1)/2]+1}, \dots, y_{4t+1}, \dots, y_{2n+2k-3}, x_{2n+2k-1})$ si k est pair.

- 1.4. Remarques. (i) Géométriquement, les classes p_{4j} sont les classes de Pontrjagyn du fibré tautologique au-dessus de $\mathscr{I}G_k(\mathbb{C}^{n+k})$.
- (ii) Lorsque n=0, les classes y_{4t+1} sont les « classes de Maslov » de la grassmannienne lagrangienne. On retrouve la classe de Maslov habituelle pour t=0([2],[3]).

- (iii) Lorsque k est pair, $H^*(\mathscr{I}G_k(\mathbb{C}^{n+k}), \mathbb{R})$ admet donc un générateur impair congru à 3 modulo 4.
- (iv) On pourra trouver, dans [4], par des voies très différentes, un calcul de la cohomologie de $\mathcal{I}G_k(\mathbb{C}^{n+k})$, à valeurs dans un anneau quelconque. Il ne donne cependant pas les formules explicites (1), (2), (3), qui sont ici indispensables pour la suite.
 - 2. Classes caractéristiques des sous-variétés isotropes.
- 2.1. Géométrie locale d'une sous-variété isotrope. Soit : $M^k \subseteq \mathbb{C}^{n+k}$ une immersion isotrope d'une variété M orientée de dimension réelle k, à valeurs dans \mathbb{C}^{n+k} . Munissons M de la métrique g induite par le produit scalaire \langle , \rangle de \mathbb{C}^{n+k} . L'orthogonal (pour g) de $TM \oplus JTM$ définit une distribution complexe \mathscr{F} et l'on a : $T_{IM} \mathbb{C}^{n+k} = TM \oplus JTM \oplus \mathscr{F} = (TM \otimes \mathbb{C}) \oplus \mathscr{F}$. Les classes de Pontryagyn (p) de TM et les classes de Chern (c) de c sont donc liées par la relation pc = 1.
- 2.2. Définition des classes caractéristiques. Identifions \mathbb{C}^{n+k} à $\mathbb{E}^{2(n+k)}$, et considérons l'application de Gauss \bar{G} associée à i, à valeurs dans la Grassmannienne des k-plans orientés $G(k, 2(n+k)) \approx SO(2n+2k)/SO(2n+k) \times SO(k)$, définie par : $\bar{G}(m) = T_m M$, (espace tangent en m à M, translaté à l'origine). Comme M est isotrope, \bar{G} se factorise à travers $\mathscr{I}G_k(\mathbb{C}^{n+k})$:

 $(G = j \circ \overline{G}, \text{ où } j \text{ désigne l'inclusion naturelle}).$

G, \overline{G} et j induisent des morphismes :

$$H^*(G(k, 2(n+k), \mathbb{R}) \xrightarrow{\bar{G}^*} H^*(M, \mathbb{R})$$

$$H^*(\mathcal{I}_{G_k}(\mathbb{C}^{n+k}), \mathbb{R})$$

DÉFINITION. — Soit $i: M^k \subseteq \mathbb{C}^{n+k}$ une immersion isotrope d'une variété M à valeurs dans \mathbb{C}^{n+k} . On appelle classe caractéristique de M le pull-back de toute classe de cohomologie de $\mathscr{I} G_k(\mathbb{C}^{n+k})$.

- 2.3. Remarque. On pourrait établir de façon analogue une théorie des sous-variétés coïsotropes de \mathbb{C}^{n+k} . Dans ce cas, l'application de Gauss associerait, à tout point m de la sous-variété coïsotrope M, l'espace normal T^{\perp} M, translaté à l'origine.
- 3. GÉNÉRALISATION ET INTERPRÉTATION. -3.1. Il est facile de généraliser cette construction dans le cadre suivant : (E, M, B) est un fibré symplectique trivial dont les fibres sont de dimension réelle 2(n+k), muni d'un sous-fibré coïsotrope trivial C, dont les fibres sont de dimension réelle 2n+k. La donnée d'un sous-fibré isotrope I, dont les fibres sont de dimension réelle k, d'une métrique riemannienne g et d'une structure presque complexe J adaptée à la structure symplectique sur E, permet de définir une application de Gauss de B à valeurs dans $\mathcal{I}G_k(\mathbb{C}^{n+k})$. Les classes caractéristiques obtenues ne dépendent pas du choix de g et de J. Cette construction peut ensuite s'étendre au cas où E et C ne sont pas triviaux (en augmentant E et C pour se ramener au cas trivial [4]).
- 3.2. Les classes caractéristiques ainsi obtenues sont, comme dans le cas lagrangien, des obstructions à la transversalité de I et C (chaque composante connexe de l'espace

des sous-espaces isotropes I transverses à un sous-espace coïsotrope fixé est contractile (cf. [4] pour une preuve élégante)).

Note reçue le 16 septembre 1987, acceptée le 28 septembre 1987.

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] W. Greub, B. Halperin et R. Vanstone, Connections, curvature and cohomology, Academic Press, 1972.
- [2] D. G. Fuks, Classes caractéristiques de Maslov-Arnold, Dokl. Akad. Nauk S.S.S.R., 178, 1968, p. 303-306.
- [3] J.-M. Morvan et J. Niglio, Classes caractéristiques des couples de sous-fibrés lagrangiens, Ann. Inst. Fourier, 37, n° 2, 1986, p. 193-209.
 - [4] F. LALONDE (à paraître).

Université d'Avignon, Département de Mathématiques, 33, rue Louis-Pasteur, 84000 Avignon.