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SUMMARY

Quantitative estimation of complex structures is a difficult
problem which can be dealt with using back and forth geophys-
ical techniques such as tomography or geological methods such
as cross-section balancing. This means tedious syntheses and
suggests they should be quantitatively integrated into a single
consistent frame. Inverse problem techniques allow integration
via multicriteria optimization. We model a geological structure
as a set of jointed foliations, so as to cope with faults and uncon-
formities, and we represent these foliations parametrically. We
propose three kinds of geological data: the deviation from paral-
lelism of a foliation, the total curvature (developability) and the
mean curvature (smoothness) of its leaves. The choice of a L?
norm on these vector or scalar fields results in least-squares cri-
teria. Assuming one leaf of a foliation and well trajectories to be
known, we optimize the foliation with respect to these criteria.
Properly balancing the criteria allows easy control of the shape
of the foliation as it results from numerical implementation.

INTRODUCTION

Tomographic inversion is an increasingly popular technique
to determine geological structure (Bishop et al., 1985, Farra &
Madariaga, 1988, Haas & Viallix, 1989, for instance). Besides,
introducing a priori information is known to improve the results
of inversion algorithms (Jackson, 1979, Tarantola, 1987).

The a priori information can be designed to have geolog-
ical significance, and hence we propose constraining structure
geometry with three least-squares criteria based on geological
considerations: layer parallelism, developability and smoothness
of folded interfaces.

First, we present which geometrical modeling technique we
use to describe complex geological structures. Second, we
present a geological argument that leads to these criteria, and
lastly we present numerical results in a simple case and discuss
the respective effects of these criteria.

GEOMETRICAL MODELING

The unknown is the geological structure. We model a struc-
ture locally with the geometrical concept of foliation, i.e., each
point of a space domain belongs to one and only one surface,
called a leaf, which represents a deposition isochron. This model
becomes inadequate where faults and unconformities occur. For
this reason, we define a geological model globally as a set of
jointed foliations separated by faults and unconformities. Phys-
ical properties like velocity or density can be assigned to each
point for geophysical purposes.

Numerical application requires parametric representation of
these foliations. Once a set @ = (ul,u?,u®) of curvilinear
coordinates and a set T = (xl,zz.rﬁ) of Cartesian coordinates
in physical space are chosen, a foliation F can be defined by a
parametric representation @ as follows:
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The coordinates u!,u? are the same as for a surface parametric
representation. The coordinate u? numbers the leaves of the

foliation (Figure 1).

Figure 1. Parametric representation of a foliation. The curvilinear
coordinate u’ numbers the leaves of the foliation, which represent deposition
isochrons. The coordinates u} and u* number the points of a leaf.

Numerical implementation of foliation parametric represen-
tations requires their discretization. To do this, we use B-spline
tensor-products, so that U is a rectangular parallelepiped.

GEOLOGICAL DATA

To determine this model, we consider geological information.
From available knowledge about sedimentology and tectonics,
geometrical consequences can be deduced. First, sedimentolo-
gists tell us:

(S1). Deposition isochrons are almost parallel.

(S2). These isochrons are almost plane.

Hypothesis (S1) means that the convergence vector v (see be-
low), which measures the deviation from parallelism at any point
of a foliation, is more or less close to zero. (S2) means that total
curvature K, which measures the deviation from developability,
and mean curvature H (see below), are close to zero everywhere
on any leaf of a foliation. Moreover, tectonicians tell us that
sedimentary rocks are often folded like a paper-bound book, i.e.:

(T1). The volume of rocks is preserved.
(T2). Lengths are preserved on isochrons.
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(T3). Folding is not intense.

Hypotheses (T1) and (T2) correspond to the interbedding
slip phenomenon during folding. Geometers tell us that, under
these physical assumptions, the following consequences can be
derived:

(G1). If (S1), (T1) and (T2) are verified. then paralilelism is
preserved. Moreover, the convergence vector is also preserved.

(G2). If (S2) and (T2) are verified, then A" ~ 0 at each point
of the present structure. The leaves of such a foliation are called
developable surfaces.

(G3). If (S2) and (T3) are verified, then H ~ 0.

Of course, the above hypotheses are only approximations to
reality, first because layers are never exactly flat and parallel just
after deposition, second because compaction and internal strain
during deformation always occur to some extent. Therefore, we
will consider parallelism, developability and zero mean curvature
as uncertain data: ¥ = 0+ A5, ' = 0+ AL and H = 0 = AH,
and we will formulate this data in least-squares terms.

FORWARD PROBLEM AND GEOLOGICAL CRITERIA

The forward problem consists in computing the synthetic
data as a function of the unknowns. Thereafter, the choice of
a L? norm on the field of the deviations between synthetic and
available data results in least-squares criteria.

The synthetic data, convergence vector 7, total curvature [\’
and mean curvature H, are computed using the field of the unit
vector 7 normal to the local leaf at any point of a foliation.

Figure 2. The convergence vector 7 is the normal derivative of the unit vector
7l normal 1o the local leaf. It measures the deviation from parallelism at any
point of afoliation. Its L* norm resulls in a parallelism least-squares criterion.

The convergence vector ¥ (Léger & Rakotoarisoa. 1990) is
the directional derivative of 77 in the direction 17 itself (Figure 2).

On the other hand, ' and H are related to the behaviour
of 7 in directions lying in the tangent plane to the local leaf.
Gauss’s mapping associates its normal unit vector 77 to a point °
of the foliation (Figure 3). The linearization of Gauss’s mapping
around a point ) yields the expression dn = C'(P).dP. where
dn = 7i(P) = 7(Py) and dP = P — Py. dP and dn belong to

the tangent plane. The (2 x 2) matrix C(P) is the curvature
matrix at P of the leaf where P is located. The total curvature
K (P) at P is the determinant of the matrix C(P) and the mean
curvature H is defined using its trace, H(P) = —itrace(C(P))
(Spivak, 1979).

Figure 3. The variation of the unit normai vector field ni(P) around a point
P in a surface S allows definition of the total and mean curvatures of S
at P. A L* norm on these scalar fields results in least-squares criteria.

As stated above, the available data is the nullity of 4, I’ and
H. Therefore, the parallelism, total curvature and mean curvature
least-squares criteria will simply be the minimization of a norm
on these fields.
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where F is the foliation under study. This is the continuous
geometrical expression of these least-squares criteria.

Since a foliation is dealt with in practice via a parametric
representation, we introduce these functional continuous expres-
sions:

Q= [ 170 9|3 |Js| dU
/
Qi = [ 15 o ¥l 7ol av

U

Qu = [ 1 o @l 1o}
U

where @ is the parametric representation of F, |Jg| its Jacobian
and U the space of curvilinear coordinates.

These least-squares criteria are finally discretized using a
regular grid Gy of points «; in U, so that the previous integrals
become sums:

Qv =D 7o (m)|? [Jol(i)| U;
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where [, is the volume of the mesh centered at ;.
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The norms .||, ||.]ly and [|.|; should account for the
uncertainties as evaluated by geostatistical studies for instance.
However, to our knowledge, such results are not yet available as
far as these quantities are concerned. Hence, we simply define
the norms ||. |, ||.|| ;- and ||.|| as weighted L? norms so that the
global physical objective function Q, is:

Qo =0, +Qx +Qn = C,QL + CxQ¥ +CuQk

where C,, Cy, Cy are weighting coefficients related to the
uncertainties about ¥, K and H.

AN EXTRAPOLATION PROBLEM

These criteria clearly do not suffice to determine the location
of a foliation. Therefore, in order to have a well-posed problem
and to illustrate the effect of these criteria, we build a simple
extrapolation problem in which some extra information is intro-
duced. This problem consists in determining a foliation such that:

— One of its leaves is known and described by its parametric
representation.

— A few curves representing wells are known. They cross
all the leaves once and only once. The curves are parameterized
using the index u? of the leaves, which means that borehole
correlations are available.

— It minimizes the geological objective function Q.

— The precise location and shape of the lateral edges of
the foliations are considered to have no particular significance in
this simple example.

A foliation can be described by an infinite number of para-
metric representations. To overcome this problem we proceed in
two steps. First, assuming the problem to be well-posed in terms
of foliations, we define a criterion which is designed to make it
well-posed in terms of parametric representations as well. This
criterion simply consists in smoothing the mesh associated with
the parametric representation. Second, we modify this criterion
so that it does not interfere with the physical problem. We present
details about this technique in a joint paper (Léger et al., 1991b).

The given surface and well data are modeled using linear
equality constraints. Discretization in parameter space is carried
out using B-spline tensor products. Q. is minimized using a
Gauss-Newton algorithm.

PRACTICAL EFFECT OF GEOLOGICAL CRITERIA

Figures 4 to 7 show solutions of the extrapolation problem.
The top surface is plane and rectangular and the two wells are
orthogonal to it. The vertical thickness increase is 30%. The
foliation is discretized using 10 (resp. 6, 4) parameters in wl
(resp. u®. u®) direction for each Cartesian coordinate. This
results in 720 parameters and 198 equality constraints. In all
cases. the initial model is a parallelepiped made up of parallel

rectangles.

These figures show that using only the parallelism criterion
may yield unlikely results since the foliation leaves may be
sharply curved in the vicinity of the wells (Figure 4). Introducing
the total curvature criterion makes the surfaces more developable,
and even cylindrical in the case of Figure 5. The effect of the
mean curvature criterion is to smooth the folds (Figure 6). The
surfaces become almost plane if the two curvature criteria are
heavily weighted (Figure 7).

The last numerical experiment (Figure 8) shows that optimiz-
ing adequately weighted parallelism, developability and smooth-
ness criteria may yield a plausible foliation as long as a sufficent
number of wells is given, even if none of the foliation leaves is
given. Five wells cross the foliation thoroughly and three just
cross the top surface.

Figure 4. Q, = Q,’;'l. Optimizing only the parallelism criterion only may
yield highly curved surfaces in the vicinity of the wells. Gray intensity is a
sine function of depth, hence light and dark zones suggest depth contours.

Figure 5. Q, = QL' + 70Q% . The total curvature criterion
makes the surfaces more cylindrical (more developable in general).
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Figure 6. Q, = QL' + QL' + Q. The
mean curvature criterion smooths the folds.

Figure 7. Q, = QL' + T0Q% + 50Q%. If heavily weighted,
the curvature criteria make the foliation leaves almost plane.

Figure 8. Q, = QX" + 100Q%" + 0.01Q%'". In this experiment.

five wells are given through the foliation and three more wells

cross the top surface. It shows that these criteria may yield a
plausible interpolation foliation between wells, if properly weighted.

CONCLUSIONS

Foliation has proven to be a good local geometric modeling
tool for geological structures in the oil exploration context. It al-
lows simple and reliable definition of deviation from parallelism.
Moreover, it would be easy to correlate the shape of the velocity
or density heterogeneities with the orientation of local dip, since
dip exists everywhere.

Simple but quantitative geological information such as layer
parallelism and fold developability or smoothness can be trans-
lated into geometrical terms, i.e., convergence vector, total cur-
vature and mean curvature.

Since this information is only an approximation to reality,
least-squares formulation is adequate to take uncertainties into
account. Assuming one leaf of a foliation and several curves
representing wells to be known, we implement optimization of
these criteria and demonstrate their effectiveness.

We plan to improve this toolkit of geological least-squares
criteria by adding other criteria that would constrain the shape of
the faults, for instance. We believe that upgrading this geological
toolkit with geophysical criteria (typically traveltimes) will yield
more accurate estimates of complex geological structures in the
context of intensive oil exploration.
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