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Least-Squares Optimization of Thread Surfaces

M. Léger, J.-M. Morvan. and M. Thibaut

Abstract. In geology. faults may sometimes be considered as slip-
ping surfaces between two approximately rigid blocks. Geometrically, we
define these surfaces as follows: they are preserved by at least one single-
parameter family of moves. and we call them threads by analogy with a
screw and a nut. Besides. we need to optimize our subsurface models for
oil exploration purposes. Therefore, we propose a method that optimizes
a surface with respect to several least-squares criteria related to curvature.
proximity to known points. and the “thread property”.

51. Introduction

Geophysics aims to determine and image a subsurface by using seismic data
and geologic information. Inversion [5] is a popular technique to achieve this
goal, but it requires a least-squares formulation of geological knowledge [2].
We focus our attention on the shape of faults. Sometimes, faults separate
blocks which may be considered rigid. We formulate in least-squares terms
this geological knowledge: “a fault surface separates two approximately rigid
blocks” and we optimize the surface with respect to that criterion. We also
constrain the surface to be smooth and to be close to given points.

In the first section, we derive the geometrical consequences of the rigid
block hypothesis which leads us to introduce the concept of thread surface.
We briefly review inversion in the second section. Next, we describe the
physical objective functions related to following data: the thread property, the
proximity to given points and the smoothness of the surface. In the fourth
section, we add three nonphysical criteria to make the problem well-posed.
Finally, we present numerical results and conclusions.

§2. Rigid Blocks and Thread Surfaces

Ve consider a fault as a surface. i.e.. we neglect the thickness of the possible
gauge zone. We represent the surface using a parameterization ®(u. v) (u and
v are curvilinear coordinates) because many faults are almost vertical and
therefore z(z, y) representations are awkward. We discretize the parameteri-
zation by using B-spline tensor products.
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2.1. The rigid block approximation

In some geologic circumstances, strains in the blocks separated by a fault are
weak. In these cases. the rigid block approximation is valid. Besides. blocks
usually remain in contact during faulting, and consequently the fault surface
remains the same during the move. We call threads the surfaces that have
this property, by analogy with a screw and a nut.

Definition 1. A surface S is a thread if and only if there exists a single
parameter family of moves that preserves surface S.

Surfaces of revolution and cylinders are typical examples of threads. On the
contrary, an egg-box is not a thread.

2.2. A characteristic property of threads
We review the definition of a twistor.

Definition 2. A twistor 7 is a vector field such that, for any M,

. [T(b)} B {T(b) +0OA OfM}
Q Jo Q v
According to an idea of C.-M. Marle, Definition 1 is equivalent to

Definition 3. A surface S is a thread if and only if there exists a nonzero
twistor T such that vector T(P) belongs to the tangent plane Tp(S) to S at
any point P of S.

In the general case (Figure 1), the field lines of a twistor are helices with the
same axis and the same pitch. If Q = 0, the vector field is constant, the
thread is a cylinder and the relative move between the blocks is a translation.
If T(M) is everywhere orthogonal to Q, the thread is a surface of revolution,
and the relative move is a rotation. A thread may be considered as a single
parameter family of field lines of a nonzero twistor. Geologists call striae the
lines made on one block by the bumps of the other. We call computed striae
the field lines of the (projection of the) twistor on a (quasi-) thread surface.

Fig. 1. Two rigid blocks.

Figure 2. Proximity to a given point.
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63. Inversion

We have chosen the inversion approach because it can take various kinds of
data into account. which is our problem since we wish to constrain a surface
to be smooth, to be close to given points and to approach a thread.

3.1. The direct and inverse problems

The laws of physics, represented bv a map f, enable us to compute predicted
observations d as a function of a known model m. f(m) = d. This is called the
direct problem. In geophysics, the situation differs since we wish to determine
an earth model m from known observed data d, £~ (d) = m. This is called the
inverse problem. Unfortunately, the map f is generally not invertible, and the
model parameters cannot be computed by using that equation. Therefore, we
look for a model 7 such that computed data d = f(m) are as close as possible
to observed data d.

3.2. The objective function

We need to make clear what “as close as possible” means. To do that, we
define an objective function (; which measures the discrepancy between com-
puted and observed data. If we assume that the data space is a vector space, a
norm on the residual vector d — d will define objective function Q. We choose
an Ly-norm for convenience Q(m) = 1||d — d||2. The Gauss-Newton method
gives the solution model by minimization of objective function Q.

84. The Physical Data

In our problem, the data space is the product of three data spaces, one for
each kind of information. We use geometric terms to translate the geological
problem and we obtain a geometric objective function depending on surface
S and twistor 7. Next, according to the functional viewpoint, we introduce
a parameterization ¢ by a change of variable.

4.1. The thread criterion

According to the above definition. threads are the only surfaces that zero the

geometric objective function

1 2

Qr(S.7) = /(T(M).A‘(J[))“dS.
Js

where V(M) is the vector normal to the surface at M and T (M) is the value of
twistor 7 at M. Here, the data space is the space of functions (T(M), N(M))
defined on S. In this case, the “observed” dataset is the zero function in this
space. Note that the twistor is a priori unknown. therefore it is an auxiliary

unknown.
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4.2. The given points

Sometimes. wells cross faults and hence we know that intersection points F;
belong to the thread surface. Since well trajectories are not perfectly known,
the location of points P; is not exactly known. We introduce the geometric
objective function Qp(S) = Y. D(F;,S), where D(P;,S) is the Euclidean
distance between surface S and point P;.

This distance is a complicated function of parameterization ®. Therefore,
we approximate it by the normal component of vector M;P; where M; =
®(m;) is a point of S specified by its curvilinear coordinates m; = (u;,v;) € U
(Figure 2). This approximation is satisfactory if the modulus of M;P; is much
smaller than the principal radii of curvature of the surface. Then, the objective
function is Q(®) = 1 3, |(PM;, N(M))|1? .

4.3. The curvature criterion

We smooth the surface by minimizing the geometric objective function

1 9 1
Qc(5) = 3 [(Ih7 45) = 5 [ 04+ 35) 0 @ el av,

where h is the norm of the second fundamental form of a surface. Note
that A2 = A\? 4+ A3, where A; and A, are the principal curvatures. As in the
case of the thread criterion, the “observed” data are zero. A curvature-based
criterion is more satisfactory than a second derivative-based criterion because
the former is intrinsic, I.e., insensitive to the parameterization, whereas the
latter is not. The “smoothing effect” of a second derivative-based criterion
is sensitive to the first derivative of the parameterization, and then may be
anisotropic or heterogeneous.

4.4. The physical objective function

Finally, we state our physical problem as the minimization of overall geomet-
ric objective function @, which is the weighted sum of the above objective
functions Q,(S,T) = Wr.Qr + Wp.Qf + We.Qc, where Wr, Wp, Wi are
weights that represent the confidence we have in each kind of data (the higher
the confidence, the higher the weights).

From a functional viewpoint, the physical objective function is written

Qu(®.7T) =Wr.Qr + Wp.Qb + We.Qc.

§5. The Three Causes for Indetermination

Since there is an infinity of parameterizations describing the same surface,
the minimization of QV(Q.T) is always an ill-posed problem, even if the
minimization of Q,(S,7) is a well-posed one. We call that the canonical
indetermination.
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Besides. the null twistor zeroes Qr for any given surface, hence. the
surface that optimizes Wp.QF + Wr.Qc will always optimize Q. This is
not acceptable because every surface would be a thread in such a case. To
avoid this situation, and to match the definition of a thread. we normalize the
twistor.

Moreover, the given point criterion controls only the normal component
of vectors P;M;, and thus we need to introduce the tangential component of
these vectors.

5.1. The additional criterion

In order to solve the canonical indetermination problem, we introduce an
additional criterion Q 4, which automatically selects one particular parame-
terization in the set of those that describe the optimal surface. This criterion
which is added to @, should not modify the optimal surface (condition 1) and
should be sufficiently constraining to make the problem well-posed (condition
2).

Let us consider the space P of parameterizations, i.e., the set of C*-
diffeomorphisms from the curvilinear coordinate domain U to R*. We define
S as the set of surfaces described by parameterizations in P. We define a
map s from P to § which associates the surface S with a parameterization
® describing S. We define an equivalence relationship ~ on P as follows
D ~ Py <= 5(P1) = 5(Py). Hence. we have S =P/ ~.

Now, we introduce an additional objective function @, which meets con-
dition 2, and we will later modifyv it to make it compatible with condition 1.
Generally, there is no intersection between the set of the critical points of Q,
and the set of the critical points of Qv In other words. the physical solution
changes if we optimize Q, + Q¢ We need to modify Q, to meet condition 1.
Therefore, at any point ® of P. we project the gradient of Q, on the space
T3S tangent to the local leaf S = s(®). It can be shown [3] that there exists,
locally, a function @4 on P whose gradient is this projected gradient.

In practice, we choose to define (), as a second derivative Lo-seminorm
by analogy with the curvature criterion.

5.2. The twistor normalization

To normalize the twistor. we define the objective function
- 1 i o , i o
Qv(®.7) = 5|l [ ITQDI o @lde|dU - | jd2| U]
= Ju JU

Clearly, optimizing this objective function makes the RMS value of twistor 7
on surface S close to 1.
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5.3. The “tangential distance”

To control tangential perturbations of the parameterizations, we define the

objective function

QL(@) = Y IPLRP — P N(M)*.

5.4. The overall objective function

The overall objective function @ is the sum of physical objective function Qq,

and nonphysical objective function WaiQa + WrQn + WVPQ‘}:-

£6. Numerical Examples

We now describe several numerical experiments. First, we solve an approxi-
mation problem, i.e., we optimize the curvature and proximity to data point
criteria. but not the thread criterion. Then, we optimize the surface with
respect to a known twistor. Finally, we solve the inverse problem with both

the twistor and the surface unknown.

6.1. Approximation problem

Fieure 3 gives information about 25 given points F; defined by their Cartesian
coordinates (z;, yi, z;). They are displayed by crosses if z; = 0 and diamonds
if z; = 1. Each point P; is associated with a point M; = ®(m;) lying on the

surface. the curvilinear coordinates of which are m; = (u;, v;). We used these

data points in all numerical experiments.
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Fig. 3. Given points. Figure 4. Approximation surface.

To solve the approximation problem. we simply choose a piece of the
plane as the initial model. Figure 4 shows the result. This surface is smooth.
and as close as possible to data points. Indeed, the RMS distance between
data points and the surface is 0.008 instead of 0.2 in the initial model. Note
that it is clearly not a thread because of the two bumps.
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6.2. Unknown surface and fixed twistor

Figure 5 shows the result of the optimization of the surface with respect to all
the criteria (except the normalization criterion) under the constraint of a fixed
twistor. We used a translation twistor such that T(M) = (1.0.0) everywhere.
The surface becomes almost a cylinder. and the computed striae (dashed lines
in Figures 4 - 6) are almost straight lines. This surface is smooth. and almost
as close to the given points as the surface displayed in Figure 4 which was the
initial surface. Dashed lines in Figure 4 suggest the initial twistor.

Fig. 5. Unknown surface Fig. 6. Unknown surface and twistor.
and fixed twistor.

6.3. Unknown surface and twistor

Figure 6 shows the result of the complete inverse problem, i.e.. the twistor and
the surface are both unknown. After 12 iterations, convergence is achieved
(the gradient is divided by 500,000). This surface is clearly a surface of rev-
olution (and hence a thread). For this twistor. the reduction elements are

T(0) = (1.32,-0.50,0.0091) and Q = (—0.0003.0.0033,0.20). and the axis
A is defined parametrically by A = {1// OM = OA+ uV/ ;i € R} with
A = (-2.20.-6.6.—0.104) and V = (-0.0079.0.082.5.0). The pitch of the

thread is 0.023 (the theoretical value is 0 for surfaces of revolution) and the
thread turns to the right. The RMS value of the (twistor-tangent plane) angle
15 0.15 degree. and 3.5 degrees for Figure 4. We conclude that we found an
optimal twistor which is almost tangent to the surface.

To sum up, a slight downgrade of the proximity and curvature criteria is
compatible with a great improvement of the thread criterion.
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57. Conclusions

Our results demonstrate that it is possible to constrain the shape of faults
with more elaborate geological knowledge than only smoothness and proxim-
ity to data points. The least-squares “thread criterion”, which derives from
the rigid block approximation. 1mproves predictions about the shape of faults,
especially if only a few wells cross it. because a simple approximation may give
inaccurate results in this case. The “thread criterion” yields the direction of
striae as a by-product. The method is flexible with respect to the available
knowledge about the twistor which represents the relative move between the
rwo blocks. Moreover, if a surface is represented parametrically, its smoothing
by the minimization of principal curvatures leads to more satisfying results
than by the minimization of second derivatives because curvature is an intrin-
sic quantity. Besides, the "additional cirterion method” solves the canonical
indermination problem due to the multiplicity of the parametrizations for one
surface. In the future, we plan to test our method with field data. Moreover.
striae measurements could be used to formulate another criterion, if available.
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