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We study the first and second variations of isotropic submanifolds which preserve the iso-
tropy. In order to do so, we introduce the notions of harmonic, exact and isotropic variations
and investigate basic properties of isotropic submanifolds which are minimal under such de-
formations. Many results in this respect are then obtained. In particular, we obtain a new char-
acterization of Maslov class in terms of such deformations.
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1. Introduction

Symplectic manifolds and their isotropic and Lagrangian submanifolds appear
naturally in the context of classical mechanics and mathematical physics: The
partial differential equation systems of Hamilton—Jacobi type lead to the study
of isotropic and Lagrangian submanifolds and foliations in the cotangent bundle
T*M of a manifold M. By Darboux’s theorem and its generalizations, it is well
known that the extensions of a k-manifold / to a 2n-symplectic manifold in which
I is isotropic are classified, up to a local symplectomorphism about I, by the iso-
morphism classes of 2 (n— k)-dimensional symplectic vector bundles over I (see,
for instance, p. 24 of ref. [16]). In some sense, this says that “there is no local
geometry of isotropic submanifolds”, if there is no additional structure. Thus this
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article deals with the Riemannian study of isotropic submanifolds in Ké&hler
manifolds and their deformations.

The geometry of submanifolds in Kdhler geometry is quite rich: According to
the behaviour of the tangent bundle of a submanifold, with respect to the action
of the almost complex structure J of the ambient manifold A7, there are two typ-
ical classes of submanifolds, namely, the class of complex submanifolds and the
class of isotropic (or totally real [6]) submanifolds. A submanifold M of M is a
complex submanifold if the almost complex structure J of the ambient manifold
carries each tangent space 7,M of M into itself, i.e., J(T,M) < T, M, for any pe M
and M is an isotropic submanifold if J carries each tangent space T,M into the
normal space Ty M, i.e., J(T,M) = T ; M, for any pe M. An isotropic submani-
fold M in M is Lagrangian if dim M=2 dim M. In this context we can in partic-
ular study the notion of minimal isotropic submanifolds. For complex submani-
folds of a Kihler manifold, it is well known that every compact complex
submanifold of a Kiihler manifold is minimal and stable (cf. ref. [8].) On the
other hand, Lawson and Simons proved in ref. [9] that any minimal submani-
fold of CP” other than complex submanifolds is unstable. In particular, their re-
sult implies every compact Lagrangian minimal submanifold in CP” is unstable.

The stability of Lagrangian minimal submanifolds in a general Kédhler mani-
fold, especially in an Einstein-Kihler manifold, was first studied by B.Y. Chen,
P.F. Leung and T. Nagano in ref, [3] (see p. 51 of ref. [2].) For example, they
established in ref. [3] the second variational formula for Lagrangian minimal
submanifolds in an arbitrary Kihler manifold A7. By using their second varia-
tional formula, they proved that in Kdhler manifolds with positive first Chern
form, any stable minimal Lagrangian submanifold L has vanishing first cohomol-
ogy group, i.e., H'(L; R)=0. Moreover, if A is a Kihler manifold with nonpo-
sitive first Chern form, then any minimal Lagrangian submanifold L of A is un-
stable (see also refs. [7,11]).

Inspired by Wirtinger’s inequality, Oh introduced in ref. [11] the notion of
Hamiltonian deformations for Lagrangian submanifolds. By applying the second
variational formula of Chen, Leung and Nagano, he investigated in ref. [11]
Hamiltonian stability for Lagrangian submanifolds. Recently, Oh generalized
Chen, Leung and Nagano’s formula to more general Lagrangian submanifolds
and obtained several applications (cf. ref. [12] for details).

In this article, we investigate this problem in a more general setting. Namely,
we study the first and the second variations of isotropic submanifolds which pre-
serve the isotropy. For this purpose we generalize the notion of Hamiltonian vari-
ations of Lagrangian submanifolds to the notions of isotropic variations and ex-
act variations for a general isotropic submanifold in a K&hler manifold. We also
introduce the notions of harmonic variations and harmonic minimal submani-
folds. We will investigate basic properties of isotropic submanifolds which are
minimal under isotropic deformations, exact deformations, and harmonic vari-
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ations. Many results in this respect are then obtained.

As an application we deduce easily an interesting characterization of the Maslov
class in terms of deformation. Remember that the Maslov class appears in the
resolution of a Hamilton-Jacobi system, as an obstruction to the transversality
of a Lagrangian submanifold of a cotangent bundle, with the vertical subbundle.
In ref. [ 10] the second author could express this class in terms of the mean cur-
vature vector of the Lagrangian submanifold (see ref. [15] for its generaliza-
tions). Here, our framework enables us to solve a problem of Le Khong Van and
A.T. Fomenko [14]: We prove in section 3 that a compact Lagrangian submani-
fold L in an Einstein-Kihler manifold is harmonic minimal if and only if the
Maslov class of L vanishes. In particular, this shows that the harmonic minimal-
ity of a closed curve in C' is equivalent to the condition of vanishing rotation
index. In section 3, we also study the curvature of exact minimal (or E-minimal)
isotropic surfaces in C2. For such a surface, we obtain a relationship between its
Gauss curvature and its mean curvature. Moreover, we completely classify such
surfaces with constant mean curvature.

In section 4, we derive the second variational formulas for isotropic submani-
folds in an arbitrary Kéhler manifold, either under the usual deformations or
under the new deformations. By applying these second variational formulas, we
study the stability of isotropic submanifolds under either usual or the new defor-
mations. Several results in this direction are then obtained. For example, we prove
that every compact hypersurface of a real projective (n+1)-space RP"+!,
embedded standardly in CP”*!, is an isotropic unstable E-minimal submanifold
of CP"*!, although RP"*! itself is a Hamiltonian stable Lagrangian submanifold
of CP"*!, Of course, our situation is more complicated than the Lagrangian case,
since for an isotropic submanifold which is not Lagrangian the normal bundle
contains a complex subbundle on which we have very little information.

2. Isotropic submanifolds

Let M be an m-dimensional Riemannian manifold with Levi-Civita connec-
tion 7 and let i:/— M be an isometric immersion of an n-dimensional compact
Riemannian manifold 7 into a Riemannian manifold M. Denote by { , ) the
Riemannian metric on I as well as on M. Let ¥ and R (respectively, ¥ and R) be
the Levi-Civita connection and the Riemann curvature tensor on / (respectively,
on M),

Denote by

o:TIXTI-T*I

the second fundamental form of the immersion and by A4 the shape operator of
the immersion. Then A satisfies
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(X, Y), & =(AX, Y, VX, YeTl ETI.

With respect to ¢ , ), the shape operator can also be regarded as a bilinear map
A:TIXTLI-TI

The mean curvature vector field of the immersion is given by H=n""' Tro
(n=dim I). Finally, we denote by ¥+ and R+ the normal connection and the
normal curvature tensor of the immersion. We have the following formula of
Weingarten:

Veb=V¥E—A:X, VXeTl ET*I.

Suppose M is a Kidhler manifold. Denote by J the almost complex structure on
M and by R the symplectic structure defined by

QX Y)=JX, YY, VX YeTM.

From the definition of £, it is clear that an immersion i:I—A{ is an isotropic
immersion if and only if i*Q=0. An isotropic submanifold I is said to be
Lagrangian if dim M= dimg .

When I is an isotropic submanifold, the normal bundle of I has the following
canonical orthogonal decomposition:

T+I=J(T®v, (2.1)

where v is the maximal complex subbundle of the normal bundle. From the defi-
nition, it is clear that an isotropic submanifold 7 is Lagrangian if and only if the
maximal complex normal subbundle v={0}.

If I'is an isotropic submanifold and £a cross-section of the normal bundle T 1,
i.e., £eI'(T *I), then there is a one-form o on I associated with & defined by

0 (X)=Q(& X)=(JE XY, VXeTl. (2.2)

Conversely, if Bis a one-form on the isotropic submanifold 7 and ¥ the tangent
vector field on I dual to § with respect to the metric defined on 7, then a5 =

—B.

We need the following general lemma.

Lemma 2.1. Let I be an isotropic submanifold of a Kihler manifold M and & a
normal vector field of I in M. Then the one-form o is closed, i.e., da:=0, if and
only if

(Px&EIYy =(Fyé JX)
Jor any vector fields X, Y tangent to I.

Proof. From (2.2) we have
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da¢=0¢O=X(a¢(Y) ) ~X(ag(X)) —o([X, Y])
=(PJIE YY) = (PyJE Xy = ( Py, JXY — (P, T
=(PFETXY —(VEETY Y | 0

Let I be an n-dimensional isotropic submanifold of a Kihlerian manifold M of
complex dimension n+ r. We choose a local field of orthonormal frames
€153 €ny Epyts ooy €nirs
e.=Je, .., enx=Je,, €(n+1)* =Jen+ 1s =5 €(ntr)+ =J€,,+, s

in M in such a way that, restricted to I, e,, ..., e, are tangent to I. With respect to
the frame field of M chosen above, let

3 1*

w', .., CL)", Cl)"+l, vens wn-{—r, o', .., wnt’ Cl)(n+l)"’ vy CU('H").

be the field of dual frames.
We use the following convention on the range of indices unless otherwise stated:

A, B,C,D=1,..,n+r1* .., (n+r)*; L,k 1=1,..,n;
Apu=n+1,..,n+r; By, 0=n+1,.,n+r,1* .., (n+r)*.

The structure equations of M are given by

doi=~ ) wirw?, wi+twi=0,
Ojtoi=0, j=of, of=of, (23)
witwt=0, owi=wi, oY=,
witwi=0, iz, of=ol"; (2.4)
~ ~ 1 ~
dwg=—- Y wirws+023, Q§=§ZR'3CDwCAwD. (2.5)

Restricting these forms to I, we have the structure equations of the immersion:

wf=0, (2.6)
do'=- Y wirw*, (2.7)

. . . 1 ok
dwi=—Y wirwf+Qi, Q}:—?:ZR}HCOI‘/\(L)I, (2.8)
Q=0I-Y whrwf, (2.9)

Y Rbwfr 0!, (2.10)

N[ —

dof=—Y 0 rnwd+Qf, QF=
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Q=0 ¥ wf rwi. (2.11)

For the isotropic submanifold I in M, let © be the one-form on 7 given by
6= 3% . (2.12)
i=1

Then we have

O(e))= ) (o(e,€) en)=7} (ale,e), e )=—nay(eg). (2.13)

Thus we obtain
ay=—-(1/n)6. (2.14)

We give the following result for later use.

Lemma 2.2. If1is an isotropic submanifold of a Kdhier manifold M, then
dO=2 Y (hthi —hihiM )/ nwk+ Y 37, (2.15)

Hn.j.k

ZQf‘:%Z(S},\..+ ZR'ﬁfk)wk/\wf, (2.16)
i ] u

0k

where (h£) denote the coefficients of the second fundamental form o, and S and R
are the Ricci tensor and the Riemann curvature tensor of M, respectively. In partic-
ular, if M is Einsteinian, we have

dO=2Y (h&h& —hihEYw) A w*+
ujk

Proof. From (2.4) and (2.5) we have
do= Y wi rwi+ Y ol Awl
+ Yol i+ Y o aoi+ Y G

=2Y wlrwt+ Y 0°. (2.18)
On the other hand,
zfz’g'=%zﬁffkwuwk, (2.19)

Z uk‘ Z Rn'k+ Z ~J’ Z R.I"\"'+ Z RJ""\"'
= —Sjr — Z Rlpn— 3 Rioen
u

= =Sy — ZR,,,A (2.20)
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In particular, if A is Einsteinian, the isotropy of I implies Sk. =0. Combining
this with (2.19) and (2.20) we obtain the lemma. a

Lemma 2.2 can be regarded as a generalization of ref. [10].
As a consequence of lemma 2.2 we have the following relation between «; and
the first Chern form y, (v) of the maximal complex normal subbundle v.

Proposition 2.3. If1 is an isotropic submanifold of a Kihlerian manifold M of con-
stant holomorphic sectional curvature, then

doy=(16m/n)y (v), (2.21)

where

l »
yl(v)=azgﬁ (2.22)

is the first Chern form of the maximal complex normal subbundle v of the normal
bundle T+ I

Proof. If M is a Kihlerian manifold of constant holomorphic sectional curvature
¢, then the Riemann curvature tensor R of M is given by
R(X,V)Z=1c{(Y,Z)X—( X, Z)Y+(JY,ZYJX
—(JX, ZYJY+2(X,JYYJZ} .
Thus we have
R =0.
Moreover, since M is Einstein-Kihler and I is isotropic, we also have fjk. =0.

Therefore from (2.11) and lemma 2.2 we have
de=2 Z Wl At =2 Y (hAhE —h4hE Yo/ A w*

.k

=-2 Y R w/ rwf=—4Y Q4.
uigk
This implies the proposition. o
Proposition 2.3 yields the following

Corollary 2.4 Let I be an isotropic submanifold of a Kihler manifold M of con-
stant holomorphic sectional curvature. Then

(1) the first Chern class of the maximal complex normal subbundle v vanishes,
Le,c;(v)=[y(v)]=0.

(2) the one-form oy is closed if and only if the first Chern form vanishes, i.e.,
" (v)=0.
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Combining lemma 2.1 and corollary 2.4, we obtain

Corollary 2.5. Let I be an isotropic submanifold of a Kihler manifold M of con-
stant holomorphic sectional curvature. If I has parallel mean curvature vector field,
then the maximal complex normal subbundle v has vanishing first Chern form,
ie,y (v)=0.

3. Deformations

3.1. DEFORMATIONS

Let I be a compact submanifold of a Riemannian manifold A7 with boundary
81 (0] may be empty). Suppose £ is a vector field on M defined on a neighbour-
hood of I such that &|, is normal to I and | 5,=0. Let ¢, denote the flow generated
by €in a neighbourhood of I in M. The flow {¢,} gives rise to a normal variation
of I in M, which is denoted either by & or by {¢,}. In this case, the normal vector
field &|, is called the variation vector field of the normal variation.

Let ¥'(¢) =volume(¢,(I) ), the volume of ¢,(J) via & By ¥7 (&) and ¥ (&) we
mean the values of the first and the second derivatives of ¥"(¢), respectively, with
respect to ¢, evaluated at t=0. It is well known that (see, for instance, ref. [8])

‘/”(é):—nJ‘ CH, & dv. (3.1)

For our purpose we give the following expression of the second variational for-
mula for later use (see also ref, [8]).

Lemma 3.1. Let I be a compact n-dimensional submanifold of a Riemannian
manifold M. Suppose that & is a vector field on M such that &|, is normal to I. Let
i, denote the flow generated by & in a neighbourhood of I in M. Then we have

(&= [ (P87 -1+ (H, &= S(E &) —nCH, P} v, (3.2)

7

where S(E n)=37_, R(& e, enn), (e, ..., e,) isalocal field oforthonorrlmlframes
of TI, and R is the Riemann curvature tensor of the ambient manifold M.

Proof. Let us choose a local field of orthonormal frames e, ..., e, of 7T at t=0
and extend it to a neighbourhood of I by @,. We shall denote this local frame field
also by ¢, ..., e,. Then the volume element of ¢, (M) is given by
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\/<el ANy, € /\“'/\en>*1 s

where * 1 is the volume element of I at t=0. Thus we have

V(t)= J\/(e, AAG,, e A AE ¥,

1

Therefore

r@O= [QeSarrenaaaey el (3)

7

By direct computation we have at t=0 the following:

é(é(\/<el At AEy, € A"'/\en>))
=f< Y Ceyanra er,- A AEy,, € /\"‘/\€,,>>

i

-2 <e A APeinne,, e A A,
{

=Y (egnAVeinAVeg,nne, e A ne, )
i#j

+ 2 (e A A Vélzze,/\--'/\e,,, eLATAE,D
i

~

+ Z ey nAVenne, e, A AVeg A A€,
L)

_ Z <el /\"'/\eri/\"‘/\e,,,el /\"'/\e">2
i

L)

=Y {deer, €,) (Aej, 6 — (Ase; €57} + ; (Reul €

+div(7¢§)T— Z (A€ €)

5

+< z (Ace;, ei>> +|PHEP—n*CE HY?.

From this together with (3.3) and the divergence theorem we obtain the
lemma. 0

3.2. ISOTROPIC DEFORMATIONS

If i:]— M is an isotropic isometric immersion from [ into a Kéhler manifold
M, we may only consider normal variations & such that ¢,(/) stays isotropic for
each sufficiently small . Then the infinitesimal version of this condition is given
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by
*(£802)=0,

where ¥ denotes the Lie derivative (see, e.g., ref. [1]). We give the following
general lemma.

Lemma 3.2. i*(%Q)=0<>0 is a closed one-form on I, where a: is the one-form
defined by (2.2).

Proof. Let1and d denote the interior product and the exterior differential oper-
ator, respectively. Then we have

F=de1+1.d.
Hence
*(£82)=0=i*(d(1:82)) =0<>do;=0. a

Lemma 3.2 leads us to give the following definition for isotropic submanifolds
(cf. ref. [11] for the Lagrangian case):

Definition 3.3. Let / be an isotropic submanifold of a Kihler manifold M. Then
a vector field £ along [ is called isotropic (respectively, exact or harmonic) if the
one-form « is closed (respectively, exact or harmonic). A normal variation {¢,}
of I in M is called isotropic (respectively, exact or harmonic) if the variation
vector field along I of {¢,} is isotropic (respectively, exact or harmonic).

For a compact Lagrangian submanifold L, harmonic vector fields and har-
monic variations are defined when H'(L; R) #{0}. In this case, it follows from
definition 3.3 that the zero vector field is the only normal vector field which is
exact and harmonic at the same time.

For each normal vector field & along the isotropic submanifold 7 in a Kihler
manifold A, there is a unique normal variation {¢,} defined by ¢,(m)=
€XP;(m) (&), mel. This normal variation generates a vector field of M which is an
extension of £ defined on a neighbourhood of i (I). We shall denote this extended
vector field also by & For simplicity, we identify the unique normal variation
associated with & with the normal vector field & It is obvious that we have 7‘56:
0 for any such normal variation &

For an isotropic submanifold I in M, we denote by .#, & and # the sets of all
isotropic, exact and harmonic normal variations & on I, obtained from the corre-
sponding normal vector fields & It is easy to see that # o & and .# o . More-
over, if the normal vector field £is in I'(v), then the corresponding normal vari-
ation £is automatically isotropic, exact and also harmonic.

Of course, if H'(I, R)={0}, the notions of isotropic deformations, exact de-



B. Chen, J-M. Morvan / Deformations of isotropic submanifolds in Kéhler manifolds 89

formations and harmonic deformations are equivalent.

Let A?(I) denote the space of all p-forms on I. Denote by 27(I) and &°([I) the
subspaces of A?([]) consisting of all closed p-forms and all exact p-forms on I,
respectively.

For any two p-forms w, we A?(I), we define a (global) scalar product of w, y
by

(@)= [wnsy, (3.4)

I

whenever it is defined, where « is the Hodge star operator.

Definition 3.4. An isotropic submanifold / of a Kidhler manifold is said to be iso-
tropic minimal (respectively, E-minimal or harmonic minimal) if v (&) =0 for
any isotropic (respectively, exact or harmonic) variation & of /, i.e., we have
v (E)=0 for any &in ¥ (respectively, for any £in & or 5#). The isotropic sub-
manifold 7 is said to be stable (in the usual sense) (respectively, isotropic stable,
E-stable or harmonic stable) if (&) >0 for every normal variation (respec-
tively, isotropic variation, exact variation or harmonic variation) of /. Other-
wise, I is said to be unstable (in the usual sense) (respectively, isotropic unstable,
E-unstable or harmonic unstable).

Clearly, every minimal isotropic submanifolds in a K#hler manifold is auto-
matically isotropic minimal, E-minimal, and harmonic minimal. Moreover, there
do exist isotropic minimal, E-minimal and harmonic minimal isotropic subman-
ifolds which are not minimal in the usual sense (see examples below).

For isotropic submanifolds we have the following

Proposition 3.5. Let I be a compact isotropic submanifold of a Kahler manifold M.
Then

(i) I is isotropic minimal if and only if HeI'(J(TI)) and ayeZ'(I)* =
{09 pe N2I}.

(ii) I is E-minimal if and only if He'(J(TI)) and o =0, where 6 is the codif-
ferential operator on I.

(iii) I is harmonic minimal if and only if HeI'(J(TI)) and oy is the sum of an
exact one-form and a co-exact one-form.

Proof.
(1) Iis isotropic minimal if and only if

1f'(c)=_nj (& HY dv=0 (3.5)
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for every isotropic variation £ on /. Since for each {eI'(v) the normal variation &
1s isotropic, (3.5) implies HeI'(J(TT)). Hence, if I is isotropic minimal, then we
have

¥(&=—n [ <& HY dv=—n(as, a)=0.
I

Thus, by combining this with (3.4), we obtain aye Z'(I)*. Furthermore, for a
compact Riemannian manifold, 2'(I)* ={d¢:¢e A*I}. The converse of this is
clear.

(ii) From (i) it follows that an isotropic submanifold 7 is E-minimal if and
only if HeI'(J(TI)) and

(af, a,,,)=0 (3-6)

for exact variations e ##. Since a normal variation {is exact if and only if a;=df
for some function fon I, we have

(df, ay)=(f, day)=0, feC={).

This is equivalent to saying that da;, =0.

(iii) Formula (3.1) implies that I is harmonic minimal if and only if «;; is
perpendicular to harmonic one-forms on /. Thus, by the Hodge—-de Rham decom-
position of one-forms, we conclude to statement (iii). a

From proposition 3.5 we have the following

Corollary 3.6. Let I be a compact isotropic submanifold of a Kihler manifold M.
Ifdo,=0, then

(i} Iis isotropic minimal if and only if L is minimal in the usual sense;

(ii) I is E-minimal if and only if oy, is a harmonic one-form, i.e., Aoy=0;

(iii) I is harmonic minimal if and only if &, is an exact one-form.

Proof.

(i) Let I be an isotropic submanifold of a Kihler manifold 7. Assume da;=0.
If I is isotropic minimal, then aye Z'(I)*. Thus, (ay, ay)=0. This implies
a,=0, which is equivalent to saying that L is minimal in the usual sense. The
converse of this is trivial.

(ii) If I is E-minimal, proposition 3.5 yields day=0. Since da;=0, oy is a
harmonic one-form.

(iii) If 7 is harmonic minimal, proposition 3.5 implies that a, is the sum of an
exact one-form and a coexact one-form. On the other hand, the condition da ;=0
implies that o, is orthogonal to every coexact one-form on L. Therefore, oy, must

be exact.
The converse is clear. 0
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Lemma 2.2 and corollary 3.6 imply the following

Corollary 3.7. Let L be a compact Lagrangian submanifold of an Einstein—Kdihler
manifold M. Then

(i) L is isotropic minimal if and only if L is minimal in the usual sense;

(ii) L is E-minimal if and only if oy is a harmonic one-form, i.e., Ao, =0;

(iii) L is harmonic minimal if and only if oy is an exact one-form.

3.3. EXAMPLES OF E-MINIMAL ISOTROPIC SUBMANIFOLDS

(1) The standard torus T” in C"*? is a compact isotropic submanifold which is
E-minimal, but not minimal in the usual sense and also not harmonic minimal.

(ii) Any isotropic submanifold of a Kdhler manifold with parallel mean cur-
vature vector is E-minimal (cf. lemma 2.1).

(ii1) An easy construction of isotropic submanifolds which are E-minimal is
the following: Take a submanifold 7 with parallel mean curvature vector field of
a totally geodesic Lagrangian (or isotropic) submanifold of a Kédhler manifold
M. Then I is an E-minimal isotropic submanifold of A7 since it is an obvious
consequence of the following

Lemma 3.8. Let I be an isotropic submanifold of a Kihler manifold M with
Hel'(J(TI)). Then day=0 if and only if

Z <V£,l'-'H,Je,'>=O.

Proof. If HeI'(J(TI)), then
dap=0< Y (V,(JH),e;>=0

i

o Y (F.JH, e)=0

@Z(V;H,Je,>=0 0

3.4. EXAMPLES AND RESULTS ON HARMONIC MINIMAL SUBMANIFOLDS

First we make the following observations.
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Observation 3.9. Statement (iii) of corollary 3.7 says that a compact Lagrangian
submanifold L in an Einstein-Ké&hler manifold is harmonic minimal if and only
if the Maslov class of L vanishes, i.e., [a;;]=0. From this we conclude that there
exist many harmonic minimal Lagrangian submanifolds.

Observation 3.10. If a curve I in a complex Euclidean m-space is harmonic min-
imal and not minimal in the usual sense, then the image of the curve is contained
in a complex line of C”.

This fact can be seen as follows: Let ¢, be a unit tangent vector field of the
curve. Since the curve is harmonic minimal, proposition 3.5 implies that the mean
curvature vector H of the curve satisfies H=xJe, for some function x on I. Thus
JH= —xke,. Hence, by using the fact that C” is Kéihlerian, we may obtain
7. (e, nJe,)=0. This implies that the curve I is contained in a complex line of
c".

Observation 3.11. Ifa closed curve in a complex Euclidean m-space C™ is E-min-
imal, then the curve is a circle which lies in a complex line C' of C.

This can be seen as follows: If a closed curve is E-minimal, then, by proposition
3.5, the mean curvature vector H is nonzero and H=xJe, for some function x.
Thus, by using the same argument in as observation 3.10, we may conclude that
the curve lies in a complex line C' of C™. Now, since the curve is E-minimal, the
one-form «;; 1s co-closed by proposition 3.5. Because the curve is one-dimen-
sional, this implies that the mean curvature has constant length. In other words,
the plane curve in C! has constant curvature. Hence, it is a circle in C'.

If L is a curve in a real two-dimensional Kihler manifold M and e, is a global
unit tangent vector field of the curve, then the mean curvature vector H of the
curve satisfies H=1#Je, for some function x defined on the whole curve. We call
this function the curvature of the curve,

The following theorem provides a geometric characterization of harmonic
minimal Lagrangian curves.

Theorem 3.12. Let L be a closed curve in a real two-dimensional Kihler manifold
M. Then L is harmonic minimal if and only if L has zero total curvature, i.e.,
{1k ds=0, where s is an arc parametrization of L.

Proof. If L is harmonic minimal, then proposition 3.4 implies that the one-form
oy, 1s exact, since L is one-dimensional. Thus, a,=df=f"’(s) ds. From the defi-
nition of «t;; we have /' (s) = — k. Since L is closed, we obtain [, x ds=0.
Conversely, if [, x ds=0, then there exists a function f(s) on L such that
S(s)=k(s). This implies that the one-form «;;=df is exact. Thus, by applying
proposition 3.4, the curve is harmonic minimal, w]
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If the ambient space M is the complex plane C', theorem 3.12 implies imme-
diately the following relation between rotation index and minimal harmonic closed
curves in C!. (A similar result is well known for a closed curve in C' with null
Maslov class.)

Corollary 3.13. Let L be a closed curve in the complex plane C'. Then L is har-
monic minimal if and only if the rotation index of L is zero.

Proof. This follows from theorem 3.12 and the fact that the rotation index of a
closed plane curve Lisgiven by (27) ="' [,k ds. O

By combining theorem 3.12 and the Gauss-Bonnet theorem we have the fol-
lowing

Theorem 3.14. Let M be a real two-dimensional Kihler manifold and L an
embedded closed curve L in M which bounds a simply connected region D of M.
Then L is harmonic minimal if and only if the region D of M has total Gauss
curvature 2m, i.e., [p G dv=2m.

Proof. Follows directly from theorem 3.12 and Gauss-Bonnet’s theorem. a
If M is diffeomorphic to a two-sphere, theorem 3.14 yields the following

Corollary 3.15. Let M be a Kihler manifold which is diffeomorphic to a two-sphere
S2. Then an imbedded closed curve L in M is harmonic minimal if and only if L
divides M into two regions D,, D, with equal total Gauss curvature, i.e.,
Io, G dv=p, G dv, where G is the Gauss curvature of M.

When M is a two-sphere S? with the standard Kahler structure, then an imbed-
ded closed curve L in M is harmonic minimal if and only if L is area bisecting.

For closed curves in a nonpositively curved Kéhler surface, we have the follow-
ing

Corollary 3.16. If M is a Kihler surface with nonpositive Gauss curvature, then
every harmonic minimal closed curve in M has self-intersection points.

Proof. This follows immediately from theorem 3.14. O

Another application of theorem 3.12 is the following result, which provides us
with many examples of harmonic minimal submanifolds.
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Proposition 3.17. Let L, be closed Lagrangian curves of some Kihler manifolds
M, i=1, .., n, respectively. Then the product Lagrangian submanifold L=
L, x-XL, is harmonic minimal in M=M, XXM, if and only if L, are har-
monic minimal in M,, i=1, ..., n.

Proof. Let ey, ..., e, be a field of orthonormal frames on the product Lagrangian
submanifold L such that each ¢; is tangent to L;. Denote by w', ..., " the field of
dual frames. Then

1
aH=—;{x,a)‘+---+ic,,w"}, (3.7)

where k; is the curvature of the Lagrangian curves L, in M, Since L is the
Riemannian productof L,, ..., L,, @', ..., @™ are harmonic one-forms on L. From
(3.7) and theorem 3.12 it follows that (ay,, w’) =0 if and only if L; is harmonic
minimal in A7, Thus, by applying proposition 3.5, we obtain proposition
3.17. O

Remark 3.18. Proposition 3.17 implies, for instance, that there exist infinitely
many harmonic minimal Lagrangian surfaces in the compact Hermitian sym-
metric space ,=S80(4)/SO(2)xS0O(2) which is the Riemannian product of
two complex projective lines. For harmonic stability of these harmonic minimal
surfaces, see section 5.

3.5. ISOTROPIC SURFACES
For E-minimal Lagrangian surfaces we have the following

Proposition 3.19. Let L be a Lagrangian E-minimal surface in an Einstein-
Kéhler manifold M which is not minimal in the usual sense. Then

(1) If L has constant mean curvature in M, then L is flat;

(2) Conversely, if L is flat and compact, then L has constant nonzero mean cur-
vature in M.

In order to prove this proposition we give the following lemma.

Lemma 3.20. Let I be an isotropic surface of a Kihler manifold M with do;;=0. If
Iis E-minimal, then

(1) either oy vanishes identically or oy has only isolated zeros;

(2) the Gaussian curvature G of I satisfies

G=—3d4In| ay|?, (3.8)
on the open subset of I on which H# 0.
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Proof. Under the hypothesis of the lemma, we obtain from corollary 3.6 that
daH=5aH=O. (3.9)

Let (x, y) be an isothermal coordinate system of I. We put a;=p dx+¢ dy. Then
(3.9) implies that the functions p(x, y) and g(x, y) satisfy the following Cauchy-
Riemann condition:

0g _3p  p__ %

dx  dy’ ax  ay’
From this we conclude that p(x, y)+iq(x, y) is a holomorphic function in
z=x+1y. Consequently, we have statement (1).

For statement (2), we choose a local field of orthonormal frames such that ¢,

is parallel to JH. So, we may put H=he»=hJe, and hence lemma 2.1 implies

(Vo (hew), eny =< Ve (hew), ey .
Combining this with (2.4) we obtain
eﬂl:ha)%(él) . (3.10)

If I is E-minimal, then, by proposition 3.4, we have doy;=0. Thus, by applying
lemma 3.6, we may obtain

e h=—hwi(e,) . (3.11)
Since |lay||*=h2, (3.10) and (3.11) imply
201 =(e;(In |ay|?))w'— (e (In |ay]?) ) w? . (3.12)

By taking the exterior derivative of (3.12) and applying structure equations to-
gether with (3.10) and (3.11), we may find

2dwi=(d1n |ay|?)w' Aw?. (3.13)

On the other hand, it is well known that
dwt=—-Gow'rw?. (3.14)
Thus, by combining (3.13) and (3.14), we obtain (3.8). This proves lemma
3.20. O

Proof of proposition 3.19. Now, if L is a compact Lagrangian surface in an
Einstein-Kihler manifold M and if L is E-minimal, then the hypothesis of lemma
3.20 holds automatically. Suppose L is flat and it is not minimal in the usual
sense, then lemma 3.20 implies

Aln oy |?=0. (3.15)

Because | ou|? is a nonnegative differentiable function and L is compact, (3.15)
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implies that ||c| is a positive constant. Thus, L has constant nonzero mean cur-
vature. Conversely, if the Lagrangian surface has constant nonzero mean curva-
ture, then (3.8) implies that L is flat. O

Corollary 3.21. Let L be a Lagrangian surface in C2. If L is E-minimal with con-
stant mean curvature, then L is an open portion of one of the following surfaces:
(a) a minimal Lagrangian surface of C*; (b) the product of two circles; or (¢) the
product of a circle and a line.

Proof. Let L be a Lagrangian surface in C2. Assume L is E-minimal and L has
constant mean curvature. Then either L is minimal in the usual sense or L is flat.
If the latter case occurs, L is an open portion of the product of two circles or an
open portion of the product of an open portion of a line and a circle. a

Remark 3.22. Let L be a Lagrangian surface in C? and let v: L—-»G(2, 4) be its
associated Gauss map from L into the real Grassmannian G(2, 4). Since
G(2, 4) is isometric to the product of two spheres: G(2, 4) =S> xS2, thereis a
canonical decomposition of the Gauss map: ¥=v, X v, (cf., for instance, ref. [4]).
By corollary 3.7, we may conclude that a Lagrangian surface in C* is E-minimal
if and only if v5: L—S82 is a harmonic map.

4. Second variational formulas for isotropic submanifolds

For isotropic submanifolds in a Kdhler manifold, we have the following result,
which generalizes the second variational formulas of Lagrangian submanifolds
obtained in refs. [3,12].

Proposition 4.1. Let I be a compact n-dimensional isotropic submanifold of a
Kidhler manifold M. Suppose that 1 is a vector field on M such that n|, is normal to
I and let ¢, denote the flow generated by n in a neighbourhood of I in M. Then we
have:

(i) Ifn|, el (J(TI)), then

vr(m= j(%Ilda,,||2+Il5a,,||2+2llpr0ju0(X, ol
I

—n(H,o(X, X)) +n*CH,n)*~n(H, Fn)

- Y [R(e,m;n,e)+R(Je;, n; n,Je,-)]>dv, (4.1)
i=1
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where ey, ..., e, is an orthonormal frame of I, X= —Jn, and w is the dual one-form

of Jn ;.
(i) If n| ,e(v), then

7 (n) = J(IIAJ,, 12~ 114,11 >+ Iproj, 7+ nl?

7

+n*CH,ny*—n(H, V>~ ¥ R(e,mn, e,-)> dv, (42)
i=1
where {e,, e, ..., ,} is an orthonormal frame of I.

Proof.
(i) If n|,€ (J(TI)), we can find a tangent vector field XeI'(TI) such that
JX=n|,. Using the fact that M is Kihlerian, we have, for neJ(TT),

Vi, {>=—<(VX,J¢y,  proj, ¥rn=J(proj, (X, ),
from which we find
I7+0l>=1PX|*+ lproj, F*nl*=|FX|*+|proj, o(X, - )|*.  (4.3)

On the other hand, the Gauss equation gives

Y R(e,nme)= Y R(Je, X, X, Je,)
i=1 i=1

~ L 2p
=S(X, X)_ Z R(eiaX, X’ ei)_ Z R(fj,X, Xa Ej)
i=1 Jj=1
=S(X, X)=S(X, X)+n(H, o(X, X)>
n 2p -
- .Zl lo(X, e)]*— _ZlR(f,-,X, X, ¢),
= Jj=

where {e,, ..., €,} is an orthonormal frame of 77 and {e,, ..., €,,} is an orthonormal
frame of the maximal complex normal subbundie v. We put

Y lo(X, e)l*=lo(X, )|*.
i=1
Thus, from lemma 3.1 we get

= | (u PX|1*+Iproj, a(X, )12~ §(X, X) +S(X, X)

!

—nCH, (X, X)> 100X, )[*+ T R(6, X X 6)

+n?(H,ny*—n{H, f?l,n>—||A,,||2) dv. (4.4)
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Since
lo(X, )I*=14,1*=lproj, o(X, )|*,

we have

v (n)= J (II PX|>+2|lproj, a(X, )I> =8 (X, X) +S(X, X)

1

2p
—n{H,o(X, X)>+ ; R(¢, X, X, €)

+n2(H, &2—n(H, 7,,:;)) dv.

Finally, put W=F,X+ (div X)X, where JX=1|,, and denote by div X the diver-
gence of X. Then, by computing the divergence of W, we have

0= J (div W) dv
I
= j [S(X, X)+PX]*~ (3ldec, >+ |6, 12) ] do.. (4.5)
7

Consequently, by (4.4) and (4.5), we obtain (4.1).
(ii) If n|;eI'(v), then, for any vector fields Y, Z tangent to I, we have

VN JZy=—(Pydn, Z)y=<A4,Y, Z) . (4.6)

This implies
174002 =1 4512+ lproj, Fnl?. (4.7)
Thus, from lemma 3.1, we obtain (4.2). ]

Corollary 4.2 Let I be a compact n-dimensional isotropic submanifold of a Kihler
manifold M. Suppose that n is a vector field on M such that n\, is normal to I and
let ¢, denote the flow generated by n in a neighborhood of I in M. If I is minimal in
the usual sense, then:

(i) Ifn|,e'(J(TI)), then

()= j<%||da,,||2+||5a,,||2+2uprojy o, )12

I

- Y [R(e;,;n,e)+R(Je, 1 n,Je,-)])dv, (4.8)
i=1
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where e, ..., e, is an orthonormal frame of I and w is the dual one-form of J¢.
(ii) If n\ ;e L' (v), then

v (n)= J<IIAJnl|2—IIAn||2+||pr0ju Pinl?— ‘; R(e;, mm, e.-)) dv, (4.9)

1
where {e,, €3, ..., e,} is an orthonormal frame of I.
This corollary follows immediately from proposition 4.1.

For isotropic E-minimal submanifolds, we have the following second varia-
tional formulas under exact variations.

Corollary 4.3. Let I be a compact n-dimensional isotropic E-minimal submanifold
of a Kihler manifold M. Then:
(i) For E=JXeI' (J(TI)) n &, we have

V(§)= j (%Ildacllz+|I5a¢llz+2llpr0ju a(X, )|

-~

- -_i. [R(e;, & & e)+R(Je, & & Jey) ]

+n2(H, &2 —nH, a(X, X)))dv, (4.10)

wheree,, ..., e, is an orthonormal frame of L.
(ii) For £eI'(v) n &, we have

= J(IIAKIP_||A¢||z+||projy pLEz— -Zl R(e, & ¢ e,)) dv. (4.11)

I

Proof. This corollary follows from proposition 4.1 and the fact that, for any {e &,
we have F,£=0 (cf. section 3). m]

Similarly, for isotropic harmonic minimal submanifolds, we have the following
second variational formulas under harmonic variations.

Corollary 4.4. Let I be a compact n-dimensional isotropic harmonic minimal sub-
manifold of a Kihler manifold M. Then:
(i) For E=JXeI'(J(TI)) n 3¢, we have
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y(E) = J <2||proj,, a(X, )}

1

- ; [R(e;, & & e)+R(Je;, & & Jey) ]

+n2<H,§>2—2<H,o(X,X)))dv, (4.12)

where ey, ..., e, is an orthonormal frame of I.
(ii) For EeI'(v) n #, we have

)= f(uA.,:uZ—||A:n:+||proj,, PLai- Y Rien & e,-)) dv. (413)

1

5. Some applications
By applying proposition 4.1, we obtain the following

Theorem 5.1. Let I be a compact isotropic submanifold of a Kihler manifold M
with nonpositive holomorphic bisectional curvatures. If I is minimal in the usual
sense, then

(1) I is stable under deformations with respect to I'(J(TI));

(2) V" (EY+ 1" (JE) =0 for any Ee I'(v).

Proof. Follows easily from corollary 4.2. m|
The following example shows that theorem 5.1 is the best possible.

Example 5.2. Let I be a compact, non totally geodesic, minimal hypersurface of
an (n+ 1)-dimensional flat real torus RT"*! which is imbedded in a flat complex
torus CT"*! as a totally geodesic, Lagrangian submanifold. Then I is an isotropic
submanifold of CT"*!. Let £ be a unit normal vector field of /in RT”*!. Then we
have

Ac;éo, V'Lé=V'LJé=O, AJ¢=O.
Since CT "*! is flat, we obtain

VIE <0,  ¥(JE)>0.
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In ref. [10], Takeuchi proved the following

Theorem 5.3. Let M be a Hermitian symmetric space of compact type and M a
compact totally geodesic Lagrangian submanifold of M. Then M is a stable sub-
manifold in the usual sense if and only if M is simply connected.

In view of theorem 5.3, we give the following

Theorem 5.4. Let M be either a totally geodesic Lagrangian submanifold or a to-
tally geodesic isotropic submanifold of a Kihler manifold M and I a compact min-
imal hypersurface of M. If either (a) the sectional curvature of M is nonnegative
and I is not totally geodesic, or (b) the sectional curvature of M is positive, then I is
E-unstable in M and also harmonic unstable in M. In particular, it is unstable in
the usual sense.

Proof. Let M be a totally geodesic Lagrangian (or isotropic) submanifold of a
Kihler manifold and I a compact minimal hypersurface of M. Let & be the unit
normal vector field of I in M. Then £eI'(v) n o#. If I is not totally geodesic in M
and M is totally geodesic in M, then we have

A:?&O, AJ¢=O.

Furthermore, since 7 is a hypersurface of M and M is totally geodesic in M, we
also have

proj, F+&=0.

Therefore, by applying corollary 4.3 we conclude that ¥ (&) <0. Thus, I is both
E-unstable and harmonic unstable in M. In particular, this shows that I is un-
stable in the usual sense. The other case can be proved in a similar way. m]

Theorem 5.4 can be applied in particular to the case where A7 is a compact
symmetric space. A submanifold A of a Kihler manifold M is called a real form
of M if M is the fixed point set of an involutive anti-holomorphic isometry of 1.
It is known that the real forms of a Kihler manifold are totally geodesic subman-
ifolds which are either isotropic or Lagrangian in M (cf. ref. [13]).

For real forms of compact Hermitian symmetric spaces, we have the following

Corollary 5.5. Let M be a Hermitian symmetric space of compact type and M a
real form of M. Assume I is a compact minimal hypersurface of M.

(i) If I is not totally geodesic in M, then I is E-unstable and harmonic unstable in
M.



102 B. Chen, J-M. Morvan / Deformations of isotropic submanifolds in Kihier manifolds

(ii) If M is irreducible and dim M > rank (M), then I is E-unstable and harmonic
unstable in M.

Proof. Statement (i) follows from theorem 5.4. For statement (ii), if M is a
Hermitian symmetric space of compact type with dim M >rank(A7), then
v (&) <0, where £ is the unit normal vector field of 7 in M. Thus, by applying a
similar argument as in the proof of theorem 5.3, we conclude that I is E-unstable
and harmonic unstable. o

It has been proved in ref. [11] that the canonical totally geodesic RP”" in CP"
is Hamiltonian stable. However, corollary 5.4 implies the following

Corollary 5.6. Let RP"*! be a real projective space canonically imbedded in a
complex projective space CP"*' (with the standard Fubini-Study metric) as a
totally geodesic Lagrangian submanifold. Then every compact minimal hypersur-
Jace M of RP"*! is E-unstable in CP"*" and also harmonic unstable.

Now we study the stability of harmonic minimal product Lagrangian subman-
ifolds.

Proposition 5.7. Let L,, ..., L, be n closed, harmonic minimal, Lagrangian curves
of the Kihler manifolds M, ..., M,,, respectively. Then the product L=L,X-XL,
is a harmonic minimal Lagrangian submanifold in the Kihler manifold
M=M, XXM, Moreover, for any harmonic normal variation Ee 3, we have

v(@=-[SEow. (s.1)

L

Proof. Since L;is harmonic minimal in A, for each i, L=L, XX L, is harmonic
minimal in A/=M, XX M, by proposition 3.17. Let e,, ..., €, be unit tangent
vector fields of L, ..., L, respectively. Then e,, ..., ¢, can be regarded as a field of
globally defined orthonormal frames on L. Denote by w', ..., " the field of dual

one-forms of ¢y, ..., ¢, on L. Then w', ..., " form an orthonormal basis of the
space of harmonic one-forms on L. Thus, every harmonic normal vector field &
of L is a linear combination of Je,, ..., Je,. We denote the unique normal har-

monic variation associated with & also by & as before.
Let u; denote an arc length parametrization of L; and x;(;) the curvature func-
tion of L; in M. Then, for any harmonic normal vector field

¢= ) ale, (5.2)

we have
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n 1 n
a(X, X)= Zc%x,Je,-, =;ZK‘,~J€,~, (5.3)

1

where X=J& From (5.2) and (5.3), we obtain
n*(H,&2—n(H,o(X, X)>=2 2 CiGiKiK; . (5.4)

i<j
Hence we obtain

j [n*¢H, &2—nlH, o(X, X)) ] dv

L

_ vol(L)
=2 ,«gj €6 length(L;) length(L,)

J K;(u;) duy, j k;(u;) du;=0,

L Lj

by virtue of theorem 3.12. Combining this with corollary 4.4, we obtain
(5.1). 0

From proposition 5.7 we obtain immediately the following stability result.

Proposition 5.8. Ler L, ..., L, be n closed, harmonic minimal, Lagrangian curves
of Kihler-manifolds M, ..., M,, respectively. Then

(1) if My, ..., M, are nonnegatively curved and at least one of M, ..., M, is posi-
tively curved, then the product L=L, XX L, is a harmonic minimal Lagrangian
submanifold which is harmonic unstable in the Kéihler manifold M=M, XX M,;

(2) if each M; is the complex Euclidean line C', then the volume of the product
Lagrangian submanifold L=L, XX L, is invariant under harmonic variations;
and

(3) if M,, ..., M, are nonpositively curved, then the product L=L,X-+XL, is a
harmonic Lagrangian submanifold which is harmonic stable in the Kdhler mani-
fold M=M, XXM,

In particular, proposition 5.8 yields the following corollaries.

Corollary 5.9. Let L be a closed, harmonic minimal, Lagrangian curve in a Kihler
manifold M. Then

(1) if M is positively curved, L is harmonic unstable;

(2) if M is the complex Euclidean line C', then the length of L is invariant under
harmonic variations; and

(3) if M is nonpositively curved, L is harmonic stable.
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Corollary 5.10. Let Q,=CP! X CP' be the complex quadric which is the Riemann-
ian product of two complex projective lines and let L,, i=1, 2 be two closed, har-
monic minimal curves in CP'. Then the product L=L, X L, is a harmonic mini-
mal, Lagrangian surface which is harmonic unstable in Q,.

Remark 5.11. We remark that corollary 4.4 implies every compact, minimal,
Lagrangian submanifold of a Kidhler manifold with positive first Chern form is
harmonic unstable whenever it is defined.

Remark 5.12. Finally, in view of the results in this article, we propose here the
following problems:

Problem 1. Classify the E-minimal and harmonic minimal isotropic submani-
Jolds of C™.

Problem 2. Classify the stable E-minimal and stable harmonic minimal isotropic
submanifolds of C™.
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