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We study the first and second variations of isotropic submanifolds which preserve the iso- 
tropy. In order to do so, we introduce the notions of harmonic, exact and isotropic variations 
and investigate basic properties of isotropic submanifolds which are minimal under such de- 
formations. Many results in this respect are then obtained. In particular, we obtain a new char- 
acterization of Maslov class in terms of such deformations. 
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1. Introduction 

Symplectic manifolds and their isotropic and Lagrangian submanifolds appear 
naturally in the context of classical mechanics and mathematical physics: The 
partial differential equation systems of Hamilton-Jacobi type lead to the study 
of isotropic and Lagrangian submanifolds and foliations in the cotangent bundle 
T*M of a manifold M. By Darboux’s theorem and its generalizations, it is well 
known that the extensions of a k-manifold I to a 2n-symplectic manifold in which 
I is isotropic are classified, up to a local symplectomorphism about I, by the iso- 
morphism classes of 2 (n - k)-dimensional symplectic vector bundles over I (see, 
for instance, p. 24 of ref. [ 161). In some sense, this says that “there is no local 
geometry of isotropic submanifolds”, if there is no additional structure. Thus this 
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article deals with the Riemannian study of isotropic submanifolds in KHhler 
manifolds and their deformations. 

The geometry of submanifolds in Ktihler geometry is quite rich: According to 
the behaviour of the tangent bundle of a submanifold, with respect to the action 
of the almost complex structure J of the ambient manifold I@, there are two typ- 
ical classes of submanifolds, namely, the class of complex submanifolds and the 
class of isotropic (or totally real [ 61) submanifolds. A submanifold M of &? is a 
complex submanifold if the almost complex structure J of the ambient manifold 
carries each tangent space T,MofMinto itself, i.e., J( T,,M) c T,,M, for anypEM 
and M is an isotropic submanifold if J carries each tangent space T,M into the 
normal space T,l M, i.e., J( T,M) c T,I M, for any PEM. An isotropic submani- 
fold M in A? is Lagrangian if dim I@= 2 dim M. In this context we can in partic- 
ular study the notion of minimal isotropic submanifolds. For complex submani- 
folds of a Kghler manifold, it is well known that every compact complex 
submanifold of a K5hler manifold is minimal and stable (cf. ref. [ 8 1. > On the 
other hand, Lawson and Simons proved in ref. [ 93 that any minimal submani- 
fold of CP” other than complex submanifolds is unstable. In particular, their re- 
sult implies every compact Lagrangian minimal submanifold in CP”’ is unstable. 

The stability of Lagrangian minimal submanifolds in a general KGhler mani- 
fold, especially in an Einstein-Kihler manifold, was first studied by B.Y. Chen, 
P.F. Leung and T. Nagano in ref. [ 3 ] (see p. 5 1 of ref. [ 2 1. ) For example, they 
established in ref. [ 31 the second variational formula for Lagrangian minimal 
submanifolds in an arbitrary Kghler manifold a. By using their second varia- 
tional formula, they proved that in Kgihler manifolds with positive first Chem 
form, any stable minimal Lagrangian submanifold L has vanishing first cohomol- 
ogy group, i.e., H’ (L; R) =O. Moreover, if @ is a KZhler manifold with nonpo- 
sitive first Chem form, then any minimal Lagrangian submanifold L of @ is un- 
stable (see also refs. [ 7,111) . 

Inspired by Wirtinger’s inequality, Oh introduced in ref. [ 111 the notion of 
Hamiltonian deformations for Lagrangian submanifolds. By applying the second 
variational formula of Chen, Leung and Nagano, he investigated in ref. [ 111 
Hamiltonian stability for Lagrangian submanifolds. Recently, Oh generalized 
Chen, Leung and Nagano’s formula to more general Lagrangian submanifolds 
and obtained several applications (cf. ref. [ 121 for details). 

In this article, we investigate this problem in a more general setting. Namely, 
we study the first and the second variations of isotropic submanifolds which pre- 
serve the isotropy. For this purpose we generalize the notion of Hamiltonian vari- 
ations of Lagrangian submanifolds to the notions of isotropic variations and ex- 
act variations for a general isotropic submanifold in a KZhler manifold. We also 
introduce the notions of harmonic variations and harmonic minimal submani- 
folds. We will investigate basic properties of isotropic submanifolds which are 
minimal under isotropic deformations, exact deformations, and harmonic vari- 
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ations. Many results in this respect are then obtained. 
As an application we deduce easily an interesting characterization of the Maslov 

class in terms of deformation. Remember that the Maslov class appears in the 
resolution of a Hamilton-Jacobi system, as an obstruction to the transversality 
of a Lagrangian submanifold of a cotangent bundle, with the vertical subbundle. 
In ref. [ lo] the second author could express this class in terms of the mean cur- 
vature vector of the Lagrangian submanifold (see ref. [ 151 for its generaliza- 
tions). Here, our framework enables us to solve a problem of Le Khong Van and 
A.T. Fomenko [ 141: We prove in section 3 that a compact Lagrangian submani- 
fold L in an Einstein-Kahler manifold is harmonic minimal if and only if the 
Maslov class of L vanishes. In particular, this shows that the harmonic minimal- 
ity of a closed curve in @’ is equivalent to the condition of vanishing rotation 
index. In section 3, we also study the curvature of exact minimal (or E-minimal) 
isotropic surfaces in c2. For such a surface, we obtain a relationship between its 
Gauss curvature and its mean curvature. Moreover, we completely classify such 
surfaces with constant mean curvature. 

In section 4, we derive the second variational formulas for isotropic submani- 
folds in an arbitrary Kahler manifold, either under the usual deformations or 
under the new deformations. By applying these second variational formulas, we 
study the stability of isotropic submanifolds under either usual or the new defor- 
mations. Several results in this direction are then obtained. For example, we prove 
that every compact hypersurface of a real projective (n+ 1 )-space RP”+‘, 
embedded standardly in CP”+ ‘, is an isotropic unstable E-minimal submanifold 
of cP”+‘, although RP”+’ itself is a Hamiltonian stable Lagrangian submanifold 
of cP”+ ’ . Of course, our situation is more complicated than the Lagrangian case, 
since for an isotropic submanifold which is not Lagrangian the normal bundle 
contains a complex subbundle on which we have very little information. 

2. Isotropic submanifolds 

Let M be an m-dimensional Riemannian manifold with Levi-Civita connec- 
tion P and let i:Z+A? be an isometric immersion of an n-dimensional compact 
Riemannian manifold Z into a Riemannian manifold I@. Denote by ( , ) the 
Riemannian metric on I as well as on a. Let V and R (respectively, P and R) be 
the Levi-Civita connection and the Riemann curvature tensor on I (respectively, 
on&Q. 

Denote by 

a:TIxTI+T’I 

the second fundamental form of the immersion and by A the shape operator of 
the immersion. Then A satisfies 
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(a(X, Y),<)=(A,X, Y) , VX, YETI,&T’I. 

With respect to ( , ) , the shape operator can also be regarded as a bilinear map 
A:TIxT’I+TI. 

The mean curvature vector field of the immersion is given by H= n -’ Tr o 
(n=dim I). Finally, we denote by F’ and R ’ the normal connection and the 
normal curvature tensor of the immersion, We have the following formula of 
Weingarten: 

$,{=V,‘&A,X, VXETI, &T’I. 

Suppose &8 is a Kahler manifold. Denote by J the almost complex structure on 
a and by B the symplectic structure defined by 

0(X, Y)=(JX, Y) , VX, YET@. 

From the definition of Sz, it is clear that an immersion i:I-+n?- is an isotropic 
immersion if and only if i*sZ=O. An isotropic submanifold I is said to be 
Lagrangian if dimcfi= dim, I. 

When I is an isotropic submanifold, the normal bundle of I has the following 
canonical orthogonal decomposition: 

T*I=J(TI)@v, (2.1) 

where Y is the maximal complex subbundle of the normal bundle. From the defi- 
nition, it is clear that an isotropic submanifold I is Lagrangian if and only if the 
maximal complex normal subbundle v = {O}. 

If I is an isotropic submanifold and <a cross-section of the normal bundle T ‘I, 
i.e., &r( T *I), then there is a one-form cre on I associated with <defined by 

ae(X)=S)(<,X)=(J<,X), VXETI. (2.2) 

Conversely, if/? is a one-form on the isotropic submanifold I and p” the tangent 
vector field on I dual to p with respect to the metric defined on Z, then mJBP = 
-P* 

We need the following general lemma. 

Lemma 2.1. Let I be an isotropic submanifold of a Kiihler manifold fi and < a 
normal vector field of I in ii?. Then the one-form cq is closed, i.e., dc+= 0, if and 
only if 

( Vx’ t, Jr> = < Vi’ t, JW , 

for any vector fields X, Y tangent to I. 

Proof From (2.2 ) we have 
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dcu,=OoO=X(a~(Y))-x(a~(X))-a~([X, Y]) 

= ( &Jr, Y) - ( &Jt, X) = ( &t, JX) - ( pvx-, JY) 

= < Vi% JX> - ( Vi?, Jr> . 0 

Let I be an n-dimensional isotropic submanifold of a Kahlerian manifold @of 
complex dimension n + r. We choose a local field of orthonormal frames 

6, . . . . en, en+,, . . . . en+r, 

e,*=Je,, . . . . e,,.=Je,,, e,,+,,.=Je,+,, . . . . ecn+r).=Je,,+r, 

in ti in such a way that, restricted to I, e,, . . . . e, are tangent to I. With respect to 
the frame field of A? chosen above, let 

co’, . ..) co”, cun+‘, . ..) co”+‘, co’*, . ..) on*, a(“+‘)*, . . . . 0(“+‘)* 

be the field of dual frames. 
We use the following convention on the range of indices unless otherwise stated: 

A,& C, D= 1, . . . . n+r, I*, . . . . (n+r)* ; i,j,k,l=l,..., n; 

A,p=n+ 1, . . . . n+r; fi, y, d=n+ 1, . . . . n+r, l*, . . . . (n+r)*. 

The structure equations of A? are given by 

da”=- C m’L:/,coB, oAg+o.~=o, 

oj+o{=O , +,j:, (j$* =(jjj* ) (2.3) 

o?,+wf=O, co”, =ci$ ) 1’ co, =of‘, 

o:+w:=o, o:=oy., ($=-#. I 9 (2.4) 

dw;=- ~o”,mwgC+&, sZ”,+Rj,COchWD. (2.5) 

Restricting these forms to I, we have the structure equations of the immersion: 

wfl=o, (2.6) 

do’=- ~&wk, (2.7) 

do+ ~w&i$+.j, ++!;,,OlkAW’, (2.8 1 

+q- c w;r\qf, (2.9) 

do+- ~o&m;f+s2f, G!~=~~R~k,~k~~‘, (2.10) 
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L-2;&+ pNjhil;,. (2.11) 

For the isotropic submanifold I in i@, let 8 be the one-form on I given by 

@= i wi’. (2.12) 
i= I 

Then we have 

@(ej)= C (a(ei,ej),e,*)= C (o(ei,ei),ejq)=-m,,(ej). (2.13) 
i i 

Thus we obtain 

o!,=-(l/n)@. (2.14) 

We give the following result for later use. 

Lemma 2.2. If I is an isotropic submanifold of a Ktihler manifold A’?, then 
d&i’=2 C (h$h$-h$.h$‘)wLw”+ C dj*, (2.15) 

p.j.k I 

(2.16) 

where (h$ ) denote the coefficients of the second fundamental form o, and Sand l? 
are the Ricci tensor and the Riemann curvature tensor of@ respectively. In partic- 
ular, if A? is Einsteinian, we have 

d&2 C (h$h$-h&h$‘)w’Ao”+ ; C C &$Jo”Aw’. (2.17) 
M.k I.!’ P 

Proof: From (2.4) and (2.5) we have 

d&L C oj* A+- C oj: HI+ 

+ ~cof/\f3~+ po;*A^;*+ -@j’ 

=2~WfAOf’+ csz’i’. 

On the other hand, 

~Ai’+~;k&~k, 

(2.18) 

(2.19) 

(2.20) 
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In particular, if a is Einsteinian, the isotropy of I implies &* =O. Combining 
this with (2.19) and (2.20) we obtain the lemma. 0 

Lemma 2.2 can be regarded as a generalization of ref. [ lo]. 
As a consequence of lemma 2.2 we have the following relation between aH and 

the first Chem form yI (v) of the maximal complex normal subbundle v. 

Proposition 2.3. IfI is an isotropic submanifold of a Ktihlerian manifold &? of con- 
stant holomorphic sectional curvature, then 

d%=(16dnh’,(v), (2.21) 

where 

r,(v)= $p;* (2.22) 

is the first Chern form of the maximal complex normal subbundle v of the normal 
bundle T ‘I. 

Proof If @is a Ghlerian manifold of constant holomorphic sectional curvature 
c, then the Riemann curvature tensor R of a is given by 

R(X, Y)z+{( Y, Z)X-(x,z)Y+(JY, Z)JX 
- (JX, Z)JY+2(X, JY)JZ} . 

Thus we have 

Moreover, since @ is Einstein-KHhler and 1 is isotropic, we also have & =O. 
Therefore from (2.11) and lemma 2.2 we have 

d@=2Cojk&“=2 C (h$h$‘-h$.h$*)w’,-, & 
i U,k 

= -2 c R$k~j~cok= -4 c a;‘. 
Uk 

This implies the proposition. Cl 

Proposition 2.3 yields the following 

Corollary 2.4 Let I be an isotropic submanifold of a Kiihler manifold A? of con- 
stant holomorphic sectional curvature. Then 

(I) the first Chern class of the maximal complex normal subbundle v vanishes, 
i.e.,c,(v)=[y,(v)]=O. 

(2) the one-form (yH is closed if and only if the first Chern form vanishes, i.e., 
r,(v)=O. 
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Combining lemma 2.1 and corollary 2.4, we obtain 

Corollary 2.5. Let I be an isotropic submanifold of a Kiihler manifold A? of con- 
stant holomorphic sectional curvature. If I has parallel mean curvature vector field, 
then the maximal complex normal subbundle v has vanishing-first Chern -form, 
i.e., yI (v) =O. 

3. Deformations 

3.1. DEFORMATIONS 

Let I be a compact submanifold of a Riemannian manifold n? with boundary 
81 (dl may be empty). Suppose c is a vector field on A? defined on a neighbour- 
hood of I such that {I, is normal to I and Q a,= 0. Let qJ denote the flow generated 
by c in a neighbourhood of I in a. The flow { @,} gives rise to a normal variation 
of I in G, which is denoted either by < or by {&}. In this case, the normal vector 
field <] I is called the variation vectorfield of the normal variation. 

Let V( t ) = volume (q& (1) ) , the volume of@,(I) via <. By Y” ( <) and Y’ ( 0 we 
mean the values of the first and the second derivatives of Y(t), respectively, with 
respect to t, evaluated at t = 0. It is well known that (see, for instance, ref. [ 8 ] ) 

Y’(r)=-n (I?,<) dv. 
s (3.1) 

For our purpose we give the following expression of the second variational for- 
mula for later use (see also ref. [ 8 ] ) . 

Lemma 3.1. Let I be a compact n-dimensional submanifold of a Riemannian 
manifold A?. Suppose that < is a vector field on A? such that <I r is normal to I. Let 
i, denote the flow generated by < in a neighbourhood of I in &?. Then we have 

r”(C)= ~{ll~~~l12-ll~~ll’+~‘(H,5~‘-S~5,~~-~~~,~~~~}~~, (3.2) 
I 

where%<, tl) = CL’=l R(5, e,, ei, tl), (e,, . . . , e,,) is a localfield of orthonormalframes 
of TI, and l? is the Riemann curvature tensor of the ambient manifold &?. 

Proof Let us choose a local field of orthonormal frames e,, . . . . e, of TI at t=O 
and extend it to a neighbourhood of I by q.J. We shall denote this local frame field 
also by e,, . . . . e,,. Then the volume element of G,(M) is given by 
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(e, A”’ Ae,,,e, ~...~e,,)*l, 

where t 1 is the volume element of I at t=O. Thus we have 

Y-(t)= (e, A .** A e,,, e, A *.. A e, ) * 1 . 

I 

Therefore 

Y”‘(5)= J&(&e, A”‘Ae,,,e, A-Ae,,)))*l. 

I 
(3.3) 

By direct computation we have at t = 0 the following: 

=5(-q (e,A...A~~e,A...Ae,,,e,A...Ae,,)) 

- =$ (e, A ... A &ei A *” A e,,, e, A ‘*’ A e,, )2 

e, A ... A &ei A **. A p<ej A “’ A e,,, eI A “’ A e,t ) 

+ c ( f?, A ... A v&ej A ‘.. A e,,, eI A **’ A e,, ) 

+ c (e, A ... A pcei A ... A e,,, e, A “’ A pcej A “’ A e,, ) 
i,i 

- T (e, A “‘A F<ei A-‘Ae,,, e, A-’ Ae,,)’ 

= C {(Ace,, ei) (A$,, ej) - (Acei, ej)‘}+ F (JL,L ei) 
i.j 

+div( Fc<>‘- c (A( ei, ej > 
i 

( ) 
2 

+ C (&i, ei> + 1 P512-n2(r, Jo2. 
i 

From this together with (3.3) and the divergence theorem we obtain the 
lemma. 0 

3.2. ISOTROPIC DEFORMATIONS 

If i: I+i@ is an isotropic isometric immersion from I into a IGhler manifold 
a, we may only consider normal variations < such that q+(I) stays isotropic for 
each sufficiently small t. Then the infinitesimal version of this condition is given 
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i*(2y2) =o ) 
where Y denotes the Lie derivative (see, e.g., ref. [ 1 ] ). We give the following 
general lemma. 

Lemma 3.2. i*( ~?@2) =Oocq is a closed one-form on I, where cq is the one-form 
dejned by (2.2). 

Proof: Let I and d denote the interior product and the exterior differential oper- 
ator, respectively. Then we have 

6P=d.l+l.d. 

Hence 

i*(~~S2)=Ooi*(d(zeS2))=Oodcu~=0. q 

Lemma 3.2 leads us to give the following definition for isotropic submanifolds 
(cf. ref. [ 111 for the Lagrangian case): 

Definition 3.3. Let I be an isotropic submanifold of a K%hler manifold a. Then 
a vector field < along I is called isotropic (respectively, exact or harmonic) if the 
one-form c+ is closed (respectively, exact or harmonic). A normal variation { #(} 
of I in @ is called isotropic (respectively, exact or harmonic) if the variation 
vector field along I of { @,} is isotropic (respectively, exact or harmonic). 

For a compact Lagrangian submanifold L, harmonic vector fields and har- 
monic variations are defined when 27’ (L; R) # (0). In this case, it follows from 
definition 3.3 that the zero vector field is the only normal vector field which is 
exact and harmonic at the same time. 

For each normal vector field r along the isotropic submanifold I in a Kahler 
manifold a, there is a unique normal variation {@,} defined by @,( m ) = 
expiCm) ( tc), mEI. This normal variation generates a vector field of 2 which is an 
extension of l defined on a neighbourhood of i (1). We shall denote this extended 
vector field also by c. For simplicity, we identify the unique normal variation 
associated with c with the normal vector field <. It is obvious that we have &<= 
0 for any such normal variation c. 

For an isotropic submanifold I in &?, we denote by 9, d and Z’ the sets of all 
isotropic, exact and harmonic normal variations < on 1, obtained from the corre- 
sponding normal vector fields <. It is easy to see that 4 1 6 and .9 2 2”. More- 
over, if the normal vector field r is in r(v), then the corresponding normal vari- 
ation {is automatically isotropic, exact and also harmonic. 

Of course, if H’ (1, R) = {0}, the notions of isotropic deformations, exact de- 
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formations and harmonic deformations are equivalent. 
Let Ap(Z) denote the space of all p-forms on I. Denote by S?‘(Z) and B(Z) the 

subspaces of AP(Z) consisting of all closed p-forms and all exact p-forms on Z, 
respectively. 

For any two p-forms o, WE A p (I), we define a (global) scalar product of w, v/ 
by 

(WV)= JWh*W, (3.4) 
I 

whenever it is defined, where * is the Hodge star operator. 

Definition 3.4. An isotropic submanifold Z of a Kahler manifold is said to be iso- 
tropic minimal (respectively, E-minimal or harmonic minimal) if V (<) = 0 for 
any isotropic (respectively, exact or harmonic) variation c of Z, i.e., we have 
V( <) =O for any { in 9 (respectively, for any { in d or 2’). The isotropic sub- 
manifold Z is said to be stable (in the usual sense) (respectively, isotropic stable, 
E-stable or harmonic stable) if V’( <) 2 0 for every normal variation (respec- 
tively, isotropic variation, exact variation or harmonic variation) of I. Other- 
wise, Z is said to be unstable (in the usual sense ) (respectively, isotropic unstable, 
E-unstable or harmonic unstable). 

Clearly, every minimal isotropic submanifolds in a Kahler manifold is auto- 
matically isotropic minimal, E-minimal, and harmonic minimal. Moreover, there 
do exist isotropic minimal, E-minimal and harmonic minimal isotropic subman- 
ifolds which are not minimal in the usual sense (see examples below ) . 

For isotropic submanifolds we have the following 

Proposition 3.5. Let Z be a compact isotropic submanifold of a Kahler manifold a. 
Then 

(i) Z is isotropic minimal if and only if HEF(J( TZ) ) and QES?” (I)’ = 
{c%j:& A2Z}. 

(ii) Z is E-minimal tfand only ifH~r( J( TZ) ) and 6a,=O, where 6 is the codif- 
ferential operator on I. 

(iii) Z is harmonic minimal if and only if HEr( J( TZ) ) and ayH is the sum of an 
exact one-form and a co-exact one-form. 

Proof 
(i) Z is isotropic minimal if and only if 

Y’(r)=-n (<, H) dv=O s (3.5) 
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for every isotropic variation r on I. Since for each &r(y) the normal variation c 
is isotropic, ( 3.5) implies Hcr(J( 77) ). Hence, if lis isotropic minimal, then we 
have 

TV(<)=-n (<,H) dv=-n(ac,a,)=O. 
s I 

Thus, by combining this with (3.4)) we obtain &$E 2’ (I) I. Furthermore, for a 
compact Riemannian manifold, 2“’ (I) L = (69: @E A “I}. The converse of this is 
clear. 

(ii) From (i) it follows that an isotropic submanifold I is E-minimal if and 
only if Hcr( J( TI) ) and 

(a,, QIH) =o (3.6) 

for exact variations & 2’. Since a normal variation r is exact if and only if aYe= df 
for some functionfon I, we have 

(d! +) = (f, 6%) =o , fEc-(I) . 

This is equivalent to saying that Bc+= 0. 
(iii) Formula (3.1 ) implies that I is harmonic minimal if and only if (YH is 

perpendicular to harmonic one-forms on I. Thus, by the Hodge-de Rham decom- 
position of one-forms, we conclude to statement (iii). 0 

From proposition 3.5 we have the following 

Corollary 3.6. Let I be a compact isotropic submanifold of a Ktihler manifold I@. 
If daH= 0, then 

(i) I is isotropic minimal if and only if L is minimal in the usual sense; 
(ii) I is E-minimal if and only if &!H is a harmonic one-form, i.e., AcxH=O; 
(iii) I is harmonic minimal if and only if a)H is an exact one-form. 

ProoJ: 
(i ) Let I be an isotropic submanifold of a KZhler manifold a. Assume da, = 0. 

If 1 iS isotropic minimal, then (YHE 2’ (I) I. Thus, (o!yH, (YH) =O. This implies 

cyH=O, which is equivalent to saying that L is minimal in the usual sense. The 
converse of this is trivial. 

(ii) If 1 iS E-minimal, proposition 3.5 yields &YH=O. since dcu,=O, &, iS a 
harmonic one-form. 

(iii) If 1 is harmonic minimal, proposition 3.5 implies that o!H is the sum of an 
exact one-form and a coexact one-form. On the other hand, the condition dcrH=O 
implies that (YH is orthogonal to every COeXaCt one-form on L. Therefore, o!H must 

be exact. 
The converse is clear. q 
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Lemma 2.2 and corollary 3.6 imply the following 

Corollary 3.7. Let L be a compact Lagrangian submanifold of an Einstein-Kiihler 
manifold a. Then 

(i) L is isotropic minimal if and only if L is minimal in the usual sense: 
(ii) L is E-minimal if and only if cqr is a harmonic one-form, i.e., Aa,=O; 
(iii) L is harmonic minimal if and only if cvn is an exact one-form. 

3.3. EXAMPLES OF E-MINIMAL ISOTROPIC SUBMANIFOLDS 

(i) The standard torus T” in @“+p is a compact isotropic submanifold which is 
E-minimal, but not minimal in the usual sense and also not harmonic minimal. 

(ii) Any isotropic submanifold of a KWer manifold with parallel mean cur- 
vature vector is E-minimal (cf. lemma 2.1). 

(iii) An easy construction of isotropic submanifolds which are E-minimal is 
the following: Take a submanifold I with parallel mean curvature vector field of 
a totally geodesic Lagrangian (or isotropic) submanifold of a K%hler manifold 
G. Then I is an E-minimal isotropic submanifold of @ since it is an obvious 
consequence of the following 

Lemma 3.8. Let I be an isotropic submanifold of a Kiihler manifold I@ with 
HEI~( J( TI) ). Then &x~= 0 ifand only if 

Proof If HEr( J( TI) ), then 

&n=Oe 1 ( Vei(JH), ei) =O 
i 

*C (FCiJH,ei)=O 
i 

-T (V&H,Jei)=O. 

3.4. EXAMPLES AND RESULTS ON HARMONIC MINIMAL SUBMANIFOLDS 

First we make the following observations. 



Observation 3.9. Statement (iii) of corollary 3.7 says that a compact Lagrangian 
submanifold L in an Einstein-Kahler manifold is harmonic minimal if and only 
if the Maslov class of L vanishes, i.e., [all] = 0. From this we conclude that there 
exist many harmonic minimal Lagrangian submanifolds. 

Observation 3.10. If a curve I in a complex Euclidean m-space is harmonic min- 
imal and not minimal in the usual sense, then the image of the curve is contained 
in a complex line of @‘,I. 

This fact can be seen as follows: Let e, be a unit tangent vector field of the 
curve. Since the curve is harmonic minimal, proposition 3.5 implies that the mean 
curvature vector H of the curve satisfies H= tie, for some function IC on I. Thus 
JH= -KP,. Hence, by using the fact that @“I is Kihlerian, we may obtain 
F(., (e, A Je, ) =O. This implies that the curve I is contained in a complex line of 
62”‘. 

Observation 3.11. If a closed curve in a complex Euclidean /n-space @“I is E-min- 
imal, then the curve is a circle which lies in a complex line 62’ of C”‘. 

This can be seen as follows: If a closed curve is E-minimal, then, by proposition 
3.5, the mean curvature vector H is nonzero and H=tie, for some function K. 

Thus, by using the same argument in as observation 3.10, we may conclude that 
the curve lies in a complex line d=’ of 62”‘. Now, since the curve is E-minimal, the 
one-form Q is co-closed by proposition 3.5. Because the curve is one-dimen- 
sional, this implies that the mean curvature has constant length. In other words, 
the plane curve in @’ has constant curvature. Hence, it is a circle in @‘. 

If L is a curve in a real two-dimensional KHhler manifold A? and e, is a global 
unit tangent vector field of the curve, then the mean curvature vector H of the 
curve satisfies H=rcJe, for some function K defined on the whole curve. We call 
this function the curvature of the curve. 

The following theorem provides a geometric characterization of harmonic 
minimal Lagrangian curves. 

Theorem 3.12. Let L be a closed curve in a real two-dimensional Kiihler manifold 
IV??. Then L is harmonic minimal if and only) if L has zero total curvature, i.e., 
IL. K ds= 0, where s is an arc parametrization of L. 

ProoJ If L is harmonic minimal, then proposition 3.4 implies that the one-form 
(Y” is exact, since L is one-dimensional. Thus, a,=df=f ‘(s) ds. From the deli- 
nition of cy,, we havef ‘(s) = -K. Since L is closed, we obtain JL~ ds= 0. 

Conversely, if ,fL K ds=O, then there exists a function S(s) on L such that 
f’(s) =K(s). This implies that the one-form cr,=dfis exact. Thus, by applying 
proposition 3.4, the curve is harmonic minimal. 0 
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If the ambient space fi is the complex plane C’, theorem 3.12 implies imme- 
diately the following relation between rotation index and minimal harmonic closed 
curves in C’. (A similar result is well known for a closed curve in @’ with null 
Maslov class. ) 

Corollary 3.13. Let L be a closed curve in the complex plane @ ‘. Then L is har- 
monic minimal if and only if the rotation index ofL is zero. 

Proof This follows from theorem 3.12 and the fact that the rotation index of a 
closed plane curve L is given by (27~) - ’ JL K d.r. 0 

By combining theorem 3.12 and the Gauss-Bonnet theorem we have the fol- 
lowing 

Theorem 3.14. Let n? be a real two-dimensional Ktihler manifold and L an 
embedded closed curve L in fi which bounds a simply connected region D of I@. 
Then L is harmonic minimal if and only if the region D of n? has total Gauss 
curvature 274 i.e., $p G dv=2x. 

Proof Follows directly from theorem 3.12 and Gauss-Bonnet’s theorem. q 

If a is diffeomorphic to a two-sphere, theorem 3.14 yields the following 

Corollary 3.15. Let fi be a Kiihler manifold which is diffeomorphic to a two-sphere 
S”. Then an imbedded closed curve L in I@ is harmonic minimal tfand only ifL 
divides I@ into two regions D,, DZ with equal total Gauss curvature, i.e., 
J,,, G dv=JD2 G dv, where G is the Gauss curvature of a. 

When n? is a two-sphere S’ with the standard Kahler structure, then an imbed- 
ded closed curve L in a is harmonic minimal if and only if L is area bisecting. 

For closed curves in a nonpositively curved Kahler surface, we have the follow- 
ing 

Corollary 3.16. If $? is a Kiihler surface with nonpositive Gauss curvature, then 
every harmonic minimal closed curve in A? has self-intersection points. 

Proof This follows immediately from theorem 3.14. 0 

Another application of theorem 3.12 is the following result, which provides us 
with many examples of harmonic minimal submanifolds. 
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Proposition 3.17. Let Lj be closed Lagrangian curves of some Kiihler manifolds 
AT,, i= 1, . . . . n, respectively. Then the product Lagrangian submanifold L= 
L, x.,. x L,, is harmonic minimal in &?=A?, x... x A’?,, if and only if Li are har- 
monic minimal in pi, i= I, . . . . n. 

Proof Let e,, . . . . e,, be a field of orthonormal frames on the product Lagrangian 
submanifold L such that each ej is tangent to Li. Denote by o ‘, . . . . w” the field of 
dual frames. Then 

cYH= - i {K,W’+.-+K,,W”) , (3.7) 

where K; is the curvature of the Lagrangian curves L, in n?,. Since L is the 
Riemannian product of L,, . . . . L,,, o ‘, . . . . 0” are harmonic one-forms on L. From 
(3.7) and theorem 3.12 it follows that (a),,, 0’) =O if and only if Lj is harmonic 
minimal in 11?;. Thus, by applying proposition 3.5, we obtain proposition 
3.17. 0 

Remark 3.18. Proposition 3.17 implies, for instance, that there exist infinitely 
many harmonic minimal Lagrangian surfaces in the compact Hermitian sym- 
metric space Qz = SO (4) /SO (2) x SO (2) which is the Riemannian product of 
two complex projective lines. For harmonic stability of these harmonic minimal 
surfaces, see section 5. 

3.5. ISOTROPIC SURFACES 

For E-minimal Lagrangian surfaces we have the following 

Proposition 3.19. Let L be a Lagrangian E-minimal surface in an Einstein- 
Klihler manifold ii? which is not minimal in the usual sense. Then 

(1) If L has constant mean curvature in A?, then L is flat; 
(2) Conversely, if L is flat and compact, then L has constant nonzero mean cur- 

vature in I@. 

In order to prove this proposition we give the following lemma. 

Lemma 3.20. Let I be an isotropic surface of a Kiihler manifold A? with dc+=O. If 
I is E-minimal, then 

(I) either (Ye vanishes identically or o!yH has only isolated zeros: 
(2) the Gaussian curvature G ofI satisfies 

G=-{AlnIl &,[I’, 

on the open subset of I on which H# 0. 
(3.8) 
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Proof: Under the hypothesis of the lemma, we obtain from corollary 3.6 that 

da,=6a,=O. (3.9) 

Let (x, y) be an isothermal coordinate system of I. We put a)H=p dx+q dy. Then 
(3.9 ) implies that the functions p( x, y ) and q(x, y) satisfy the following Cauchy- 
Riemann condition: 

a4 ap ap aq -=- -=-- 
ax ay ’ ax af 

From this we conclude that p(x, y) + iq(x, y) is a holomorphic function in 
z=x+ iy. Consequently, we have statement ( 1). 

For statement (2 ), we choose a local field of orthonormal frames such that e, 
is parallel to JH. So, we may put H= he,,= hJe, and hence lemma 2.1 implies 

(pk (he), e2*) = < PA(b), 6,) . 

Combining this with (2.4) we obtain 

e2h=hwf(e,) . (3.10) 

If I is E-minimal, then, by proposition 3.4, we have 6a,=O. Thus, by applying 
lemma 3.6, we may obtain 

e,h= -hw:(e,) . (3.11) 

Since IIaHI12=h2, (3.10) and (3.11) imply 

20t=(e,(ln IIaHIl”>>o’-(el(ln II~ll~))o~. (3.12) 

By taking the exterior derivative of (3.12) and applying structure equations to- 
getherwith (3.10) and (3.11),wemayfind 

2do:=(dln IIo!YHl12)~‘~~2. (3.13) 

On the other hand, it is well known that 

da:=-G&m’. (3.14) 

Thus, by combining (3.13) and (3.14), we obtain (3.8 ). This proves lemma 
3.20. 0 

Proof ofproposition 3.19. Now, if L is a compact Lagrangian surface in an 
Einstein-K%hler manifold sand if L is E-minimal, then the hypothesis of lemma 
3.20 holds automatically. Suppose L is flat and it is not minimal in the usual 
sense, then lemma 3.20 implies 

din IIcrHjIZ=O. (3.15) 

Because II ~11~ is a nonnegative differentiable function and L is compact, (3.15) 
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implies that llcxH]l is a positive constant. Thus, L has constant nonzero mean cur- 
vature. Conversely, if the Lagrangian surface has constant nonzero mean curva- 
ture, then (3.8 ) implies that L is flat. 0 

Corollary 3.21. Let L be a Lagrangian surface in C’. If L is E-minimal with con- 
stant mean curvature, then L is an open portion of one of the following surfaces. 
(a) a minimal Lagrangian surface of C ‘; (b) the product of two circles; or (c) the 
product of a circle and a line. 

Proof Let L be a Lagrangian surface in C’. Assume L is E-minimal and L has 
constant mean curvature. Then either L is minimal in the usual sense or L is flat. 
If the latter case occurs, L is an open portion of the product of two circles or an 
open portion of the product of an open portion of a line and a circle. 0 

Remark 3.22. Let L be a Lagrangian surface in @’ and let Y: L+G( 2, 4) be its 
associated Gauss map from L into the real Grassmannian G(2, 4). Since 
G (2, 4) is isometric to the product of two spheres: G (2,4) z S? x S’, , there is a 
canonical decomposition of the Gauss map: V= V, x v2 (cf., for instance, ref. [ 41). 
By corollary 3.7, we may conclude that a Lagrangian surface in @’ is E-minimal 
if and only if v2: L+S< is a harmonic map. 

4. Second variational formulas for isotropic submanifolds 

For isotropic submanifolds in a Kahler manifold, we have the following result, 
which generalizes the second variational formulas of Lagrangian submanifolds 
obtained in refs. [ 3,121. 

Proposition 4.1. Let I be a compact n-dimensional isotropic submanifold of a 
Kiihler manifold n?: Suppose that n is a vector field on A? such that n I t is normal to 
I and let @, denote the flow generated by n in a neighbourhood of I in A?. Then we 
have: 

(i)IftlIIEr(J(TI)), then 

Yf”(rl) = j ( fll~~,~I12+II~~,,ll”+~ll~~~~.~~~, ~)112 
I 

-n<K @X W> +n’<K rl)‘--n<fL Elv) 

- i [R”(e,,‘I;rl,e,)+~(Jei,~; q,Je,)l)dv, (4.1) 
i=l / 
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where e,, . . . . e,, is an orthonormal frame qfI, X= - Jq, and w is the dual one-form 
d-Jvl,. 

(ii) IfqI1~r(v), then 

y”‘(rl) = J (II~h,II ‘- IMIll ‘+ Ilwi, V’llll z 
I 

+n’(H, q)‘-n(H, E,q) - i I?(ei, q; q, ei) dv, (4.2) 
i= I 

where {e,, ez, . . . . err} is an orthonormal frame of I. 

Proof: 
(i) If ~1 I~ (J( TI) ), we can find a tangent vector field XE~( r1) such that 

JX= q I P Using the fact that a is Kahlerian, we have, for VE J( TI), 

( V’q, 0 = - ( VK JO , proj, V’q=J(proj,, a(X, +)) , 

from which we find 

I(Vlrlll’=IlVXII’+IIproj,, Vlrll(‘=IIVXII’+IIproj, a(X, .)[I’. (4.3) 
On the other hand, the Gauss equation gives 

i R(ei,?I,q,e,)= i R(Je;,X,X,Jei) 
i=l I= I 

=3(X,X)- i R(ei,X,X,f?j)- 5 R(C,,X,X,E,) 
I= I JCI 

=3(X, X)-S(X, X)+n(H, a(X, X)) 

-  f Il~(X,ei)II'- 5  ~(~j,X,X,~JJ) y 
j= I 

where {e,, . . . . e,,} is an orthonormal frame of TI and {e,, . . . . ez,} is an orthonormal 
frame of the maximal complex normal subbundle v. We put 

i$, Il~~~,~i~l12=ll~~~~~I12~ 

Thus, from lemma 3.1 we get 

-f”(v)= j ( IIVXll’+llproj,a(X;)II’-S(X,X)+S(X,X) 
I 

ZP 

-n(H,a(X,X))+lla(X;)II’+ C R(E~,X,X,~~) i= I 

+n”(H,q)‘-n(H, ~,,q)-IIAsIl’ (4.4) 
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Since 

114-K ~~I12-II~,,llZ=Il~~~~. 4-F *>II’, 

we have 

*y”(v)= j ( 11VXl12+211proj.~(X, .)l12-s”(XX)+S(XX) 
I 

-FZ(H,O(X,X))+ z R(Ej,X,X, t j )  

i=I 

+n’(H, <)‘-n(H, F,,q) dv. 
> 

Finally, put W= VxX+ (div X)X, where JX= q I I, and denote by div X the diver- 
gence of X. Then, by computing the divergence of W, we have 

O= I (div W) dv 

= LWvU+II~Xl12-(fllh,I12+II~~,,I12)l dv. s (4.5) 

Consequently, by (4.4) and (4.5 ), we obtain (4.1). 
(ii) If q I I~r( Y), then, for any vector fields Y, 2 tangent to 1, we have 

( Vf rj, JZ) = - ( px Jq, Z) = (A, Y, Z) . (4.6) 

This implies 

II V*vll 2= llAJq II 2+ Ilwi, VLtll12 . (4.7) 

Thus, from lemma 3.1, we obtain (4.2 ). 0 

Corollary 4.2 Let I be a compact n-dimensional isotropic submanifold of a KSihler 
manifold & Suppose that q is a vector field on a such that q I I is normal to I and 
let q$ denote the flow generated by q in a neighborhood ofI in fi. IfI is minimal in 
the usual sense, then: 

O~~fttIdW~OL then 

v”(v)= j (!lldw,l12+ll~~,l12+211wol. 4.h .)II’ 
I 

- $, [k(e,, tl; tl, ei> +B(Jei, tl; V, Jei> 1) dv, (4.8) 
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where e,, . . . . e,, is an orthonormal frame of I and o is the dual one-form of Jr. 
(ii) Ifnlr~F(v), then 

u”(v)= J ( 11~~,112-11~~112+11~~~~, ~‘d12- i$,E(ei,q;%e,,>du, (4.9) 
I 

where {e,, e2, . . . . e,} is an orthonormal frame of I. 

This corollary follows immediately from proposition 4.1. 
For isotropic E-minimal submanifolds, we have the following second varia- 

tional formulas under exact variations. 

Corollary 4.3. Let Z be a compact n-dimensional isotropic E-minimal submanifold 
of a Kiihler manifold a. Then: 

(i) For <= JXEF( J( TI) ) n 6, we have 

+n’(H, r)‘-n(H, o(X, X)) dv, 

where e,, . . . . e, is an orthonormal frame of I. 
(ii) For &F(v) A 8, we have 

Y” = ll~~~II~-ll~~II~+llPro.i. ~‘~112- i ~(ei,&Lei) 
i=l 

(4.10) 

dv . (4.1 

Proof This corollary follows from proposition 4.1 and the fact that, for any Co 8, 
we have V&O (cf. section 3). 0 

Similarly, for isotropic harmonic minimal submanifolds, we have the following 
second variational formulas under harmonic variations. 

Corollary 4.4. Let I be a compact n-dimensional isotropic harmonic minimal sub- 
manifold of a Ktihler manifold ii?. Then: 

(i) For r= JXeF( J( TI) ) n 2, we have 



- i$, [R(e,, t; t, e,) +R(Je,, 5; t, Je,> 1 

+n2(H, c3’-2(H, 0(X,X)) dv, 
) 

(4.12) 

where e,, . . . . e,, is an orthonormal frame of I. 
(ii) For & r( v ) n A!“, we have 

5. Some applications 

By applying proposition 4.1, we obtain the following 

Theorem 5.1. Let I be a compact isotropic submanifold of a Kiihler manifold A? 
with nonpositive holomorphic bisectional curvatures. If I is minimal in the usual 
sense, then 

(1) I is stable under deformations with respect to r( J( TI) ); 
(2) V’(~)+Y~“(J~)~Oforany~~~(v). 

Proof: Follows easily from corollary 4.2. 0 

The following example shows that theorem 5.1 is the best possible. 

Example 5.2. Let I be a compact, non totally geodesic, minimal hypersurface of 
an (n + 1 )-dimensional flat real torus RT”+ ’ which is imbedded in a flat complex 
torus CT” + ’ as a totally geodesic, Lagrangian submanifold. Then I is an isotropic 
submanifold of CT”+ ’ . Let r be a unit normal vector field of I in RT”+ ‘. Then we 
have 

A,+O, V’t=V’J&O, A,=O. 

Since CT n+ ’ is flat, we obtain 

-if”(<) <o ) ?I’-‘( Jr) > 0 . 
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In ref. [ 10 1, Takeuchi proved the following 

Theorem 5.3. Let @ be a Hermitian symmetric space of compact type and M a 
compact totally geodesic Lagrangian submanifold of I$?. Then M is a stable sub- 
manifold in the usual sense if and only if M is simply connected. 

In view of theorem 5.3, we give the following 

Theorem 5.4. Let M be either a totally geodesic Lagrangian submanifold or a to- 
tally geodesic isotropic submanifold of a Kiihler manifold tiand I a compact min- 
imal hypersurface of M. If either (a) the sectional curvature of n? is nonnegative 
and I is not totally geodesic, or (b) the sectional curvature of @ is positive, then I is 
E-unstable in n and also harmonic unstable in n?. In particular, it is unstable in 
the usual sense. 

Proof: Let M be a totally geodesic Lagrangian (or isotropic) submanifold of a 
Kahler manifold and I a compact minimal hypersurface of M. Let c be the unit 
normal vector field of I in M. Then r~r( V) n 2’. If I is not totally geodesic in M 
and M is totally geodesic in a, then we have 

A;#0 7 A,=O. 

Furthermore, since I is a hypersurface of M and M is totally geodesic in @, we 
also have 

proj, V’<=O. 

Therefore, by applying corollary 4.3 we conclude that ,Y”( <) < 0. Thus, I is both 
E-unstable and harmonic unstable in a. In particular, this shows that I is un- 
stable in the usual sense. The other case can be proved in a similar way. cl 

Theorem 5.4 can be applied in particular to the case where JJ? is a compact 
symmetric space. A submanifold &? of a Kahler manifold @ is called a real form 
of a if M is the fixed point set of an involutive anti-holomorphic isometry of a. 
It is known that the real forms of a Kahler manifold are totally geodesic subman- 
ifolds which are either isotropic or Lagrangian in @ (cf. ref. [ 133 ). 

For real forms of compact Hermitian symmetric spaces, we have the following 

Corollary 5.5. Let ti be a Hermitian symmetric space of compact type and M a 
real form of ti. Assume I is a compact minimal hypersurface of M. 

(i) If I is not totally geodesic in M, then I is E-unstable and harmonic unstable in 
n?. 
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(ii) If fi is irr e d ucible and dim MB rank ( I@), then I is E-unstable and harmonic 
unstable in ii?. 

Proof Statement (i) follows from theorem 5.4. For statement (ii), if A? is a 
Hermitian symmetric space of compact type with dim M>rank(a), then 
V”( <) < 0, where < is the unit normal vector field of I in M. Thus, by applying a 
similar argument as in the proof of theorem 5.3, we conclude that I is E-unstable 
and harmonic unstable. 0 

It has been proved in ref. [ 111 that the canonical totally geodesic RP” in CP” 
is Hamiltonian stable. However, corollary 5.4 implies the following 

Corollary 5.6. Let RP ‘+ ’ be a real projective space canonically imbedded in a 
complex projective space CP n+ ’ (with the standard Fubini-Study metric) as a 
totally geodesic Lagrangian submanifold. Then every compact minimal hypersur- 
faceMofRP”+’ is E-unstable in CP”+ ’ and also harmonic unstable. 

Now we study the stability of harmonic minimal product Lagrangian subman- 
ifolds. 

Proposition 5.7. Let L,, . . . . L, be n closed, harmonic minimal, Lagrangian curves 
of the Kiihler manifolds A?,, . . . , A?,,, respectively. Then the product L = L, x .‘. x L,, 
is a harmonic minimal Lagrangian submanifold in the Kahler manifold 
&?=a, x.-e xii?“. Moreover, for any harmonic normal variation <E 8, we have 

V”(C) = - j T(<, <) dv . 
L 

(5.1) 

Proof: Since Li is harmonic minimal in h?;. for each i, L= L, x 3.. x L,, is harmonic 
minimal in a=.&?, x ... x&i,, by proposition 3.17. Let e,, . . . . e, be unit tangent 
vector fields of L ,, . . . . L,, respectively. Then e,, . . . . e, can be regarded as a field of 
globally defined orthonormal frames on L. Denote by o’, . . . . o” the field of dual 
one-forms of e,, . . . . e, on L. Then co’, . . . . o” form an orthonormal basis of the 
space of harmonic one-forms on L. Thus, every harmonic normal vector field < 
of L is a linear combination of Je ,, . . . . Je,. We denote the unique normal har- 
monic variation associated with {also by {as before. 

Let ui denote an arc length parametrization Of Li and Ki ( u;) the curvature func- 
tion of Li in Bi. Then, for any harmonic normal vector field 

<= C CiJei , (5.2) 
i 

we have 
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0(X, X) = i cfu;Je; ) 
i 

H= i $ K;Jei , 
I 

where X=J<. From (5.2) and (5.3), we obtain 

n’(H, c)‘-n(H, 0(X, X))=2 C CiCjK;Uj. 
icj 

(5.4) 

Hence we obtain 

s [n’(H, T>‘-n(H, a(X,X>)] dv 
L 

=2 1 CiCj 
vol(L) 

length (L;) length (Lj) 
Ki(Ui) dU/ Kj(Uj) duj=O ) 

i-zj L, 4 

by virtue of theorem 3.12. Combining this with corollary 4.4, we obtain 
(5.1). 0 

From proposition 5.7 we obtain immediately the following stability result. 

Proposition 5.8. Let L,, . . . . L,, be n closed, harmonic minimal, Lagrangian curves 
of Kiihler-manifolds a,, . . . . i@,,,, respectively. Then 

(I) ifii?,, . ..) a,, are nonnegatively curved and at least one of I@,, . . . . a,,, is posi- 
tively curved, then the product L = L, x ..* x L,, is a harmonic minimal Lagrangian 
submanifold which is harmonic unstable in the Kiihler manifoldi@=ti, x-e xn?,,; 

(2) if each ll?i is the complex Euclidean line C’, then the volume of the product 
Lagrangian submanifold L=L, X-. XL,, is invariant under harmonic variations; 
and 

(3) ifx?,, .,.) a,, are nonpositively curved, then the product L = L, x -. x L, is a 
harmonic Lagrangian submanifold which is harmonic stable in the IGhler mani- 
fold A&A& x... x fi,,. 

In particular, proposition 5.8 yields the following corollaries. 

Corollary 5.9. Let L be a closed, harmonic minimal, Lagrangian curve in a KSihler 
manifold fi. Then 

(1) iffi is positively curved, L is harmonic unstable; 
(2) if A? is the complex Euclidean line C I, then the length of L is invariant under 

harmonic variations; and 
(3) if ti is nonpositively curved, L is harmonic stable. 
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Corollary 5.10. Let Qz = CP’ x CP’ be the complex quadric which is the Riemann- 
ian product of two complex projective lines and let Li, i= 1, 2 be two closed, har- 
monic minimal curves in CP’. Then the product L= L1 x Lz is a harmonic mini- 
mal, Lagrangian surface which is harmonic unstable in Qz. 

Remark 5.11. We remark that corollary 4.4 implies every compact, minimal, 
Lagrangian submanifold of a KZhler manifold with positive first Chern form is 
harmonic unstable whenever it is defined. 

Remark 5.12. Finally, in view of the results in this article, we propose here the 
following problems: 

Problem 1. Classify the E-minimal and harmonic minimal isotropic submani- 
folds of Cm. 

Problem 2. Classify the stable E-minimal and stable harmonic minimal isotropic 
submanifolds of @ m. 
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