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SUMMARY

In the general context of macro-model determination by inver-
sion techniques, we propose a specific least-squares criterion to
constrain the shape of faults so as to be compatible with the rigid
block approximation, i.e., the two blocks remain in contact and
slip on each other without strain. If this condition is met, the
fault surface is a thread, i.e., a surface that is everywhere tan-
gent to a nonzero twistor vector field. Besides, we constrain the
surface to be close to given points (well data or pickings on a
depth-migrated seismic 3D cube), and to be smooth (principal
curvature minimization). With the help of these curvature and
proximity criteria, the “rigid block” criterion results in a smooth-
ing method dedicated to fault surfaces. The rigid block criterion
yields more plausible results than conventional approximation
techniques based on second derivatives or curvature minimiza-
tion, and it also predicts the direction of striae.

INTRODUCTION

The geological knowledge introduced in macro-model inversion
techniques may concern the velocity field or the layer geometry,
but in this paper we focus our attention on the shape of faults.
Sometimes faults separate blocks in which only small internal
strain occurred during the history of the structure; then the rigid
block approximation is acceptable in such cases.

We formulate in least-squares terms this geological knowl-
edge: “a fault surface separates two approximately rigid blocks”
and we optimize the surface with respect to that criterion.

First, we translate the rigid block approximation into geo-
metrical terms. Second, we present the problem we will solve
numerically. Next, we detail the six objective functions to be
minimized and we present the inverse problem. Lastly we present
numerical results for a simple case.

RIGID BLOCKS AND THREAD SURFACES
A fault is a surface S, which we represent parametrically:

r(u,v)
ylu,v)
z(u,v)

(u,v)elU C R — ®(wv)= €ScR.

We discretize map ¢ by using B-spline tensor products.

Assuming that both blocks are rigid and remain in contact
during faulting. The fault surface necessarily belongs to a specific
kind of surface, which we define as a thread surface, by analogy
with a screw and a nut. Planes, spheres, cylinders or surfaces
of revolution are typical examples of threads. However, surfaces
such as an egg-box are not threads. From a geological viewpoint,
the rigid block approximation may sometimes be very coarse,
because of compaction or internal strain in the blocks.

The above definition is equivalent to the following charac-
teristic property [C. Marle, Paris VI University]. There is at least
one nonzero twistor W such that W(P) € TpS at any point P
on surface S, with TpS being the tangent plane to S at P. A
twistor W is a vector field such that W(B) = W(A)+QAAB for
any points A and B in the Euclidean physical space R*. Twistor
W is an auxilliary unknown (Figure 1). Twistor W needs to
be nonzero because any surface would be a thread without this
condition. The lines that are everywhere tangent to a twistor are
helices with the same axis and the same period.

Figure 1. Thread surfaces are such that there is a nonzero
twistor everywhere tangent to it. We measure the deviation from
a thread by the RMS value of the (twistor-tangent plane) angle.

THE PHYSICAL PROBLEM

We consider a fault surface that is constrained by the following
information:

1. The surface is as close as possible to given points, which re-
present well data or pickings on a depth-domain seismic cube.

2. The surface is as smooth as possible. The principal curvatures
measure how the surface is not smooth.

3. The surface is as close as possible to a thread. We measure
the deviation from a thread by the RMS value of the (twistor-
tangent plane) angle.

Now we detail the formulation of this knowledge in terms of
least-squares criteria.

THE LEAST-SQUARES CRITERIA

Proximity to data points

For the sake of simplicity, we chose a priori several points
®; on the surface and we specify them by their curvilinear
coordinates u; and v;: ®; = ®(M;) with M; = (u;,v;). We
measure the proximity of points ®; to given points P; by the
normal part (P;, ®;), of vector (P;, ®;). Figure 2 shows that
(P;,®;), is close to the distance between P; and surface S if
this distance is much shorter than the radii of curvature of S.
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The physical objective function related to the proximity of the
surface to the data points is then

Qro =Y (P @)%

normal part of
vector (P;, @;)

normal
at P,

tangent part of
vector (P;, ®;)

Figure 2. For the i-th data point P;, vector (P;, ®;) is split into

its normal and tangent parts, with ®; = ®(u;,v;). We consider

the normal part to be physical, and the tangent part unphysical.
Principal curvatures

We smooth a fault surface by minimizing the objective func-
tion
Qc = / (A2 + 23)ds.
S

At each point on surface S, the principal curvatures A; and Ag
are the eigenvalues of the curvature matrix

o~

where <, > denotes the scalar product, X and Y are orthogonal
unit vector fields everywhere tangent to S and N is the unit
vector field normal to S. Dy 4 denotes the directional derivative
of vector field A in the direction of vector field X:

(DxA)py = (-\"’)m(aw)m Y

: dat
]
where z!, z2 and % are the Cartesian coordinates related to
basis vectors (e, e2,e3).

A curvature-based criterion is more satisfactory than a second
derivative-based criterion because the former is insensitive to
parametrization, whereas the latter is not. We illustrate this fact
in the section “Curvature versus second derivatives”.

<DxN,X> <DyN,Y>
<DyN.X> <DyN,Y>

Thread property
We measure the difference between a surface and a thread
by the objective function

QTz/ < N(P),W(P) >2dS.
S

< N(P),W(P) > is the scalar product at P of unit normal
vector N and twistor 1. Clearly, the optimization of Qr
constrains the surface to be almost parallel to twistor .

The weighted addition of these objective functions results in
the physical objective function Q,:

Qe = wp,Qpy +wcQc + wrQr.

THE INVERSE PROBLEM

Since many parametrizations may describe the same surface,
there are an infinite number of parametrizations that optimize
objective function @, even if a single surface minimizes it. In
other words, the inverse problem is ill-posed. To make it well-
posed, we introduce a weighted additional objective function:

a =wpaQpa HwpQp + wWNQN

This function is designed to be unphysical; this means that
a parametrization that minimizes Q, + Qo does represent a
surface that minimizes Q.. Objective function Q) p, represents
the tangential part of the proximity term of the surface to the
data points (Figure 2):

Qpo = Zi ”(Ph ¢!')tang”2'

Objective function Qp is a modified regularisation based on
the second derivatives of parametrization ®. This technique is
described in [Léger et al., 1991b].

We have mentioned that twistor W should be nonzero.
Therefore we introduce the normalization objective function

av=( [ 1wifas- | dS)f

The minimization of Q y constrains the RMS value of twistor W
to be close to 1, and therefore, we interpret the < N(P), W(P)>
term in the previous section as an angle.

We minimize overall objective function @ = Q, + Qq by
using a Gauss-Newton procedure.

CURVATURES versus SECOND DERIVATIVES

In this section, we describe optimization results obtained with-
out thread term @ and without normalization term Qy. We
compare smoothing by curvature minimization and smoothing
by second derivative minimization. Figure 3 locates data points
P; and characterizes points $; of the surface that are linked to
data points by the proximity terms Qp, and Qp,. We have
performed the inversion with several sets of curvilinear coordi-
nates for points ;. Curvature minimization always yields the
result shown in Figure 4. If curvilinear coordinates of points
®; are chosen to be the same as the Cartesian coordinates of
corresponding given points P;, the minimization of curvature or
second derivatives yields the same result.

On the contrary, in the case depicted in Figure 3, the mini-
mization of the second derivatives shows an anisotropic smooth-
ing effect. The larger the Jacobian matrix d® of & is in a di-
rection (i.e., the larger ||d®(V)|| for ||V|| = 1 is), the stronger
the smoothing effect is in that direction (i.e., in the direction of
de(V)).

Therefore, we have chosen to use curvature as a smoothing
tool rather than second derivatives, despite the fact that partial
derivatives needed at the optimization step are harder to compute.

155




A “‘rigid block’’ L-S criterion for faults

BAV X
i1 % X X

3_
6+

o 2X & X
//:

o+ + + ‘

0¥K— 7T —XY
. o 1 2 3 4 5
24 X given points Pi (z=0)

& given point Pi (z=1)

J + i +4 points M; linked to P;
> U

Figure 3. Cartesian and curvilinear coordinates
of the data points used in Figures 4 and 5.
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Figure 4. Smoothing by curvature minimization yields the same
result whatever the curvilinear coordinates of points M; may be.
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Figure 5. The smoothing effect of second derivative minimization
depends on the curvilinear coordinates of points M;.

INVERSION OF THREAD SURFACES

We give numerical results concerning the inversion of fault sur-
faces for proximity to given points, curvature and thread criteria.

Whereas the most convenient initial surface is simply a piece
of plane if we disregard the thread criterion, a more elaborate
initial model is required if we introduce this term in the overall
objective function. This is due to the fact that a plane (as well as
a sphere or a circular cylinder) is a surface that is invariant un-
der a two parameter-family of moves. Since we have introduced
a twistor normalization criterion, this two-parameter family be-
comes a one-parameter family of twistors. This means that there
is (at least) one direction in the (surface + twistor) parameter
space in which the overall objective function is constant. Hence
it is not coercive and the problem is ill-posed.

To overcome this difficulty, we could introduce another cri-
terion related to a priori knowledge about the twistor. We pre-
ferred to begin the inversion without the thread criterion, and to
introduce it after several iterations, once the difficulty has been
avoided.

Figure 6 gives information about the data points used in
inversions of Figures 7 to 10.
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Figure 6. Data points used in inversions shown in Figures 7 to 10.

Figure 7 shows the result of a primary inversion in which
we have optimized curvature and proximity to data points. This
surface is clearly not a thread. Striae suggest the initial twistor.
(Striae are the projection on the surface of the helices everywhere
tangent to the twistor.) The best possible fit with the surface is
clearly not achieved.

Figure 8 shows the twistor (via striae on the surface) as it
results from the optimization of the thread and normalization
criteria. The surface is fixed (same as Figure 7).

In Figure 9, the twistor is such that W(P)=(1,0,0) at any P,
Consequently, the unknown surface almost becomes a cylinder.

In Figure 10, the twistor and the surface are both unknown.
The result is close to a surface of revolution. The RMS value of
the (twistor-tangent plane) angle is 0.15 degree, whereas it was
0.11 degree for Figure 9 and 2.6 for Figure 8. The RMS radius of
curvature ([ (A3 + A3)dS/ [ dS]) is 21, 34 and 27, and the
RMS distance to the data points is 0.32, 0.35 and 0.34 for Figures
8, 9 and 10 respectively. A slight downgrade of the proximity
and curvature criteria is compatible with a great improvement of
the thread criterion.
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..
Figure 7. Initial model of the inversion process. The striae
(dashed lines) represent the initial inappropriate twistor.
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Figure 8. The twistor suggested by the striae fits at best the thread and
normalisation criteria. The surface itself is not inverted (same as Figure 7).
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Figure 9. If the twistor is such that W (P)=(1,0,0). VP, the thread
almost becomes a cylinder and the striae are almost straight lines.
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Figure 10. This surface and the twistor suggested by the striae result
from the optimization of the model shown in Figure 7 for proximity
to data points, curvature and thread property least-squares criteria.

CONCLUSIONS

Our results demonstrate that it is possible to constrain the shape
of faults with more elaborate geological knowledge than only
smoothness and proximity to data points. The least-squares
“thread criterion”, which derives from the rigid block approxima-
tion, improves predictions about the shape of faults, especially if
a few wells cross it or if the seimic image of that fault is vague
or inaccurately depth-migrated, depending on the confidence of
the geologist in the rigid block approximation. In the general
case, the “thread criterion” yields the direction of the striae as a
by-product. The method is flexible with respect to the available
knowledge about the twistor which represents the relative move
between the two blocks. This move can easily be said to be a pure
rotation of known axis, a pure translation, of known direction or
not, either completely known or completely unknown.

Besides, if a surface is represented parametrically, its smooth-
ing by the minimization of principal curvatures leads to more
satisfying results than by the minimization of second derivatives.

Measurements concerning striae direction could be used to
formulate another criterion. We plan to test our method on field
data in the near future.
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