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SUMMARY

Oil exploration requires quantitative determination of structural geometry in
sedimentary basins. This leads to back-and-forth use of geological methods, e.g.
cross-section balancing and geophysical techniques, such as tomography, and the
synthesis becomes tedious, especially in three dimensions. This suggests that they
should be as much as possible quantitatively integrated into a single consistent
framework. For this integration, we propose using inversion techniques, i.e.
multicriteria optimization. We locally model a geological structure as a (geometric)
foliation, the leaves of which represent deposition isochrons. We consider a
geological structure as a set of foliations joined along faults and unconformities. We
propose five kinds of geological data to constrain structural geometry quantitatively:
dip measurements that may be available along wells, developability and smoothness
of deposition isochrons, the directions of fold axes, and layer parallelism. Using
concepts of differential geometry, we formulate these data in terms of least-squares
criteria. To solve the canonical non-uniqueness problem raised by the inversion of
parametric representations of geometrical objects such as foliations (many paramet-
rizations describe the same object), we introduce the additional criterion method
which consists of adding an unphysical objective function to the physical objective
function, so as to make the solution unique. Assuming well trajectories and borehole
correlations to be known, we optimize, with respect to these criteria, several simple
structures comprising one foliation, including a field example.

Key words: differential geometry, inversion, sedimentary basin, structural geology,
tomography, 3-D.

Cross-section balancing techniques (Suppe 1983; Moretti
& Larrere 1989) are now widely used and are known to
improve substantially the quality of seismic interpretations.
More recently, 3-D ‘structure balancing’ techniques have
appeared (Gratier & Guillier 1993).

structural
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tomography. The rise of 3-D seismic imaging induces the
extension of these methods in three dimensions, but their
back-and-forth use becomes very tedious. For this reason,
we think that as much as possible they should be
quantitatively integrated into a single consistent framework,
as geophysical data are sometimes integrated (Lines, Schultz
& Treitel 1988, for instance).

*Now at: Stilog-IST, 163/167 avenue Georges Clémenceau, 92000
Nanterre, France.

Besides, tomographic inversion is an increasingly popular
technique for determining geological structure (Bishop et al.
1985; Farra & Madariaga 1988; Haas & Viallix 1989, for
instance). Geological structures are most often described by
using explicit representations of layer boundaries (z(x, y))
and velocity fields (v(x, y, z)), but other methods related to
CAD techniques have recently appeared and they have
proven to be more powerful for the description of complex
structure. For instance, Pereyra (1988) and Virieux & Farra
(1991) illustrate this tendency by using spline parametric
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surfaces (x(u, v), y(u,v), z(u, v)) or triangulations (Mallet,
Jacquemin & Cheimanoff 1989). Moreover, introducing a
priori information is known to improve the results of
inversion algorithms (Jackson 1979; Tarantola 1987;
Carrion, Jacovitti & Neri 1993), but the origin of this
information is not very clear in practice.

Our thesis is that the so-called a priori information should
be designed to have geological significance (Léger, Morvan
& Rakotoarisoa 1991a) We propose five least-squares
criteria based on geological considerations: dip measure-
ments, developability and smoothness of deposition
isochrons, directions of fold axes and layer parallelism. A
fine description of geological structures is necessary; we use
foliations via their parametric representations to do this.
Using parametric representations raises a canonical
non-uniqueness problem; we solve it in the inversion
procedure.

Choosing the inversion approach as a theme, we first
describe the geometrical modelling technique we use to
describe geological structures (the unknowns). We present a
geological argument that leads to geological quantities
expressed in geometrical terms (the data), and the
relationship between them (the forward problem). Next,
physical objective functions can be derived and minimized
(the inverse problem). Lastly, we describe numerical results
and discuss the respective effects of these criteria on several
examples and one field example.

2 MODELLING GEOLOGICAL
STRUCTURES

Now we define how we model ‘geological structures’. First,
we adopt a geometrical viewpoint related to the
sedimentological nature of the formations involved in oil
exploration. Secondly, we adopt a functional viewpoint
related to the parametric representations that we will use.
Thirdly, we describe how we discretize the geometry of a
structure.

2.1 Geometrical subsurface modelling

Our modelling of geological structures is based on the fact
that all formations of oil interest comprise sedimentary
rocks which may have been eroded, folded or fractured after
deposition.

Since sedimentary basins have a laminated structure on
graded scales, we describe them using the geometrical
concept of foliation. Note that it should not be mistaken for
the geological idea of foliation; indeed, this concept seems
irrelevant for oil exploration situations. For this reason, we
use always the geometrical word foliation in this paper. The
mathematical definition of a foliation is given in Appendix
A. In practice, a foliation ¥ is a set of connected and
disjointed surfaces, called the leaves of the foliation, which
cover a volume M, yielding the foliated domain (M, ).
These surfaces represent sedimentation isochrons. Since this
definition becomes unsuitable when faults and unconfor-
mities occur, because isochrons are not disjointed at such
locations, a geological structure should be defined
geometrically as a set of jointed foliations (Fig. 1).

In the following however, only one foliation is involved.

Physical properties like velocity or density could be

Figure 1. Modelling geological structures. Locally, we model
sedimentary rocks by the geometrical concept of foliation: at each
point, there is one and only one surface, which represents a
deposition isochron. Overall, we model a geological structure as a
finite set of jointed foliations separated by faults and unconfor-
mities. Moreover, physical properties could be assigned to each
point for geophysical purposes.

assigned at each point for geophysical purposes. Since dip is
defined everywhere in a foliation, it would be possible to
introduce the a priori knowledge that physical properties
vary slowly along dip and rapidly across dip. Furthermore,
the principal axes of anisotropic physical properties could be
constrained to be tangent or normal to dip.

2.2 Continuous functional subsurface modelling

The concept of foliation is useful for describing a geological
structure locally, but it is not directly suitable for numerical
uses.

Therefore, we represent foliations locally parametrically.
The idea consists of parametrizing the leaves of the foliation
and the points of each leaf (Fig. 2), and so defining a map ®:

D', u?), e U (R X R)— (x', x*, x3) e M= R,
1)

which is the parametric representation of the foliation
considered. The numbers u' and u?, associated with the leaf
index u?, are the curvilinear coordinates in parameter space
U of a point of foliation (M, %) whose Cartesian coordinates
are (x', x?, x?) in physical space %°. The map ® is assumed
to be a (62-diffeom0rphism, which means that it is one to
one and that ® and @ ' are twice continuously
differentiable.

Let us emphasize that the same foliation (M, ¥) can be
described by an infinity of maps, even if the parameter space
U is specified. Clearly, there are many diffeomorphisms
which conserve as a whole the foliation of U by the squares
(u? = cst) and are not the identity, for instance

vi=[u'+ )32
W', u',ud) e [0, 1P = | v = [+ @??)/2 | [0, 1]
v’ =[u’ + (u?)?]/2
()

By construction, such maps W yield other parametric
representations of the same foliation if composed with one
particular map & (Fig. 3).

Parametric representations have two main advantages and
two main drawbacks as compared with explicit representa-
tions in which x' and u' as well as x* and u? are identified.
The first drawback is that we have to manage three
functions x'=®'(u', u? %), x*=®*(u', u? u*) and x°=
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Figure 2. Parametric representation of a foliation. The curvilinear coordinate u® parametrizes the leaves of %, u' and u” parametrize the points

of a leaf. x', x? and x> are the Cartesian coordinates in physical space.
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Figure 3. There are maps ¥ which map U as a whole on to itself and which conserve as a whole the foliation of U by the squares u* = cst, and
are not identity maps. Consequently, for any parametric representation ® of a foliated domain (M, &), there are other ones, ® o W', that
describe exactly the same foliated domain (same domain M and same foliation ).

@3 (u', u? u®), instead of one that would be x’=
f(x!, x*, u®). The second drawback is that there are many
possible parametric representations of a given foliation.
Thus we have to develop special techniques in order to
avoid ill-posed problems at the inversion step. The first
advantage is the possibility of describing naturally
recumbent folds or salt dome overhangs. The crucial
advantage is that the domain of definition of functions ®',
®? and @’ can remain constant even if the foliation
boundaries move in space. Indeed, using parametric
representations is obligatory if we want to keep constant the
number of discrete unknowns during the inversion process,
since the geometry of the joints between foliations, i.e. faults
and unconformities, is never completely and exactly known
in practice.

2.3 Discrete functional subsurface modelling

Algorithm implementation requires the choice of a finite
space of unknowns. This can be done by using a basis
function decomposition of parametric representation ®

D', u? u’) = 2 p.B,(u', u?, u?). 3)

The functions B, (u', u?, u?) are the basis functions and the
p,, are the unknowns that define a particular foliation. Note
that each p,, is a 3-D vector because the image of U by P is
in %°.

It is convenient to use B-splines tensor-product. The
parameter space U is the product of three intervals of %:
I'=[ul, ul), P=[u>,u3)] and I°=[u}, us], on which
piecewise polynomial basis functions b}(u'), b7(u®) and
b3(u?) are defined. Then the 3-D basis functions are simply

B (u', u?, u®) = bl(u") b}(u®) bi(u?), (4)

so that

(', %% x3) = D', u? u’) = D pyb ! (b7 W)biw?). ()
ijk

That is, using scalar parameters,

x'=@'(u', u? ud) = Ep}jkBijk(u', u?, u?),

ijk

{x?=0%(u', u?, u®) = D, p% By (', W2, u), (6)
ijk

X3 =@, u? ud) =D phBu', u?, uwd).
ijk

Since we choose 1-D cubic basis functions b} (u'), b7(u?)
and b (%), ® will be €2

3 THE GEOLOGICAL DATA

We look at the geometry of sedimentary bodies from several
successive viewpoints. First, sedimentology concerns sedi-
ments at the time of deposition. Secondly, tectonics or
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mechanics gives an insight about their subsequent
deformation. This results in a geometrical viewpoint related
to structures in their present state.

We do not mean that the following assumptions are
always true. For instance, (T1) neglects compaction and
(T2) is clearly not appropriate for salt or shale diapirs.
Moreover, we consider them at the structural scale. Hence
we ignore smaller scale details which are important in
seismic stratigraphy.

3.1 The sedimentological viewpoint
From a sedimentological viewpoint, we assume that:

(S1) deposition isochrons are almost parallel;
(S2) deposition isochrons are almost plane at deposition
time.

From hypothesis (S1), we derive that the deviation from
parallelism at any point in a foliation, which we measure by
the convergence vector T' (see below), is more or less close
to zero. If hypothesis (S2) holds true, the total curvature K
and mean curvature H (see below), are close to zero
everywhere on the leaves of a foliation.

3.2 The tectonic viewpoint

After deposition, sediments may be eroded, faulted or
folded, but we will restrict ourselves to folding in the
following. Because of their densely laminated structure,
sediments can often be folded like a paper-bound book, so
that the length of any curve drawn on a sheet is conserved,
as well as the thickness of the sheets. In addition, the
volume is conserved if the sheets remain in contact. This
behaviour corresponds to the interbedding slip phenome-
non. As a result, the following tectonic hypotheses about
folding are sometimes acceptable (see Lisle (1992) for (T2)):

(T1) the volume of rocks is conserved;

(T2) the length of any curve lying on an isochron is
conserved;

(T3) folding is not intense in the context of oil
exploration;

(T4) the (horizontal projection of the) axis direction of
folds is known; besides,

(T5) dip measurements are often available in wells.

3.3 The geometrical viewpoint

Geometers tell us that, under the above physical
assumptions, the following consequences can be derived.

(G1) If (S1), (T1) and (T2) are verified, then parallelism
is conserved. This result is usually considered as obvious,
referring to the paper-bound book analogy. We demonstrate
it in Appendix B with the weaker assumption of area
conservation instead of length conservation. We also
demonstrate that not only parallelism but also deviation
from parallelism is conserved under assumptions (S1), (T1)
and (T2).

(G2) If (S2) and (T2) are verified, then K =0 at each
point of the structure in its present state. The leaves of such
a foliation are called developable surfaces. Developable
surfaces are cylindrical, conical or generated by the tangent
to some curve in space. By developability we mean the
property of some surfaces to be developable.

(G3) If (S2) and (T3) are verified, then the curvature
matrix C (see below) is close to zero and therefore H =0
since K ~0. The leaves of a foliation such that H =0
everywhere are minimum area surfaces. Strictly speaking, no
geological argument can lead to the conclusion that likely
deposition isochrons should be minimum area surfaces.
However, intensely folded cylindrical surfaces (Fig. 4)
involve high values of mean curvature, and for this reason,
we translate ‘folding is not intense’ as ‘H =~ (’.

(G4) The intersection of a vertical plane that contains the
axis direction and any leaf in the foliation yields a curve that
is almost a straight line (T4). In other words, the axial
curvature X of such a curve is close to zero at each point. A
precise definition of the axial curvature is proposed in the
next section. We do not choose the directions of fold axes as
the data because this direction is undefined at each umbilic
of a leaf of a foliation (an umbilic is a point around which a
surface ‘looks like’ a sphere locally) and because this would
induce severe problems at the optimization step.

(G5) Dip may be represented by the unit vector normal
to the local foliation leaf.

Of course, the above hypotheses are only approximations
to reality: first, because layers are never exactly flat and
parallel after deposition, secondly, because compaction and
internal strain during deformation always occur to some
extent. These assumptions are convenient and powerful so

Figure 4. Cylindrical surfaces, and more generally developable surfaces, have zero total curvature everywhere. However, such surfaces may be
intensely folded and their mean curvature H is large almost everywhere. For this reason, we translate ‘smooth folding’ by ‘H = 0’.



we will use them as much as possible, just as people involved
in cross-section balancing do (Moretti, Triboulet &
Endignoux 1990). We will consider dip measurements,
developability, folding intensity, axial curvature and layer
parallelism as uncertain data: N=N,+ AN, K =0+ AK,
H=0+AH, =0+ AX and I'=0+ AI'. Note that zero
values are not necessary: for instance we could have
I' =T, £ AI" where the convergence vector T, points in the
direction of the regional layer thinning, if any.

The geological data N, K, H, Z and I" will play exactly the
same roles in the subsequent inversion process as picked
traveltimes do in tomography.

4 THE FORWARD PROBLEM

The forward problem consists of evaluating synthetic data
from the unknowns whereas the inverse problem consists of
constraining the unknowns to be such that synthetic and
observed data are as close as possible. In this section, we
present the forward problem in three steps: the intrinsic or
geometrical step, the continuous functional step and the
discrete step.

4.1 The geometrical viewpoint

Assuming foliation parametric representations to be %2-
diffeomorphisms, it is possible to define at each point m
in the foliation (M, %) the plane T,, %, tangent to the local
leaf, i.e. leaf %,, to which point m belongs. Physical space
% is endowed with the standard orientation. Hence, using
the standard scalar product in %°, denoted (, ), we define a
unit normal vector N,,,, which is orthogonal at m to T,, %,,.
This results in a €¢'-differentiable unit vector field N. The
orientation of the vector field N is chosen to be such that it
points in the direction of more recent sediments. From the
orientation of %* and from the orientation of N, the
orientation of each leaf in &% can be derived. We call T# the
field of tangent planes T, %,. Since physical space is
Euclidean, the tangent space T,,M to M at any point m in M
is simply %7 itself (like the fact that the tangent space to a
piece of plane is that plane itself). The map n:m—N,, is
known as the Gauss mapping of the foliation.

The vector field N is the basic tool that will enable us to
define geological synthetic data. Total and mean curvatures
are related to the behaviour of N in directions lying in T%.
Axial curvature X is also related to N. Parallelism is related
to the behaviour of N orthogonally to T%.

We now look at the definition of operator D, which yields
the directional derivative DxY of a vector field Y in the
direction of another vector field X. The value of the vector
field DxY at any point m in M is

O =S x5 e, )

where x!, x? and x> are the Cartesian coordinates related to
the orthonormal basis (e;, e,, €;) and some origin O in %>,
and where X’ and Y are the components of the vector fields
X and Y in this basis. Similarly, the directional function
derivative (-) is defined at any point m by

XK1= (%) ®

ax’
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where X is a € vector field and fis a €' function. It is easy
to show that

(XY, Z)) =(DxY,Z) + (DxZ,Y) ®

for any €° vector field X and any €' vector fields Y and Z.
As a consequence, (DxY,Y)=0if [Y|=1.

Dip. Let us recall that dip is represented by the unit
normal vector field N.

Total curvature. Since |N|| =1, we have

<DXN7 N> :O: <DYN7 N)v (10)

and hence we can write

(o)~ (o oo o)) =)} v

where X and Y are €° orthogonal unit vector fields in T%.
The total curvature is the determinant of the curvature
matrix C (which can be shown to be symmetrical),

K =det (C) = (DN, X}(DyN, Y) — (DxN, Y)°. (12)

The eigenvalues of curvature matrix C are called principal
curvatures and its eigenvectors are called principal
directions.

Mean curvature. The mean curvature H is a function over
(M, &) defined as follows:

H= = race (€)= =3 (DxN.X) + (DN, V), (13)

for any €° orthogonal unit vector fields X and Y in TZ.

Axial curvature. Let A be a €' horizontal unit vector
field that represents the known direction of fold axes in the
area considered. A is expected to vary very slowly in space.
If (e,,e,, e;) is an orthonormal basis in physical space %°,
such that e, is vertical, we can define another €' horizontal
unit vector field B such that B=A Xe;. Next, the
cross-product of B and N yields a €' vector field T=B XN
which lies in T#. The orthogonal projection of T on a
horizontal plane is parallel to A (Fig. 5). Note that the
modulus of T ranges from 0 to 1. We have |T,,|| =1 at m in
(M, ) ifand only if B,, € T,,%,,, and ||T,,,|| =0 if and only
if A, eT,,%,. Finally, we define the axial curvature X in
the direction A as

3 =(D;N, T). (14)

Convergence vector. We introduce the convergence
vector field T as the directional derivative of N in its own
direction, which yields a €° vector field,

I'=DuN. (15)

The convergence vector at point m in (M, %) is the value r,,
of I' at that point (Fig. 6). We call the quantity ||T',,|| the
convergence. T lies in T# since |[N|| =1 and T" = DyN.

We denote by a parallel foliation a foliation % such that
the convergence vector field I' is zero over M. This means
that the field lines of vector field N are straight lines. For
this reason, we use I' to measure deviation from parallelism.
This definition of a parallel foliation is compatible with the
usual definition of two parallel surfaces which are such that
any straight line orthogonal to one is also orthogonal to the
other. Indeed, a parallel foliation is such that any two leaves
of it are parallel and the converse also holds.
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Figure 5. We define axial curvature X as (DN, T) where N is the unit vector field normal to the local leaf, T=BAN and B = A Ane;. Unit
vector field A is the known axis direction of folds in the horizontal plane defined by e, and e,.

Figure 6. Convergence vector field I' is the normal derivative DyN
of the unit vector field N normal to the local leaf. It measures the
deviation from parallelism at any point of a foliation since by
definition T' = 0 is equivalent to local parallelism. The L? norm of I'
results in a parallelism criterion.

4.2 The functional viewpoint

In the previous section the quantities N, K, H, X and I" were
defined at each point of the foliation (M, ¥) in physical
space. Now we express them as mappings of curvilinear
coordinates in U.

Dip. The functional expression for dip is

od oD
ol (u) X P (u)
No®(u) = (16)

122 @ x 2% w)|

where N o ®(u) = N(®(u)) denotes unit normal N.
Total curvature. It can be shown (Spivak 1979, Vol. I)

that

PN — M
Kod= m 5 17)
where

9D
:<<37>2’N°q”

ERC
Nt NP 4%
_< ERO) N <1>>
(ou?)?’ ’
and where
pa(ID00) (0 00y (00 oy
au' ou'l’ aut’ ou?l’ ou?’ ou?l’

Mean curvature. Similarly, the mean curvature H o ® can
be evaluated as follows:
<G + NE = 2MF
Hod = (20)
2(EG — F7)
Axial curvature. The expression for the axial curvature
Zodis
(DN, T)) e @ =((DyN) ° @, T > D) (21a)
={((DgxnN) ° @, B x N o @) (21b)
=(Daa)-pxn-oN ° P, (B X N) o ©), (21c)
where T=B XN and B =A Xe;. Note that D represents
the directional derivative in the curvilinear space in eq. (21c)
whereas it represents the directional derivative in the
physical space in eqgs (21a) and (21b).
Convergence vector. From the definition of the conver-
gence vector, we obtain

I'o®=(DyN) > D, (22)
and finally
I'e® =D g)inaNe°P. (23)

Note that D represents the directional derivative in the
curvilinear space in eq. (23) whereas D represents the
directional derivative in the physical space in eq. (22).

4.3 The discrete viewpoint

Connecting the previous expressions for synthetic data N, K,
H, = and I, which involve a parametrization ®, and the
discrete expression of @, stated in Section 2.3, yields the



discrete expression of these data. Note that this discretiza-
tion refers to the parameter space, the space of the
unknowns, i.e. these data depend on a finite number of
spline coefficients. In the next section, another discretization
will involve the data space, i.e. we will consider these data at
a finite number of points.

5 THE GEOLOGICAL CRITERIA

We wish to find out the foliation (M, &) such that the vector
or scalar fields N, K, H, Z and I are as close as possible to
the available data Ny, K, =0, H,=0, 2,=0 and I'y=0. To
do this, we choose norms |||, I*llx, 'l IIlls and |I-[Ip
that will measure the distance between synthetic and
available data.

5.1 The geometrical viewpoint

Dip, total curvature, mean curvature, axial curvature and
parallelism least-squares criteria will consist in the
minimization of a squared norm on the fields N—N,, K, H,
Sand I'.

OnNF —lj N —N,|I% dM,
N(J’)_z MN” —Nolln N>
1 2

0 =3 [ IKIaM,
0u(#) =5 [ 11 am e
H 2 o H ’

el >
0.#)=3 | 1=z am,

1
0n(P) :EJM L1 dM.

In the first equation, My is the set of points in M where
dip measurements N, are available (usually a set of wells),
and the norm ||-| refers to the vector space T,,M = R for
any m in My. These objective functions are dimensionless.

In what follows, we use * instead of N, K, H, 2 and I' in
order to simplify the notation.

5.2 The functional viewpoint

If a foliation (M, %) is defined by a parametric
representation @, it is possible to evaluate the geological
objective functions in terms of ® by a straightforward
change of variable,

1
0,(®)=> fU % B gl dU. 25)

In these equations, [Jg| is the Jacobian of ®, and * o ®
represents quantity * at point ®(u) as a function of the
vector of the curvilinear coordinates u= (u', u? u>). The
objective function related to dip is

Ox®) =3 [ IN-NIR| 3

e dUy, (26)

where Uy is @ '(My). Since My is a set of curves
representing wells, and since Uy is a set of lines
(u'=uy, u”=uy) for each well W, iel[l,Ny], the
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du’

Jacobian term due to the change of variable is
instead of |Jg).

5.3 The discrete viewpoint

Objective functions Q,(P) are computed by approximating
the integrals by sums,

1

0,(®)=5 2 I* ° @) Na(w)dU, 27)
ueGp

where G, is a regular grid of points 4 in U and dU is the

volume of a cell in G, in which each grid node is centred.

More precisely, the curvilinear coordinates of the nodes of

Gp are

! , 2i—1
u;,=u,,+ 1
2N,

(upg = 14,,),
(28)
1e{l,2, 3}

. /
1 =i=Np;

where N, is the number of gridpoints in direction u’.
Besides, we discretize set My using a grid G which does
not need to be a subset of G,. Hence, the objective function
On becomes

5| dUn. (29)

do
3

1
On(®@) ~= 2 IN-NolIX

As a result, the discrete data space is a vector space, each
component of which is one of the three components of N o ®
at one of the N nodes of grid GB, or the values of K o ®,
Ho® and X o ® at the nodes of Gp, or one of the three
components of I' o @ at one of the N,, = N,N5N3, nodes of
grid G,,. Calling these discrete spaces Dy, Dy, Dy, Dy and
Dy, we define the overall physical data space as

D, =DnX Dy X Dy X Dy X Dy. (30)

The dimension of D, is then N, = 3NT + 6N,

For optimization purposes, we compute the Jacobian
matrices J (p) such that &d,=J, (p)op, where dp is a
parameter perturbation around p, and éd, the correspond-
ing perturbation in data space D,. Hence, the overall
Jacobian matrix can be written

J¢ = Ii> dprs Is, Jr)l- (31)

This matrix has N_ rows and Np columns.

5.4 The uncertainties

Norms |||, should account for the uncertainties about the
* quantities as evaluated by geostatistical studies in the
basin considered, for instance. However, to our knowledge,
such results are not yet available. Hence, we simply define
these norms as weighted L® norms so that the overall
physical objective function Q, is

0,=20,=2C0,, (32)

where C,_ is the weighting coefficient related to the
uncertainties about *. These coefficients could be related to
the variance 01 of * and to the correlation lengths Ay and
A.r in the orthogonal and tangent directions respectively,
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C,=(02A NAop) ™', See Tarantola (1987) for the
relationship between the choice of a norm and the
corresponding covariance model.

6 WELL DATA

Besides uncertain distributed geological data, accurate
borehole correlations are often available. In the following,
well trajectories are assumed to cross each leaf of the
foliation once and only once. Wells may be slanted. We
describe here how we formulate this information. Moreover,
in some of the subsequent numerical experiments, we need
the assumption of a completely and exactly known surface in
the foliation, and we also describe here its formulation since
it is similar to that we use for well data.

Without loss of generality, we assign constant u},, and u3,
values to the first and second curvilinear coordinates of all
the points of every well W,, and we choose the foliation’s
third curvilinear coordinate u* to parametrize all the curves
representing wells. The information related to the well W, is
then formulated as

Yu e {uy,} X {u} X [uy,, ungls ®(u) = Oy(n), (33)

where @, is some given parametric representation of the
foliation.

Some of our numerical experiments need the location and
shape of a leaf of % to be exactly known. If this leaf is
defined by ul= uf), we formualte this information as follows:

Vu € [u,, up] X [ug, up] X ugh  ®(u) = o), (34)

We discretize the equality constraints of eq. (33) by
applying them to N} points regularly located between points
(ulwi, u%‘,,, u?) and (u{,vi, uﬁ,’_, u3,), where N3, is the number
of spline coefficients in the u® direction. We discretize
equality constraints of eq. (34) similarly by using NLNZ

points whose curvilinear coordinates u' (resp. u?) are
regularly located between u), and u}, (resp. u2, and u3,).
Since these equality constraints should be linearly
independent, we remove the closest point to the given leaf
for each well, so that the total number of constraints is
Ne=NpN%+ Ny, (N3 —1). Using eq. (6), we obtain the
following system of equality constraints

Cp=e, (35)

where p denotes the vector of all the parameters and e the
vector of all the given point coordinates.

7 THE INVERSE PROBLEM

As stated earlier, a foliation (as well as a curve or a surface)
can be described by an infinite number of parametric
representations, and the physical objective function Q,,
which we have to minimize under constraints, is primarily
defined on foliations and secondarily on parametric
representations. Consequently, Q,, will have the same value
for all the parametric representations that describe the same
foliation, and the inverse problem will be ill posed in terms
of parametric representations even if it is well posed in
terms of foliations.

To solve this problem, we propose a method, the
additional criterion method, which is illustrated in Fig. 7, and
presented in Appendix C from a mathematical viewpoint.
This method is expected to meet two basic requirements
(Léger, Morvan & Rakotoarisoa 1991b).

(1) To make the inversion problem as well posed in terms
of parametric representations as it is in terms of foliations.
(2) To keep the physical problem unchanged.

Therefore, we design it in two steps.

(1) Definition of an additional objective function Q, that

Figure 7. The additional criterion method for surfaces. We consider the space % of all parametrizations of all surfaces. Since many
parametrizations represent the same surface (for instance, ¢, and ¢, both describe S;), we may assume for simplicity that these subsets of % of
parametrizations representing the same surface are the leaves of a foliation. Any physical objective function Q, will be constant on each leaf of
that foliation since data are defined on a surface. Therefore, the inverse problem is ill posed in terms of parametrizations, even if a single
surface minimizes Q. To make it well posed, we introduce an additional objective function Q, (contours in dashed lines), but parametrization
@3, which minimizes Q, + Q,, will generally not represent surface S;, which minimizes Q. For this reason, we project gradient G, of function
Q, on the tangent space to the local leaf, we use projected gradient G in the optimization process and we find parametrization ¢,. This
method would work similarly for curves and we use it for foliations in this paper.



meets the first requirement by addition to the physical
criterion Q..

(2) Its modification so as to obtain an unphysical
objective function QF that meets both requirements by
addition to Q..

Since it is related to the Gauss—-Newton optimization
procedure, we will first recall briefly how this procedure
works.

7.1 The Gauss—Newton procedure

The standard Gauss—Newton method consists of solving the
linearized and discretized problem iteratively,

JiJ,op=—Jiad,, (36)

under the equality contains Cp = e, where 8p is the model
modification vector, 8d, is the physical data misfit, J, the
Jacobian matrix of d_(p) around the current model, with '
denoting transpose.

This problem cannot be solved since there are degrees of
freedom in the parameter space that cannot be determined
by physical data, despite the equality constraints, because of
the multiplicity of the parametric representations for one
foliation. For this reason, we now introduce an additional
criterion so as to obtain a well-posed problem in terms of
parametric representations.

7.2 The additional objective function Q_
At the first step of the method, we define additional data

24
aijk_ P

ol ou*

(w), (37)

where @'(u) is the ith Cartesian coordinate of the point
whose curvilinear coordinates are u= (u', u?, u?). For each
vector u, quantities @”’*(u) build an 18-component vector
a(u) that represents the ‘synthetic data’ in the inversion
context (18 using symmetries, 27 otherwise). Next we define
the ‘observed data’ as a(u) =0 for any u in U. Choosing a
L? norm on the vector field @ — &, = a yields the additional
objective function

1
0.@=3 [ jal2av, (38)

where |||, = C,|I*|| > The numerical value of C,, is chosen
to avoid problems related to the limited precision of
computers. The practical effect of minimizing Q_(®) is to
smooth out the mesh associated with @ on the foliation
(M, ¥) it represents.

7.3 Physical and unphysical parameters

At the second step of the method, we need to modify Q_(P)
to keep it from having any physical significance, since the
foliation described by the parametrization that minimizes
Q,(®) could be different from the foliation described by the
parametrization that minimizes Q ,(®) + Q,,(®P). To do this,
we distinguish which parameters are unphysical and which
parameters are physical.

Unphysical parameters correspond to perturbations of a
parametric representation such that points are moved
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(b)

Figure 8. Physical and unphysical perturbations. (a) If a point is
moved but remains on the same leaf of a foliation, this foliation is
unchanged despite its modified parametric representation (dashed
lines). Purely physical perturbations of a point are orthogonal to the
local leaf (dotted lines). (b) Some combinations of physical
perturbations may be unphysical since they conserve the foliation.
They correspond to a change of variable on the curvilinear
coordinate that parametrizes the foliation leaves.

tangentially to the local leaf. Conversely, physical
parameters correspond to perturbations such that points are
moved transversally to the local leaf (Fig. 8a). However,
some combinations of physical parameters may be
unphysical. This happens if all the points of a leaf in a
foliation are moved to another single leaf (Fig. 8b). The
situation is somewhat different at the boundaries of a
foliation since the local leaf may no longer be the only
physically significant surface. At these locations, unphysical
parameters correspond to perturbations that lie at the
intersection of the tangent planes to all physically significant
surfaces, which may be the local leaf (deposition isochron)
or a piece of the foliation’s boundary (fault or unconformity
in practice). In Fig. 9, the black (white) arrows span the
vector space of the unphysical (physical) perturbations at
several kinds of points.

7.4 The modified Gauss—Newton procedure

This distinction between physical and unphysical perturba-
tions can be transposed to the parameter space via the
following change of variables.

First, we choose a grid of points G, in U such that the set
of the Cartesian coordinates of grid ®(Gp) in (M, F) is
equivalent to vector p of the discrete parameters, i.e. spline
coefficients.

Gp= {(ul, W wd)ul eul, .., u’)V,,,},

(39)

i i i iy I 1
uj=um<+-(u,‘,,—um)N»_1 ;

pi
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physical :
erturbation
unphysical > :

Figure 9. Unphysical perturbations (black arrows) are tangent to all physically significant surfaces. At points A and B, the only physically
significant surface is the local leaf. At C, another one is the face, which may represent a fault. At D, all perturbations are physical (white

arrows).

Secondly, we attribute a specific base (g, €, €5) to each
of the nodes of grid ®(Gj) such that
B (acpl P> 99’

- - —— | ie{l,2},e5=¢, X&,. 40
au'’ ou' 8u‘> el O uaXe (#0)

i

The set of the coordinates of grid ®(Gp) nodes related to
the frames (O, €,, €,, £5) builds a vector q such that q = Lp.
This results in a new Jacobian matrix

Jog=dJo L. (41)

Keeping the additional criterion from having any physical
significance now simply consists of zeroing the columns of
J., that are related to physical parameters, using a
projection matrix P:

B =J, L "-P. (42)

Coming back to the spline coefficient space, the projected
Jacobian matrix becomes

J=J, L7 -P-L, (43)
and the modified linearized problem then becomes
W J, + (R)Ih]6p =J,8d, + (J5)'ad,,. (44)

Appendix C demonstrates that the modified gradient
GP =JP(p)-6d, of the objective function Q, is the
gradient of some objective function QP that we call an
unphysical objective function. We also demonstrate that the
optimization of a foliation for Q, is equivalent to the
optimization of a parametric representation for O, + Q%. In
addition, Appendix D shows two numerical inversion results
that illustrate the necessity of the projection step in the
additional criterion method.

Note that we never computed the objective function
Q, + Q% which we minimized.

This method has been designed and can be implemented
completely independently of the physical criteria and in
harmony with the Gauss—Newton procedure.

7.5 Optimization with constraints

The linearized problem with constraints is solved by using
the Lagrange multipliers technique. The linear system which

is actually solved is the following:

(J‘J c‘>(8p>_<J‘8d> 45

C 0/\a e /’ ()
_(Je _(dd, )

where J = (J;;>’ od= (éda> and where A is the vector of

the Lagrange multipliers. Besides, a linear search is carried
out with a user-supplied reduction factor 8. That is, if sp®*
is the model modification resulting from the linearized
problem at the kth iteration, we define the next current
model as: p* ! =p® + gsp®).

7.6 Uncertainty analysis

After convergence has been reached, an uncertainty analysis
may be carried out. For a least-squares problem without
constraints such that the map p—d=f(p) is linear, the
solution p equals the mathematical expectation P of the a
posteriori Gaussian probability density function in the
parameter space, and the covariance matrix is C, = (J'J) ™"
according to the above notation. If map f is not linear, the
Gaussian property in the parameter space becomes an
approximation, and the second derivatives of map f should
appear in the expression for C, (see Tarantola (1987) p. 194
for details). We consider the linearized problem in the
following.

If a foliation is moved in space, all objective functions
remain the same, including the additional one. Conse-
quently, matrix J'J is not invertible, and equality constraints
Cp =e (well data) need to be taken into account. Let us
consider a perturbation p =p — p in parameter space such
that Cop = 0; then Cp = e since Cp = e. Matrix C (resp. 5p)
can be split into C, and C, (resp. 6p, and 8p,) such that
C,8p, + C,8p, =0 and such that C, is invertible. Therefore:

op, Id
()= o=
p 5[)2 _c; lc1 pl Aapla (46)

where 8p, corresponds to the unconstrained parameters.
Similarly, we split the Jacobian matrix J into J; and J,:

. 8d=J,8p, +J,8p, = (J; - J,C, 'C,)dp;. (47)



Then, the Hessian matrix
H=( -~ J2CZ_101)[(J1 —J,C; lcl) (48)

of the overall objective function is invertible in the
unconstrained parameter subspace, which yields covariance
matrix C, = H; . From eq. (46), we derive covariance matrix
C, in the overall parameter space: C,= AC,A". Using p and
C,, any vector quantity Q = LP can be estimated (P is the
random vector variable of the parameters and L is a matrix):
q=Lp; C,= LCPL‘. (49)
For instance, vector Q may correspond to the Cartesian
coordinates of a point in a foliation. Then matrix' C, is 3 X 3
and the points q+ VA, V, represent the three error bars,
where A, (resp. V,) are the eigenvalues (resp. eigenvectors)
of C,.

By referring to Section 7.3, we may expect that two such
error bars will lie in the tangent plane and will be controlled
by the weight C, of the additional criterion, whereas the
third error bar will be orthogonal to the tangent plane and
will be controlled by the weights C, of the physical criteria
and the well constraints. We will check this in the next
section.

8 NUMERICAL RESULTS

We now give several examples of inversion which use the
above geological criteria. These results might seem
unrealistic since they involve only one foliation, whereas
geological structures are generally made of several, but this
complexity is beyond the scope of this paper and is left to
the future.

First, we give simple examples in which one leaf of the
foliation and two wells are assumed to be known, and we
discuss what the effect of the geological criteria is. Next, we
give more realistic examples involving no given foliation
leaf. ‘

8.1 The effect of the geological criteria

We now give four examples in which two wells are available
and the top surface of the foliation is given.

8.1.1 Description of the problem

The problem consists of finding one foliation & that is
subject to the following constraints:

(1) the foliation minimizes the physical criterion Q..

(2) two vertical wells are given and they cross all the
leaves of & once and only once at known points. No dip is
known except when stated otherwise;

(3) the top leaf of the foliation is known;

(4) the lateral faces of & (those that are not the upper or
lower leaf) have no particular location or shape.

Conditions (1) and (2) have a clear physical meaning and
they are relevant to oil-exploration situations. Condition (3)
does not correspond to realistic situations because a
geological interface is never completely and exactly known
in practice. Since we do not yet have any geological or
geophysical criteria that could constrain the shape of a fault
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or of an unconformity, the lateral faces of the foliation are
arbitrarily constrained by using the additional criterion. This
is the meaning of ‘condition’ (4). Nevertheless, all these
conditions are necessary for us to have a simple, stand-alone
and well-posed problem. Condition (3), especially, is
necessary because, for instance, well data and parallelism
are compatible with many foliations. In realistic situations,
this condition is replaced by a regularity criterion which
leads to a well-posed problem if at least three non-aligned
boreholes are given. It may be also replaced by Kriging.

The discretization parameters are Np=10, N7=6,
N3=4 in the parameter space and N =18, N7, =10,
N3,=6 in each scalar data space. This results in 720
parameters and 25920 scalar data for all the criteria
including the unphysical one. Conditions (2) and (3) result
in 108 equality constraints. Computing time per iteration is
about 20 min for all criteria on a Cray YMP computer.
Convergence is usually achieved within three to five
iterations.

8.1.2 Effect of parallelism criterion

Figure 10 shows the result of the inversion with Q= Oy
and Cp-=1. The borehole correlations are such that no
exactly parallel foliation can meet well constraints. Foliation
leaves are sharply curved in the vicinity of each well, thus
showing a ‘cone-effect’.

8.1.3 Effect of developability criterion

Figure 11 shows the inversion result with Q= O + QO and
Cr-=1 and C, =200. As expected, foliation leaves are quite
developable and even cylindrical in this case. This picture
shows three parts. Between wells, the surfaces are almost
plane but they are slanted and converge to the right. On
both sides, however, the foliation is quite parallel and
horizontal. This results in a ‘dihedral-effect’, i.e. a fold en
chevron, which is visible in the vicinity of each well.

8.1.4 Effect of smoothness criterion

Figure 12 shows the inversion result with Q= QO+ Q +
Q4 and Cr=1, Cx=1 and C,=1. As expected, the
foliation leaves are smoothed, so that well locations are not
obvious from just looking at the shape of the surfaces.
Figure 13 is similar to the previous figure but the
curvature criteria are heavily weighted. As a result, foliation
leaves are almost plane. A careful examination of the result
shows that the structure is the superposition of a weak
anticline and a weak syncline. We interpret the anticline as
the effect of the parallelism criterion, which tries to make
the convergence vector a constant over all the foliation. The
syncline is due to the mean curvature criterion, which tries
to make each surface as curved in any direction as it is in the
orthogonal direction on the other side of the surface. The
total curvature criterion should then make all the surfaces
plane but it seems to fail to do so, despite the fact that it is
highly weighted and that planes are the only surfaces such
that K = H =0 everywhere. We explain this fact as follows.
Since K is the determinant of curvature matrix C, we can
write K =c, ¢, where ¢; and ¢, are principal curvatures.
Therefore, differentiating K gives dK =c; *dc, +dc, - c,,
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and we notice that dK =0 if ¢, = ¢, =0, which is exactly the
case for planes. Hence, no first-order perturbation of a plane
will have any first-order effect on K, that is, Jx=0.
Therefore, the effect of the total curvature criterion vanishes
for planes since the Hessian matrix Hg = (Jx)'Jx as well as
the gradient G = (Jx)'8d both become zero.

8.1.5 Effect of axial curvature

In this example, the top surface is not assumed to be known.
Moreover, four wells are given instead of two as in the
previous examples. One point is given at the centre of the
top surface. This corresponds to 51 equality constraints.

As stated before, the total curvature objective function is
strongly non-quadratic. As a result, local minima may be
expected. Figs 14 and 15 illustrate this possibility since the
well constraints and the physical criterion Q, to be
optimized are exactly the same in both cases. It appears that
introducing the total curvature criterion consists of saying
‘there are well-shaped folds’, i.e. ‘extensive dip measure-
ments in the foliation make a thin line on a stereographic
chart’. Figs 14 and 15 demonstrate that several directions of
folds are sometimes possible. Since the direction of fold axes
is usually known in practice, only one is likely. The axial
curvature criterion enables the right one to be chosen. Using
the model shown in Fig. 14 as the initial model, the result
shown in Fig. 15 can be obtained within five iterations by
optimizing Q, = Qr + Qx + O + O and the proper axis
direction in Q. Similarly, Fig. 14 can be obtained from Fig.
15.

This demonstrates that using the fold axis direction
criterion substantially reduces the problem of local minima.

8.1.6 Effect of dip

Common sense suggests, and numerical results confirm, that
the introduction of dip information can improve the
estimate of the structure, especially if only a few wells are
available. Fig. 16 shows the result of the same inversion as
Fig. 12, but dip measurements have been added along the
two wells. The angle between dip and the plane of the
boreholes is 45 degrees.

8.1.7 Summary

Table 1 sums up the effect of the geological criteria. It gives
the value of the unweighted objective functions Q’;z as a
function of the weighting coefficients C,. To be clearer, we
also give the values of Ry.=(|[|?72 Rx=(K> i
Ry = (H?™% and Rs= 375 ) denoting the average
over the entire foliation. Fig. 17 illustrates the significance of
these various radii of curvature. Table 1 also gives the value
of @=2arctan [((|N—Ny[?"?/2] in degrees. This angle
measures the discrepancy between the given dip N, and the
corresponding dip of the optimal foliation.

8.2 More realistic examples

8.2.1 A weakly folded structure

Figure 18 shows the result of an inversion in which five wells
and the direction of fold axes are given, and Q,=

Table 1. For each of Figs 10-14 and Fig. 16, this table gives the
values of the weighting coefficients C, and the values of the
unweighted objective functions Qiz after the last iteration. The
values of ka'z can be interpreted in terms of several kinds of
lengths R, which are defined in the text and illustrated in Fig.
17.

Fig. 10 11 12 13 14 16
Cn — — - —  — 100
Ck(m) 0O 200 1 70 50 1
Cy(m') O 0 1 50 1 1
Cs(m') 0 0 0 0 1 0
Cr (m™) 1 1 1 1 1
%Vz - — = — — .0083
QY (m') .42 .000021 .024 .0022 .080 .021
Q% (m) 87 3.9 14 .010 24. .41
QY (m) 13 0034 20 065 .29 18
QF (m) 37 58 50 10. .96 88
G — — - = = 21
Rk (m) 7.0 84. 14. 27. 15, 15
Ry (m) 11, 16. 28. 330. 52. 52
Ry (m) 9.1 580. 23.  41. 24 24
Rr (m)  17. 14. 5. 10. 11, 11
Niter 5 6 5 6 8 5

Ok + 0y +0s+ QO is optimized with C, =50, C,, =1, -
Cs =1 (given axis direction visible on top) and C-=1. No
dip is known. One well is deviated. An anticlinal trap is
visible on the top surface.

8.2.2 A sharply folded structure

It is possible to recover a salt dome flank with reverse dips,
a rim syncline and a turtleback structure with only four wells
(Fig. 19). Dips are available along them. The choice of an
initial model with horizontal layers illustrates the fact that it
may not be close to the solution. On the other hand, the
algorithm converged after 12 iterations, due to the strong
non-linearity of the problem.

8.2.3 A field example

Figure 20 displays part of a map compiled by Bodou et al.
(1975) of an anticline outcropping on a rocky short. We
tried to recover it by using only a portion of available data,
keeping the rest for checking the result. Fig. 21 shows a
perspective view of the computed structure. The cross-
section (left of Fig. 20) shows good agreement between
computed dips (italics) and given dips (regular), except at its
ends. At point A, we explain the discrepancy by a lower
scale fold which is visible at (x = 100, y = 65) and smoothed
by the inversion. At point B, the origin of the discrepancy is
less clear, although a fault is known to exist along this flank
of the fold.



Figure 10. Parallelism criterion is optimized. ‘Cone effects’ are . Figure 11. Parallelism and total curvature criteria are optimized.
visible near the wells. Foliation leaves become almost cylindrical but ‘dihedral effects’ are
visible near the wells.

Figure 12. Owing to the mean curvature criterion, foliation leaves Figure 13. If heavily weighted, the total and mean curvature criteria
become smooth. make the foliation leaves almost plane.

Figure 14. The axial curvature criterion can be used to choose the Figure 15. With another axis direction, this model can be obtained
axis direction of folds if several solutions are possible (Figs 14 and from Fig. 14 as the initial model.
15 show distinct local minima).



Figure 16. This result is similar to that in Fig. 12 but dips are Figure 18. Five wells and geological criteria may yield a plausible
introduced along wells. structure. One well is deviated.

Figure 19. Four wells and dip logs yield this salt dome flank, rim Figure 21. Perspective view of the computed anticline behind the
syncline and turtleback structure within 12 iterations from a (x =40) vertical plane.
horizontal initial model.

s
I

Figure DI1. This foliation results from the optimization of a Figure D2. Same as Fig. D1, but the projection step has been
parallelism criterion, including the projection step (initial model ‘forgotten’. The result is obviously not satisfactory (initial model
shown in Fig. D2). shown in Fig. D1).
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Figure 17. Significance of the various radii of curvature Ry (a), R;; (b), Rx (c) and Ry (d) for simply shaped foliations.
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Figure 20. Map of a 100 m scale anticline outcropping on a rocky shore in Spain (after Bodou et al. 1975). We used position data via equality
constraints and dip data via least-squares criteria. Cross-section A-B illustrates the match between the computed structure and data

(roman = measured dips, italics = computed dips).

8.3 A posteriori study

We used the model shown in Fig. 12 (with only 360
parameters) in order to check the uncoupling between the
physical criteria and the unphysical one. Using the method
described in Section 7, we have computed the error bars at
32 points in the foliation.

Figure 22 shows, as a function of weight C, assigned to
the unphysical criterion, the histogram of the normalized
values of the squared length of these error bars, i.e.
variances. Normalization consists of dividing each variance
by its value for C, = 100. Consequently, the influence of C,

is enhanced visually, since the variability of the variances for
the position of the different points is removed. There are
five classes per order of magnitude. Fig. 22 clearly
demonstrates that there is a wide range of values for C,
such that, first, the normal variances are constant, and
second, the tangent variances are proportional to C_'.
Moreover, Fig. 23 shows the independence between the
optimal value of the physical cost functions and C, for a
wide range of its value. These numerical results confirm the
theory stated in Appendix C and assess the superiority of
our additional criterion technique over standard regulariza-
tions. Indeed, minimizing Q.+ &£Q,, with the smallest
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log[k;; (Co)]

Figure 22. Since the three Cartesian coordinates x, y, z of a point depend on curvilinear coordinates, a 3 X 3 covariance matrix represents the
uncertainties about the position of that point. V;(C,) is the jth eigenvalue of that matrix at the ith point. Since the weight C, of the unphysical
criterion should have no influence on the physical solution, k,;(C,) = V;{(C,)/V;;(100) should equal 1 for all physical variances which are related
to orthogonal error bars. On the other hand, k;(C,) should be proportional to C.! for unphysical variances, which are related to tangential
error bars. The histograms of normalized variances k;(C,) for 32 points show that this is true for a wide range of values of C,. This
demonstrates that the physical problem is not disturbed by the unphysical criterion.
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Figure 23. For a large range in C,, the physical objective functions have the same optimal values, whatever the value of the weight C, may be.

possible ¢, leads to the following dilemma: the linear system
is ill conditioned if ¢ is negligible, whereas the original
physical problem is altered if it is not.

9 CONCLUSIONS

The geometrical concept of foliation is suitable to make a
local description of geological structures in sedimentary
basins. It leads to a simple and reliable definition of
parallelism and deviation from parallelism. Moreover, it
would be easy to correlate the shape of the velocity or
density heterogeneities with the trend of local dip since dip
is defined everywhere in a foliation. The description of
foliations via parametric representations should make it
possible to consider faults and unconformities as unknown
surfaces, just as deposition isochrons are.

Simple but quantitative geological information can be

translated into geometrical terms. Indeed, differential
geometry turns out to yield many valuable ways of
examining geometrical aspects of geological structures: we
demonstrate that constant bed length and volume folding
conserves layer parallelism, which is well known, and also
deviation from parallelism, which seems to be a new result.
Dip measurements, which are often available in wells,
yield the unit vector normal to the local leaf of the
foliation. Fold developability is the nullity of the total
curvature, which measures to what extent folds are ‘well
shaped’, at any point of any leaf of the foliation. Fold
smoothness is the nullity of the mean curvature. Knowing
the fold axis direction for developable folds implies the
nullity of the axial curvature, which measures to what extent
folds are properly oriented. Finally, layer parallelism is the
nullity, over all the foliation considered, of the convergence
vector, which points in the direction of layer thinning.



Since this information is only an approximation to reality,
a least-squares formulation is suitable for taking uncer-
tainties into account. The optimization of the geological
structure with respect to these criteria yields satisfactory
results if the corresponding objective functions are properly
weighted. Accurate borehole correlations, which are often
available in practice, can be handled via equality constraints.

The inversion problem is always ill posed in terms of
parametric representations because of their multiplicity for
one foliation. To overcome this difficulty, we propose a
general method that works in two steps. First a least-squares
criterion smoothes out the mesh associated with parametric
representation. Secondly, it is modified so that the physical
inverse problem is unchanged. This method can be
implemented in harmony with the standard Gauss—Newton
optimization procedure.

We plan to improve this toolkit of geological least-squares
criteria by adding other criteria that would constrain the
shape of the faults. We will have to join several foliations so
as to obtain more realistic and complex geological
structures. This research is a contribution towards the partial
but quantitative integration of geology and geophysics via
multicriteria optimization methods.
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APPENDIX A: DEFINITION OF A
(GEOMETRICAL) FOLIATION

Since geometers define foliations as a set of connected and
disjointed submanifolds covering a manifold, we first review
the definition of finite dimensional manifolds and sub-
manifolds (see Spivak (1979), Vol. 1, for further details).

An n-dimensional manifold M is a set on which a family
of charts {0, ¥;, U},_, is defined. The O, are subsets of M
and cover it (Fig. Al). The U; are open subsets of the
normed vector space R", and the W; are homeomorphisms
(bicontinuous one-to-one mappings). Moreover, for any i
and j, map ¥, e W; ' is a homeomorphism.

In addition, if all the W;o lIf,-_l maps are €*-
diffeomorphisms (a one-to-one mapping which is 6*-
differentiable as well as its inverse), with k =1, then M is an
n-dimensional, €*-differentiable manifold, or, for short, a
(€*, n)-manifold. Moreover, an n-dimensional tangent
vector space T,,M can be defined at each point m in M.

A (€%, p)-submanifold S of a (€%, n)-manifold M is a
subset of M such that, at any point m of S, there exists a
chart (O, ¥,, U,) of M such that m € O, and ¥, (SN O,) =
U,NF, where F is a p-dimensional vector subspace of "
(Fig. A2). The integer p is the dimension of S and n —p is
the codimension of S in M. In %> considered as a manifold,
a (%*, 1)-submanifold is a curve and a (%*, 2)-submanifold
is a surface.

A foliated manifold (M, %) is a (€, n)-manifold M which
is covered by a family #={%,},., of connected and
disjointed (%, p)-submanifolds such that, at any point m in
M, there exists a chart (O;, ¥,, U;) and a in A such that
me%,N0;,and ¥, (Z,NO;)=U,NF,, where F, is defined
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Figure A2. A submanifold is a subset of a manifold, which is also a manifold. Typically, curves and surfaces are submanifolds of the physical

space.
by the n —p equations (u?™'=cst(a); ...; ul=cst (a)),
with (u/,...,u!) being a coordinate system in U,. The %,

are called the leaves of the foliation % =1{<%,},_, (Fig. A3).
Foliation % is said to be p-dimensional if p is the dimension
of its leaves.

In the context of geological modelling in sedimentary
basins, we use these concepts as follows.

Euclidean physical space may be viewed as a (€7, 3)-
manifold, simply by using the identity in %> as a chart. The
choice of an orthonormal frame results in a Cartesian
coordinate system (x', x, x*) in physical space.

A piece M of a geological structure, in which no fault or
unconformity occurs, is considered as a (€%, 3)-submanifold
in the physical space. We assume that M can be described by
only one chart (M, W, U), the inverse of which is viewed as
a parametric representation (U, ® =W~™', M). ® maps any

A u? \Pi

u =cst

point whose curvilinear coordinates are (ul, u?, u? ) in U into
a point with Cartesian coordinates (x', x% x*) in physical
space, so that M = ®(U). At each point m in M the tangent
space T,,M is isometric to physical space %°.

Such a piece of a structure M is foliated by a family
F ={%,}oc.y of surfaces that represent deposition isoch-
rons. According to the above definition of a foliation, we
choose the curvilinear coordinate 1> to index the leaves of
#. T,,%, is the tangent plane at m to the leaf %, of
foliation F that contains point m. Via some monotonic
function, u* may be interpreted as deposition time.

Finally, let us note that a foliated domain and its foliation
leaves also inherit their metric properties from those of
physical space via their respective tangent vector spaces.

We often use notations such as TM or T# instead of T,,M
or T,,%,. The exact definition of the vector bundle TM can

Figure A3. A foliation is a set of connected and disjointed submanifolds covering a manifold.



be found in Spivak (1979, Vol. I). Intuitively, it consists of
the set of all the vectors that are somewhere tangent to M.

APPENDIX B: CONVERGENCE VECTOR
CONSERVATION DURING FOLDING

The paper-bound book analogy makes it clear that folding a
parallel foliation yields another parallel foliation since
length is conserved along the sheets and since their thickness
is also conserved. Of course, the sheets should remain in
contact.

We demonstrate two results here, which are based on
rock volume conservation. The first result states-that, if the
foliation leaf area is conserved, then parallelism is conserved
during folding. The second result states that, if length is
conserved along the leaves of the foliation, then the
deviation from parallelism, i.e. the convergence vector, is
conserved.

B.1 Notation

We consider two foliated domains (M, ) and (M', ¥'),
which are embedded in the Euclidean physical space %7,
and a €>-diffeomorphism ¢ that maps (M, %) on (M, F').
(M, &) (resp. (M', #')) represents the initial (resp. final)
state of a sedimentary block, and ¢ represents folding (Fig.
B1). Notations about tangent spaces are similar to those
mentioned in Appendix A. We denote as (,) the usual
scalar product in the Euclidean physical space. We choose a
field of orthonormal bases {e,,e,} (resp. {e},e5}) in TF
(resp. T#'), and a field of orthonormal bases {e,,e,,e;}
(resp. {e}, e5, e3}) in TM (resp. TM'). We denote as T, & the
field of vector subspaces in TM, which are orthogonal to
T#. Finally, we denote by dg the first derivative of ¢, i.e. its
Jacobian matrix if particular coordinates are chosen. de
maps linearly TM on TM' and T# on T%'.

In this appendix, A denotes the wedge product (Spivak
1979, Vol. II) and should be distinguished from the usual
cross product X.

B.2 Assumptions

The above physical assumptions are translated into
mathematical terms as follows.
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(VC) Volume conservation. do(e, re, ne;) =ej Ae;Aes.

(AC) Area conservation in TZ. dp(e, ne,) =€) Ae).

(LC) Length conservation in T%. de(e,)=e, and
de(e;) = e;.

B.3 Prerequisites

The following prerequisites will be used (see Spivak (1979,
Vols I and II) for further details).

(DD) Directional derivative. See Section 4.1 in the main
text.

(BR) Bracket. The bracket [U, V] of two € vector fields
U and V is a €° vector field such that [U, V] = DyV - D5, U.

(FR) Frobenius theorem. For any 4' vector fields U and
Vin T#, (M, ¥) being a (€, n, p)-foliation with k =2, we
have [U,V] e TZ.

(PD) Scalar product derivation formula. If U and V are
€" vector fields, then we have

(U,(V,W)) =(Dy,V, W) +(V, Dy;W). (B1)

(DB) Diffeomorphism and bracket. If ¢ is a %>
diffeomorphism in % and if U and V are €' vector fields,
then do([U, V]) = [de(U), dp(V)].

(UN ) Unit vector field. If U is a unit €' vector field and
if Vis a €° vector field, then DU is orthogonal to U for
any V. Indeed, we have (V- (V,U))=(V-1)=0, and from
the (PD) formula we obtain (V- (U, U))=2(D,U, U), so
that (D, U - U, U) = 0.

(DV) Diffeomorphism and vector product. If £ and ®
are two continuous covector fields and if ¢ is a
%'-diffeomorphism, then dp(Q A ©) = dp(Q) A de(®).

B.3 Theorem (B1)

Under assumptions (VC). and (AC), we have

(de(Y), De3) =(Y, D,e3) (B2)
for any €' vector field Y in TF.

Since D,.e; is the convergence vector before folding, this
means that initial parallelism (D,,e;=0) is conserved after
folding (D,,e; = 0).

Figure B1. Folding of sedimentary rocks can be viewed as a diffeomorphism between foliations.
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B.4 Proof of theorem (B1)
e;nesnes ) do(e, ne, nes)

2 do(e, ney) ndp(es)

(AC) ./

=ejne;nde(es) (B3)

Hence, there exists a vector field X' in T#' such that
do(e;) =es+X'. (B4)

Let us now evaluate the equation E = (d¢(Y), de(es)], e3) in
which the vector field Y is in T#.

E®([de(Y), e}], e5> +{[de(Y),X'], e5)
P [de(Y), €3], €3)
PEUD s xy85s €5 — (Desd(Y), €3)
@ _ (D, dg(Y), e

ED) el - (dp(Y), e + (de(Y), Deel)

=(de(Y), Deges). (BS)

By, splitting [Y,e;] into two vector fields, parallel and
orthogonal to T, we obtain

E=(do([Y, e;]r. %), 3) + (de([Y, e5]r5), e3)
= <d‘P(<[Y7 83], e3>e3)a e§>
=([Y, e5], e5)d¢(e,), €3)

(%‘)([Y? e3]9 e3><e1’5 + X’? ef’i>
=(Y, €3], €3)

(B=R)<DY93’ e;) — <De3Y’ es)
o <De3Y» e3>

"De(Y, e5) + (Y, D.e5)

=(Y,D,.e;). (B6)
Connecting eqs (B5) and (B6) concludes the proof.

B.5 Theorem (B2)
Under assumptions (VC) and (LC), we have

{<eiv Dege.‘;> = <els De3e3>

’ ( (B7)
<02, De§e3> = <e2’ De3e3>'

This means that the components of convergence vector
D..e; are the same in the base {e,;} before folding as those of
D.e; in the base {e/} after folding. In that sense, the

convergence vector is conserved because {e;, e,} and {e;, e}
are both orthonormal and hence isometric.

B.6 Proof of theorem (B2)

Since (LC) implies (AC), Theorem (B1) holds. By virtue of
(LC), choosing e, and e, as particular instances of Y in eq.
(B2) concludes the proof.

APPENDIX C: MATHEMATICAL BASIS OF
THE ADDITIONAL CRITERION METHOD

Here we state two lemmas and a theorem, which assess the
additional criterion method. The first lemma states that
optimizing parametric representations instead of foliations
still enables the optimal foliation(s) to be found. The second
lemma states that the additional criterion method, including
the projection step, keeps the original physical problem
unchanged. The theorem states that a (strictly) unphysical
objective function does exist after the projection step.

C.1 Notation

We denote by M, the set of the admissible parametric
representations and by M, the set of the admissible
foliations. We consider the map

s:®eM,—»F=s5(P)e Mg, (C1)

which maps a parametric representation @ on the foliation
Z represented by .

C.2 Assumptions

(PR) Parametric representations. We recall that a foliated
domain (M, #) in ®* is described by a parametric
representation @, ie. a %>-diffeomorphism between
U=[0,1]? and M = ®*:

eu=u',u? u?) e U ®(u) = (x', ¥, x°). (C2)

(MP) Manifold of parametric representations. M, is a
Banach manifold, i.e. an infinite dimensional manifold. Note
that M, is not a vector space since parametric
representations are diffeomorphisms and since zero is not a
diffeomorphism.

(MF) Manifold of foliations. M is also a manifold which
can be viewed as the quotient space Mg/~ of Mg, by the
equivalence relation ~ defined by

(@ ~ D} {s(P)) = 5(D,)}- (C3)

(FI) Fibration of equivalence classes. The equivalence
relation ~ builds a foliation //( on M.

(DI) Differentiability. Manifolds M, and Mg as well as
map s and foliation J are differentiable.

(SU) Submersion. The map s is a submersion, i.e. s is
surjective as well as ds:

(ds)e:X € ToMy— Y = (ds)oX € T, My, (C4)

where X and Y may be interpreted as perturbations of @
and Z respectively. As a result, T/ = ker (ds).



C.3 Lemma (C1)

If s is a submersion from Mg, to Mg, if Q, is a function
defined on Mg, and if ® is a critical point of Q,°s, ie.
d(Q, °5)e =0, then s(®) is a critical point of Q.

Q,, is the physical objective function defined for foliations,
and Q_°s is the physical objective function defined for
parametric representations.

C.4 Proof of lemma (C1)

We have d(Q,°5)e=d(Q,)sa)° (ds)e. ® is a critical
point of Q,°s if and only if d(Q,°5)e =0, ie.
(d0,)s@)° (ds)e,=0. Since (ds)q is surjective, this is
equivalent to (dQ,)s@) =0, i.e. s(P) is a critical point of

Q.

C.5 Lemma (C2)

We consider the situation of lemma 1 and a function Q.
defined on M,,

MyLes R

Is (C5)
Y N}

We consider T°M, a supplementary of TM in TMy,, and we

define the differential 1-form w on TMy, as follows
{ w=dQ, on TaH
w=0 on TM’

If @ in My, such that wg+d(Q,°5)q, =0, then s(®) is a
critical point of Q.

(Co)

This means that the additional criterion method, including
the projection step, does not disturb the physical problem.

C.6 Proof of lemma (C2)

Since T°MDT M =TMy, and ds =0 on T, for any Y in
T;(wyMg, there exists X in T/ such that ds, - X =Y. Since
wg+d(Q, °5)e =0, and since wgy, - X =0 because X € T4,
we have d(Q,°5)q X =0. Using lemma 1 concludes the
proof, that is s(®) is a critical point of Q..

C.7 Theorem (C1)

Let (Mg, M) be a manifold endowed with a foliation M. We
assume that My, is endowed with a 1-form w whose restriction
o to each leaf F of M is closed (this is the situation of
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lemma C2, eq. C6). Then, locally, My, admits a closed form
@ whose restriction & to each leaf F of M equals wyg.

The 1-form & is the gradient of what is called QP in the
main text. Since @ is closed, then QF does exist locally.

C.8 Proof of theorem (C1)

Let m € My, and V be a neighbourhood of m. Let G be a
smooth submanifold, transversal to # (G cuts each leaf
once).

We define a function fr on the leaf F in the following way.
Let ueF and ae GNF. Let y be a curve on F with
endpoints a and u. We set (along )

o) = [ ety ax (©7)

Since w, is closed on F, the integral is independent of 1y.
Now, we define fon V by f(x) = f=(x) if x € F. Since G and
w are smooth, then f is smooth. Let @ =df. We need to
check that the restriction @, of @ to each leaf F equals oIy
We have, for any vector field X in TM, & -(X)=d,f(X),
since X is tangent to .. Therefore, & (X)=(X"-f)=
w(X) and finally @ = 0.

APPENDIX D: NECESSITY OF THE
PROJECTION STEP

Here we describe two numerical experiments that
demonstrate the necessity of the projection step in the
additional criterion method.

Figure D1 (opposite p.75) shows the initial model of the
inversion. This inversion consists of optimizing layer
parallelism over all the foliation, with its top surface being
given, as well as the intersections of its leaves with the
vertical well. Of course, the final model is expected to
remain the same.

Nevertheless, if we ‘forget’ to project Jacobian matrix J,,
the resulting foliation is not parallel, as is visible in Fig. D2

(opposite p.75). We explain this fact as follows. Since the
3

constraint points are such that the quantity P is not a
u

253

constant in the well, 5 is not zero at these locations.

ou’ ou

Far from the well, however, the additional criterion makes
23

the mesh more regular and 8—30—5 close to zero, and
u” ou

consequently the foliation is not parallel.

Using the projected Jacobian matrix J? and the model
shown in Fig. D2 as the initial model, the inversion again
yields the expected model shown in Fig. D1.
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