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SUMMARY

High-quality geometrical modeling of geological structures
requires geometrical objects such as surfaces, volumes or folia-
tions, which need parametric representations to be dealt with in
practice. However, there is no one-to-one correspondance be-
tween these objects and their representations. As a result, an
inversion problem that could be well-posed in geometrical terms
is always ill-posed in terms of parametric representations be-
cause of their multiplicity for one geometrical object. To over-
come this difficulty, we propose a method based on an unphysical
least-squares criterion. The criterion first smooths out the mesh
associated with parametric representations. In a second step, it
is modified in such a way that it does not alter the physical
problem considered. The method is designed to work harmo-
niously with Gauss-Newton optimization algorithms. Numerical
results involving one foliation demonstrate the effectiveness of
the method.

INTRODUCTION

Efficient intensive oil exploration requires accurate deter-
mination of the geological structure’s geometry, which can be
achieved via multicriteria optimization methods. However, be-
fore constraining a structure with all possible data sets, correct
mathematical description of unknown structures is necessary.

Models made up of several layers are widely used, since
almost all oil prospects systematically consist of layered rocks.
Mathematical description of layer boundaries is usually carried
out using a function f such that z = f(r.y) where r and y are
horizontal coordinates and = elevation or depth. This method is
very popular, a lot of software and published papers on traveltime
inversion use it.

Other methods related to CAD techniques have appeared
recently and they have proven to be more powertul for describing
complex structures. Pereyra (1988), Mallet (1989), Léger et
al. (1991a) and Virieux & Farra (1991) illustrate this tendency.
What these implicit methods have in common is that surfaces are
defined using grids of points that can move in three directions

instead of one as for explicit representations.
In this paper, we address the key problem that some pertur-

bations in a grid may have no effect on the surface it represents,
and we call them unphysical perturbations. This is obvious in
the case of a plane which remains the same if the gridpoints
are moved on it. As a result, inversion techniques will fail to
determine the surface via the grid, since only the surface itself
has physical significance and several grids may be used for its
discretization. This is also true for curves, volumes or foliations,
i.e., volumes covered by disjointed surfaces.

We propose a general method for solving the problem so as
to obtain a problem as well-posed in terms of grids (paramet-
ric representations) as in terms of geometrical objects such as
surfaces, volumes or foliations.

First, we briefly discuss the respective advantages and draw-
backs of explicit and implicit representations. Second, we iden-
tify which parameters are physical or unphysical in the case of
foliation parametric representations. Next, we propose a method
that works in two steps: mesh smoothing using a least-squares
criterion, and modifying the criterion so that it becomes strictly
unphysical. Last, numerical results demonstrate that the second
step 1s necessary.

WHY PARAMETRIC REPRESENTATIONS ?

Good geometrical and physical modeling of geological struc-
tures seems to be a prerequisite for successfully determining
them. Because of the systematically layered structure of oil
prospects, we chose the geometrical concept of foliation to repre-
sent sediments locally (Léger et al., 1991a). A foliation is simply
a volume which is covered by disjointed surfaces. Dealing with
faults and unconformities requires considering a geological struc-
ture as a set of jointed foliations (Figure 1). Physical properties
such as velocity can be defined at any point.
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Figure 1. A geological structure may be considered as a set

of jointed foliations, which are volumes covered by disjointed

surfaces, called leaves, that represent sedimentation isochrons.
Joints between foliations may be faults or unconformities.

Practical use of geometrical objects such as foliations re-
quires them to be represented by functions. The representation
may be explicit:

F={(z.y,2); (z.y) € D5 z = f(z,y,w)}

where z and y are geographical coordinates in domain D and w
is an index that numbers the leaves of foliation F. This method
has two basic advantages: it is simple and the correspondance
between the foliation and the function f is one-to-one, as long
as the first derivative of f with respect to w is continuous and
nowhere zero. On the other hand it has two main drawbacks.
First, recumbent folds or salt overhangs are difficult to represent.
Second, domain D is fixed a priori, which requires that exact fault
locations are known. If domain D is considered to be variable,
then the discretization of function f will change in an inversion
process, which means that the size of the discrete parameter space
is not defined.
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Inversion of parametric representations

In our opinion, this behaviour seems incompatible with qual-
ity standards normaily used when implementing inversion algo-
rithms.

For this reason, we prefer to describe foliations with para-
metric representations. Once a set @ = (u!,u? u?) of curvilinear
coordinates and a set ¥ = (z!,z% z%) of Cartesian coordinates
are chosen in physical space, a foliation F can be defined by a
parametric representation ¢ as follows:

1‘1(u1,u2.u3)
12(u1,u2.u3)

2 (ul,u?, o)

TEUCR — =9 = €FcR®

The coordinate u® numbers the leaves of the foliation. Note
that ¢ needs to be a diffeomorphism so that the leaves of F do
not cross each other. This property is always assumed in what
follows. This method is more complicated as we have three
functions instead of one. Its crucial advantage is that the edges
of a foliation F can be considered as unknowns, which is the
case in practice, even if domain U remains fixed. However, we
lose the very nice one-to-one property of explicit representations,
ie., the same foliation can be described by an infinite number
of parametric representations (Figure 2). Indeed, any function ¥

u3

Figure 2. There are functions ¥ that map U globally onto itself, and are not
identity. Consequently, for any parametric representation ® of a foliation F,
there is another one, ® o W', that describes exactly the same foliation.

that maps U globally onto itself, such as:

vl = [u1 + (111)2] 2
v? = [1:2 + (112)2] /2
o = [lt"l + (113)2]/2

v (ulu? u?) € o, 1]3 - € [0, 1]3

for instance, defines another parametric representation ¢ o ¥~!
of exactly the same foliation as .

In a linearized sense, a parametric representation can be per-
turbed in many ways such that the foliation it describes remains
unchanged to the first order. These perturbations are unphysical.

PHYSICAL AND UNPHYSICAL PARAMETERS

We now discuss which parameters or perturbations are phys-
ical or not around a given parametric representation.

What happens if a point inside a foliation is moved in con-
tinuity with its neighbours, in such a way that it remains on the
same leaf (or its tangent plane T, as a first order approxima-
tion), along with its neighbours? Clearly, the answer is that the
foliation is unchanged. Therefore, we consider this kind of per-
turbation to be unphysical. However, if we consider a parametric
representation of the foliation, it does change, as suggested by
the dashed lines in Figure 3.

Figure 3. Physical and unphysical perturbations. If a point is moved but
remains on the same leaf of a foliation, this foliation is unchanged despite
its modified parametric representation (dashed lines). Purely physical
perturbations of a point are orthogonal to the local leaf (dotted lines).

By virtue of the standard scalar product in physical space,
we define purely physical perturbations as orthogonal to the local
leaf.

The situation at a point on the boundary may be somewhat
different (Figure 4). The general idea is that unphysical perturba-

= G

F

Figure 4. Unphysical perturbations are tangent to all physically significant
surfaces. At points A, B, C and D, the arrows denote unphysical
perturbations. At points E and F, all perturbations are physical.

tions are tangent to all physically significant surfaces at any point
of a foliation’s closure. At A, two linearly independent perturba-
tions are tangent to the local leaf, hence they are unphysical, like
at B, since the local leaf is also a piece of the foliation bound-
ary. At C, the local leaf differs from the boundary so that the
only unphysical perturbation is tangent to the intersection curve.
At D, the same conclusion holds true since the second piece of
the boundary is also a foliation leaf. Points E and F belong to
three different physically significant surfaces, and therefore all
perturbations are physical.
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Inversion of parametric representations

Surprisingly, some combinations of physical perturbations
may be unphysical. If all the points of a leaf S inside a foliation
are moved to another leaf S’ of that foliation so that the edges
of S are moved to the edges of S', then the foliation remains
the same. This corresponds to a change of variable ¥ in the
curvilinear coordinate domain: (u!.u? u?) — (ul,u?, ¥(u?)).
More simply, the leaves of F are numbered in a different way
(Figure 5).
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Figure 5. Some combinations of physical perturbations may be unphysical
since they preserve the foliation. They correspond to a change of
variable on the curvilinear coordinate that numbers the foliation leaves.

The problem is that, by definition, unphysical perturbations
cannot be determined by any physical (geophysical or geological)
information. Therefore, we will now try to constrain these
perturbations using an unphysical criterion.

THE METHOD

Let us call Q,(®) the global physical objective function
that derives from geological or geophysical information such
as traveltimes, for instance. Q,(®) is expressed in terms of
parametric representation .

The basic idea of the method is to define an additional
criterion Q,(®) that should constrain all unphysical perturba-
tions, and to add it to Q.(®), to obtain a global criterion:
Q(®) = Qu(®) + Qua(®). To do this, we define synthetic data
as follows:

g _ 0P o

& = auiauk(u

where @' is the :'* Cartesian coordinate of a point, whose
curvilinear coordinates are @ = (u'.u” «*). For each #, the
¥ (i) build an eighteen-component vector (). We also define
“observed” data as af/*(i7) = 0 for any . Choosing a L? norm
on the vector field (@ —ap) o ® = a o ® yields the additional
criterion Q4 (®).

If zeroed, the Qo(®) criterion makes Jacobian matrix
9®'/0u? a constant, and the foliation leaves are consequently
plane. Hence, Q,(®) has some physical significance and the
foliation that minimizes Q,,(®) could be different from the folia-
tion that minimizes Q,(®)+Qq(®). In other words, the physical
problem associated with Q,(®) could be disturbed by (Qq(®P).
To avoid this, we modify (), (%) inside the Gauss-Newton pro-
cedure we use to optimize () .(P).

The standard Gauss-Newton optimization method consists of
solving the linearized problem iteratively:

It J6p = —J%8d,

where vector 6p is the model modification, vector 6[1; is the
physical data misfit and J,, the Jacobian matrix of d:,(f) around
the current model, * denoting transpose. If vector p represents
a discretized foliation parametric representation, we know that
this equation cannot be solved. If we add Qq(®) to Qu (), the
above equation becomes:

(JoTp + T2Ta)8p = — (7560, + J6dx)

where 6d, is vector @ and J, is the Jacobian matrix of d-;( p)
The key idea of our method is to modify J, so that the
physical problem remains unchanged.

spline coefficients P
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Figure 6. Starting from the B-spline coefficient discretized parameter
space. two successive changes of variable allow easy modification of the
additional criterion that keeps it from having any physical signification.

To do this, we use the above discussion about physical and
unphysical perturbations after two changes of variable in the
parameter space (Figure 6). The first one, ¢ = Lp, consists
in choosing a grid of points, whose Cartesian coordinates build
a vector ¢. The second one, 7= M, consists in replacing the
frame in physical space to which these coordinates are related,
by a specific frame for each of the gridpoints. This frame is
such that two basis vectors lie in the tangent plane to the local
leaf and the third one is orthogonal to it (Figure 6). The origin
O remaining the same, we call r the vector of all the gridpoints
coordinates in their respective frame. Hence, the Jacobian matrix
Jo becomes: JI = J,L~'M~L

Now the additional criterion can be easily modified in such
a way that it becomes strictly unphysical by zeroing the columns
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in J7 that correspond to physical perturbations of the gridpoints.
If we call P the matrix associated to this projection in parameter
space, then the modified Jacobian matrix Jo expressed in the
original parameter space simply becomes:

J2 = L1t pigr
so that the modified linearized problem becomes:
(J;,J,, + (J;’)‘Jg) &p=-— (Jg,ad; 2 (J};)“SJC.)

Besides its simplicity, an important advantage of this method
is that it is designed and can be implemented completely inde-
pendently of the physical criteria. Moreover, the possibility of
discussing which perturbations are physical or not at the edges of
a foliation in detail suggests that this method will still work for
complicated geological structures made up of several foliations.

Numerical experiments show that the discrete problem is
well-posed using our method. We are currently studying a
mathematical proof related to the continuous problem.

NUMERICAL RESULTS

The results that we present in a joint paper (Léger et al.,
1991a) were obtained using this method and illustrate it.

Nevertheless, we present two numerical results here that
demonstrate the need for the Jacobian matrix modification step.
Figure 7 represents a foliation which is optimized with respect
to a parallelism criterion using our method. The top surface is
given and the foliation is known along a well trajectory. The
result corresponds to our expectations.

Figure 8 displays the solution of the same problem but we
have “forgotten” to modify the Jacobian matrix J,. This result
should obviously be rejected.

Figure 7. Using our method, the optimization of a foliation
with respect to a parallelism criterion yields the correct
expected result. The top surface and the well are Sfixed.

Figure 8. Same as Figure 7, but without modifying the Jacobian
matrix J,. This result clearly is incorrect since the the Joliation
is not parallel. Gray intensity is a sine function of depth.

CONCLUSIONS

High-quality inversion of complex geological structures in-
volves geometrical objects such as surfaces, volumes or foliations
and requires them to be dealt with via parametric representations.
Even if sufficient data are available for the inversion problem to
be well-posed in terms of geometrical objects, it is ill-posed in
terms of parametric representations because of their multiplicity
for one geometrical object. This means that degrees of freedom
of parametric representations may be physical or unphysical.

To overcome this difficulty, we propose a general method
that works in two steps. First, a least-squares criterion smooths
out the mesh associated with parametric representation. Second,
it is modified so that the solution of the physical inverse problem
is unchanged.

This method can be implemented in harmony with the stan-
dard Gauss-Newton optimization procedure. Numerical results
involving one foliation (a geological structure without fault or
unconformity) demonstrate its effectiveness. We believe that this
method could also work for more complicated and realistic geo-
logical structures involving several foliations.
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