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GEOMETRIE DIFFERENTIELLE. — Courbures externes et torsion interne d'une
sous-variété d’une variété riemannienne. Note (*) de Joseph Grifoneet Jean-Marie Morvan,
présentée par M. André Lichnerowicz.

On introduit les notions de courbures externes et torsion interne d’une sous-variété d’une variété
riemannienne. On démontre une propriété reliant la torsion interne a I'indice de nullité relative,
en vue de donner, dans une prochaine Note, une description des sous-variétés dont 1'une des
courbures externes et la torsion interne sont constantes, dans le cas ol la dimension du premier
espace normal principal est 2.

We introduce the notions of external curvatures and internal torsion of Riemannian submanifols.
We prove a property connecting internal torsion to relative nullity index, inorder to give,in a

forthcoming note, a description of submanifolds of which one of the external curvatures and interal
torsion are constant, when the dimension of the first principal normal space is 2.

Dans une Note (1) nous avons étudié les sous-variétés d’une variété a courbure constante,
dans le cas ou le premier espace normal principal est de dimension 1. On se propose d’étudier
le cas ou la dimension du premier espace normal principal est 2.

Les notations sont les mémes que celles employées en ().
1. DEFINITIONS.

LEMME. — Soit @ une distribution sur M et @* son supplémentaire orthogonal,
pryL application projection sur g*t. Si V est une connexion sur M, alors pour tout & € 2,
proL (VE) a un caractére tensoriel en &. En particulier (prgyi V §), ne dépend que de la
valeur de & en x.

Ceci autorise les définitions suivantes.

DEFINITION 1. — On appelle i-iéme espace normal principal au point xe M (1 £ i £ p)
le sous-espace (E)), défini par récurrence de la maniére suivante :

(Ey), =[ImH],
c’est-d-dire : espace vectoriel engendré par I'image de H,:
(Ei)x = [(E:)x]

(Ei)x = ‘[ﬂETiM | 1XeT, M, IE e(E;—()xs = P?‘(J_gi(ﬁj),uv:fi& } .
Remarque :
(E)x={0} = (Eisr)={0}.
Par construction ces espaces sont en somme directe.

DEFINITION 2. — Soient les applications (pour 2 < i £ p):

k;:

(Ei—l)x_)R+s

i L
n— Sup ||pre @poLVxn ||
X € Uy (M) j<i
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On pose
kM= Sup [[HX V[, (*M).= Sup (k). @=i<p)
X, YeU,; (M) me(Ei— 1)y
lnll=t
KM™) (j =1, ..., p) est dite j-iéme courbure de Frenet ou j-iéme courbure externe de M

au point x. En particulier (k™), est dite torsion externe de M en x.

DEFINITION 3. — Soit

&, = { sections locales, unitaires, M, au voisinage de x, a valeurs dans E, telles
que k,(m)=0}.

Si &, =0 on pose 8™ (x) = — 0.

Si &, # O on pose O™ (x) = sup sup || Vxn]|.

nedx XelUx (M)

8™ (x) est dite torsion interne de M en x.

Remarques. — 1. (E), = {0} < k™), = 0.
Un point x € M tel que (k™), ... (k™), soient non nulles est dit s-régulier.

2. Si M est une courbe, k™ coincide avec la i-iéme courbure de Frenet de la courbe
au sens classique. 8™ est finie si et seulement si la courbe est plane et dans ce cas elle vaut 0.

3. Sidim E; = 1, k™ coincide avec la i-iéme courbure de Frenet définie en (*). 6™ est
finie si et seulement si A™ = 0 et dans ce cas elle est nulle.

DEFINITION 4. — Soit M une sous-variété isométrique de M'. On dit que M a une distorsion
égale d r si

EM=0, dimE, =r (en tout point).

La proposition suivante généralise une propriété bien connue des courbes :

PROPOSITION. — Soit M une variété simplement connexe, de dimension n, isométriguement
immergée dans lespace a courbure constante R"*? (¢) [cf. (*)]. Si la distorsion de M est r
alors M peut étre immergée isométriqguement dans R""" (c).

2. SOUS-VARIETES BIREGULIERES TELLES QUE dim E; = 2.

THEOREME. — Soit M’ une variété a courbure constante, de dimension n+p (n = 3)
et M une sous-variété isométrigue de dimension n, telle que :

— dim E; = 2 (en tout point);

— tout point de M est bi-régulier.

Alors :

(1) Si 0™ = — oo en tout point de M, il existe une base orthonormée (£, m) de E, globale
et canonique au signe prés telle que k, (§) # 0, k, (n) = 0. De plus dim E, = 1 en tout point.

(2) Si 0™ = — oo en tout point de M Uindice de nullité relative v de M est égal @ n—?2
en tout point. De plus, dim E, < 2.
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Indications sur la démonstration. — (1) Puisque 0™ # —co, pour tout x € M il existe
un voisinage U et n e &, telle que sur U k, (n) = 0. Soit & une section de E, au-dessus
de U telle que (&, 1) soit une base orthonormée. On voit facilement, du fait que tout point
est bi-régulier, que &, (§) # 0. Soit maintenant (U, , &, 1,) un recouvrement de M avec
des bases (&, , ,) comme ci-dessus. Si U, n Uy # O on aura, sur U, n Uy, n, = £ m,
car autrement 1, et m, seraient linéairement indépendantes et k™ =0 sur U, n U,
(¢f- lemme). Puisque dim E, = 2et&, L n, onaura §, = + &;. D’ol I’existence de la base
globale et canonique au signe prés.

(2) On a v(x) = n—2 pour tout x € M. En effet v (x) = n signifie que le point est plat,
ce qui est exclus car (k™). # 0; et v(x) = n—1 implique dim (E,), = | comme on le voit
facilement. La démonstration de la deuxiéme partie du théoréme se fait par les lemmes
suivants.

LEMME ALGEBRIQUE. — Soient h et k deux formes bilinéaires symétriques non nulles et
non proportionnelles sur R"(n = 3) et L, M deux applications linéaires de R" dans RP
non nulles et non proportionnelles telles que

(1) h(Y,Z)L(X)—h(X, Z)L(Y)+k(Y, 2 M(X)— kX, Z)M(Y)=0, VX,Y, ZeR"

Alors :
— dim (Kerin ker k) = n—2;
— dim[ImLulmM] 2.

LEMME 1. — On note, pour § € E,, L; (X) = prg, Vi E. Soit x € M tel qu’il existe une base
orthonormée (§, m) de (E,), pour laquelle L, et L, ne soient pas proportionnels. Alors

vix)=n-2, dim(E,), = 2.

En effet, soiten x, H = 7 ® £+k ® 1 la deuxiéme forme fondamentale. En projetant
sur E, I’équation de Gauss-Codazzi on trouve I'équation (1) avec L = L;et M = L,. D’ou

dim(KerhnKerk), =v(x)=n—-2

et
dim[ImL,uImL, |, = dim(E,), < 2.

LEMME 2. — Soit 8™ = — oo en tout point de M. Alors pour tout x € M, pour tout
voisinage U de x et pour toute base orthonormée (€, M) de E, au-dessus de U il existe V < U
tel que, sur V, L, et L, sont non proportionnelles.

En effet, (L), = 0 et (L), = 0 est impossible car (k§"), # 0. Supposant (L), # 0,
(L)x = 0. Soit W = U un voisinage sur lequel L, IW # 0. Sur W il existe un point p
tel que (L,), # O (autrement 8 # — o). S’il existe un voisinage W' de p tel que Ly = ot L,
sur W' en posant & = (—&+an)/(\/1+a?) on aurait L, |- =0, ce qui est exclu
car 6 = —oc0.

Donc pour tout voisinage W’ de p il existe p"e€ W' tel que en p' L, # 0, L, # O et L,
et L, sont non proportionnelles. Puisque L, et L, sont continues cette propri¢té est valable
sur un voisinage V de p". Enfin si (L), et (L), # 0 on procéde comme ci-dessus avec p = x.
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Démonstration de la deuxiéme partie du théoréme. — En combinant les lemmes 1 et 2
on obtient :

(k) pour tout xeM, pour tout voisinage U de x, il existe V < U tel que v |v =n-—2,

Supposons maintenant qu’il existe xe M tel que v (x) < n—2. Puisque v est semi-
continue supérieurement il existe U voisinage de x tel que v |y < v—2. Or ceci est
impossible d’aprés ().

(*) Séance du 23 mai 1977.
(Y) J. GrironE et J. M. MorvaN, Comptes rendus, série A, 283, 1976, p. 207
(?) B. Y. CHEN, Geometry of Submanifolds, New York, Marcel Dekker, 1973.
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