110

MINIMIZATION OF GEOMETRICAL CRITERIA
DEFINED ON A SURFACE

M. LEGER
J.M. MORVAN
H. RAKOTOARISOA
M. THIBAUT

M. Leger, H. Rakotoarisoa: Institut Frangais du Pétrole, Direction de Recherche
Géophysique-Instrumentation, B.P. 311, 92506 Rueil -Malmaison, France.

J.M. Morvan: Université Claude Bernard Lyon 1, Institut de Mathématiques et
d'Informatique, Batiment 101, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne
France.

M. Thibaut: L.G.L.T.-C.N.R.S. Observatoire de grenoble, Université Joseph
Fourier, LR.I.G.M., B.P. 53X, 38041, Grenoble, France.



0. Introduction
0.1. Petroleum geosciences and differential geometry

a- Oil

Oil derives from the organic matter contained in some sedimentary rocks
called source rocks if these rocks are sufficently heated, (100 to 1500) by burying in the
first kilometers of the earth's crust. Since some water impregnates all rocks, and since oil
is lighter than water, it usually percolates upwards and degrades at the ground surface.
Sometimes, however, this migration is deviated by impermeable layers and oil may
concentrate in a reservoir below a high of the overburden, which makes an oil trap. Since
oil has no particular physical property which coulde make possible its direct detection by
geophysical methods, oil exploration mainly consists in finding these traps in which oil
could be found by drilling.

b- Sismic exploration

Prospecting for oil involves geologic and geophysical methods. Whereas
physics aim at predicting the effects of known actions on a known system, the purpose of
geophysics is to determine the sytem, knowing the actions and measuring the effects. The
sismic method is almost the only geophysical method which is used in oil exploration
because it yields detailed images of the subsurface in which traps can be recognized.
Sismic exploration consists in sending acoustic waves in the subsurface from many shot-
points, and in recording the echoes a several receiver-points for each shot (for
redundancy and signal-to-noise ratio improvement). A source sends in a see acoustic
waves which propagate in the rocks below and reflect on the layer discontinuities. The
echoes are recorded by hydrophones, (100 or mores) in a streamer which is about 3km
long. Typical shot interval is 25 m. usual maximum depth of investigation is 5 km. The
frequencies of these seismic signals range from 10 to about 100 Hz. In case of a 3D
acquisition, the distance between parallel lines is about 100 m. Seismic velocities range
from 1.5 km/s for water to 6 km/s for very compact rocks. These echoes are due to the
discontinuities of mechanical properties located at the interface between two layers. Since
the beginning, shot locations were organized in seismic lines from which 2D images, or
cross sections, were obtained by various processing techniques. About 15 years ago, oil
companies began to to acquire 3D seismic datasets in order to image exhaustively the
studied structures. This 2D to 3D change was necessary because companies explore oil
fields which are smaller and smaller, or more and more complicated, most giant oil fields
being already discovered. This change was also possible because of the dramatic increase
of the available computiong power. Seismic images are often strongly distored because
the seismic wave propagation velocity field is complicated and poorly known. For this
reason, the accurate determination of the shape of the structure is a difficult problem.

c- Structural geology

Structural geology consists in studying the present shape of the layers
from outcrop observation, well data or seismic image interpretation, and in reconstructing
the history of the structure. After deposition, rocks may be compacted, heated chemically
altered, eroded, folded or fractured. Structural geology specifically studies the two last
transformations, that is, the geometrical aspects of geology. The history of rocks
deformations need difficult and very expensive strain measurements. For this reason, one
prefers to extrapolate general rules from particular detailed studies, which leads
sometimes to the conclusion that deformations are small. However, this "rigid-block"
approximation is often coarse, and the "constant bend- length" approximation is more
realistic. This means that, during folding, hard layers are bent almost isometrically,
whereas weaker layers allow them to slip on each other, For short, sedimentary rocks
behave like a paperbound book. In the context of oil exploration, this knowledge about
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deformations is used to constrain geological structures, as they derive from seismic
imaging, to be more likely.

d- Modeling geological structures
Quantitative managing of geological structure geometries requires their
mathematical modeling. Differential geometry yields nice basic concepts such as surface
or foliations to describe the shape of geological objects and to state the problems related
to them. Thereafter, funcional tools of applied mathematics, i.e. parametrisations in our
case, may be used to prepare the final discretization and implementation.

e- Inversion

As far as structure determination is concerned, these model parameters are
the unknowns. Data are seismic wave traveltimes, geologic knowledge about structure
geometry and velocity field, and observations made in boreholes, if any. Since these data
may be somewhat contradictory, direct methods (operating the data to obtain the result)
are not suitable. In the opposite, we hope that inversion methods will achieve this
synthesis. Basically, they consist in finding a model such that the least-squares criteria
related to the various datasets are optimized. In tomography, or traveltime tomography,
the main dataset contains the traveltimes picked on seismic records.

0-2 The geometric approach

The purpose of this article is to study a particular aspect of the previous-problem.
We give a general frame-work to the problem of determining a parametric surface which
minimizes geometric criteria. By a surface, we mean a 2-D submanifold of a 3-D vector
space, usually the physical space in applications. By geometric criteria, we mean criteria
which describe the shape of the surface, and which are independent of the
parametrisation. We adress the problem of minimizing, under equality (or penalty)
conditions, the norm of the second fundamental form of a surface, which is closely
related to total and mean curvatures. The first version of this prolem is probably due to S.
Germain, about two centuries ago. The same kind of problems were studied more
recently, essentially related with elasticity of membranes. All of them are related to the
classical Hooke's Law, that is the equation:

(* E(S)=[S(a+bH2+cG)dS,

where H is the mean curvature and K is the total curvature of the surface S, which are
symmetric functions of the second fundamental form.

It 1s well known that the theorical problem of determining the existence, unicity
and the value of the minimum of (*} is very difficult. It is obviously related to the famous
theorem of Gauss-Bonnet, (when a=b=0, ¢=1), and to Willmore conjecture (when
a=c=0, b=1). Our approach is much more practical: We would like to determine a
particular parametrisation, whose range approaches, (at least), the expected surface.
Minimizing the norm of the second fundamental form is a priori an ill-posed problem,
since many parametrisations have the same surface as range. Therefore, we need to adapt
the formulation of our problem, and the good tool, which generalises the second
fundamental form of a surface, is the second fundamental form of a map, that is, its
second derivatives. Its decomposition in tangent part and normal part allows to get
interesting results. Practically, minimizing this tangent part, and the second fundamental
form of the surface, yields automatically a parametrisation that solves the original
geometrical problem. Besides, we present partial theoretical results about the existence
and unicity of maps solving this kind of problems.

The plan of this article is the following:
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- In the first paragraph, we set the general minimization problem, and give
typical examples of such a situation.

- In the second paragraph, we give a general method to find critical points
of functionals defined on a quotient of manifolds, which is the case which appears in the
first paragraph.

- In the third paragraph, we describe the main tool used here: that is, the
second fundamental form of a map.

- In the fourth paragraph, we give a fundamental inequality, which relates
the second fundamental form of a map, and the second fundamental form of its range.

- In the fifth paragraph, we expose the problem which we deal with, in
terms of second fundamental form.

- In the sixth paragraph, we restrict our attention to surfaces in E3-

- In the seventh paragraph, we modify the problem into a simplier one,
solve it, and look at the relationship between their solutions. We also remark that we can
get some restrictions on the type of singularities of the limit of a sequence of immersions.

- Finally, we present numerical experiments which illustrate the effect of
minimizing the second fundamental form h of a map, that is, its second derivatives, and

the second fundamental form of its range, plus the tangent part of h.

Figure 1 Offshore seismics. A source sends in the sea acoustic waves which propagate in the rocks

below and reflect on the layer discontinuities. The echoes are recorded by hydrophones (100
or more) in a about 3km long streamer. Typical shot interval is 25m. Usual maximum depth of investigation
is 5 to 10km. The frequencies of thess seismic signals range from 10 to about 100Hz. In case of a 3D
soquisition, the distance between parallel lines is about 100m. Seismic velocities range from 1.5km/s for
water to sbout 6km/s for very compact rocks.

Figure 2 Structoral geology. Afier deposition, rocks may be pacied, heated, chemically altered
eroded, folded or £ d. Structural geology specifically studies the two last transformations.
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1. The general problem

We deal with the following problem : Let (M,g) be a n-dimensional Riemannian
manifold. Let {m,.....,m,} be k points of E"*P. Let 9m be the set of all G*immersions
y of M into E™"" endowed with the following relation ...

n+p

Yy~ W, & (M) = yy(M)
Let F be an operator defined on 9m/..
1.1. The Problem ()
Does there exist an unique class of G2 immersions ¢ in 9m/..., such that
F(9) =inf,, g/ FCW),
and
¢ satisfies the constraint (C) : m; € ®(M), Vje (1,.k}.

Of course, this problem is very difficult in general. It can have no or many
solutions, depending on the dimensions of M and M, F, k, and the positions of the
points my,....,my.

1.2. Examples of problems

ayM=[0,1]; p=1;k=2.
F(y) = IM KI(y)ds ,

where K(y) is the curvature of the curve y([0,1]). Then (%) has an infinity of solutions :
9([0,1]) can be any segment which contains m; and m, .
BM=[01]; p=1;k=3.

Fy) = | IKiyds,

where K(y) is the curvature of the curve y([0,1]). We assume here that {m,m,,m,} are
not in same straight line. This problem has no G2-solution.

1.3. Examples of operators F

Since we are interested in the shape of the submanifold w(M), we can use the
second fundamental form h of y(M) :

a) We can take F(y) = J Ihi*dv, or more generally,
M



Fy) = j,w(nhuz +IIVhIP +....+ IV ORI dv.

(See the following paragraph, for details on the definitions of h andV®)).

b) We can also specify particular geometrical objects :
Let £ be a normal vector field over M, and hg be defined by

hg (x,y) = <h(x,y),&>.
Consider the polynomial function of variable t, defined by
P(t) = det(Id + thg).
We can write
P)=1+kt+kt2 +...+ktn,

where k; , k,..., k; are symetric functions of the eigenvalues of hg. In particular,

k; =n<H, §> k;=deth.
where H is the mean curvature vector field of yw(M). Now we can put

F(y) = _[M(oclklip‘ + BlkyP2 4.+ wlkp P23 dv

where {a, ..., w} are constants, and {p,....pn.q} € @.
¢) A simple example of the situation b) is the case of surfaces S in [E’,

v:S— E>.
Then,

F(v) = [ (i’ + BIK) da

where H is the mean curvature vector field of y(S) and K is the Gauss curvature of y(S),
endowed with the induced metric.

d) Remark that for a closed surface S in E>, the number
Fy) = [ K ds = x(5)

is a topological invariant , independant of . In this case F is constant.
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2. A method of studying critical points of F

The problem of finding a solution to ® in the quotient 9m/.. being too difficult,
we shall restrict it to the local problem of finding critical points of F. Theorically, it is

well known that the quotient 9m/. has a complicate topological and geometrical

structure. However, the space 9m has a simple structure of infinite dimensional manifold.
On the other hand, practically, in order to exhibate a surface, we are often lead to

construct a parametrisation of it. That is why, instead of working in 9m/., we prefer to
work in 9m. Of course, we need to show that the solution found in 9m, projected in
dm/.. , gives a solution in 9m/.... This is the purpose of this paragraph.

Working with differential technics, we need to assume some assumptions on the

regularity of 9m/.. and the surjection between 9m and dm/.. . Since our problem is local,
we assume that we work on open sets which have a differential structure, and such that
the surjection is a (smooth) submersion . So, this geometric frame leads to set the

following two lemmas. The first one claims that the projection of a critical point in 9m
gives a critical point in 9m/..This is enough if it is easy to find a critical point in dm.
However, to exhibate a particular critical point in 9m, it may be interesting to modify the
function F. We show that, by suitable modifications of the function defined on 9m, a
critical point found in 9m for this new problem gives a critical point for the first function
in 9m. We state now the two lemmas:

2.1. Lemma

Let M, N be two manifolds, and s be a submersion from M to N. Let F be a &
map from N 1o R. Let m € M be a critical point of Fes. Then s(m) is a critical point of F.

2.2. Proposition

Let M, N be two manifolds, s be a submersion from M to N, F be a real T!
function on N. Let f be a real T! function defined on M. We denote by I the foliation

defined by Ker(ss), and by @ anv complementary distribution of TTI in TM. Let @ be
the differential one-form defined on M by :

w=df on TTN
w=0on Q.

Let m € M such that

O +d(Fos), =0
Then sim) is a critical point of F .
2.3. Proof

The first lemma is obvious. We only prove the proposition .



Let n = s(m). We shall prove that

d(F o S}m =0.
Lety € TN, and z € § such that
dsp,(z) =y.
We have
0,(z) =0.
and then,

d(Fos)y(z) =0.
The first lemma implies that s(m) is a critical point of F.

3. The notion of second fundamental form

The operators that we shall study in this article describe the shape of
submanifolds. So, they are much related to the second fundamental form of them.
However, we have seen in the previous paragraphs that, instead of working with the
submanifolds itself, we need to work with the immersions. Then, we need to use a
generalisation of the notion of second fundamental form of a submanifold, which is the
second fundamental form of a map. This object has been studied by J. Eells, [Ee], in his
work on harmonic maps. We give here a brief summary of the basic definitions, and
relations between these two notions. (See [No] for a general study).

3.1. Second fundamental form of a submanifold

3.1.1. The general theory

Let
i:(M, g)— (M, g)
be an isometric immersion of a n-dimensional Riemannian manifold (M,g) into a
Riemannian manifold (M'.g"). We denote by V.R, (resp. V', R'), the Levi-Civita

connexion and the curvature tensor on M , (resp. M'). Let h be the second fundamental
form of the immersion. h is a symmetric tensor which takes its values into the normal

bundle TML:

h: TMxTM — TiM
h(xy)=V'yy-Vyy, ¥x.y e TM.

For any £ € T1M, we put
<Ai(x),y> =<h(x.y), &>, ¥ x,ye TM.

(Ag is the adjoint of <h(.,.),5>).




118

= %Trace(h) is the mean curvature vector field. It is well known that H = 0 if and only
if M is minimal (for the volume).
The Gauss equation relates R, R'and h :

<R'(x,y)z,w> = <R(xy)z,w> - <h(x,z), h(y,w)> + <h(x,w), h(y,z)>
3.1.2. The case of submanifolds of E™,
Suppose that M' = E™, Let r be the scalar curvature of M :
r =Zi‘j <R(ci,cj3cj,ei>)

where {ei,ej} is a local orthonormal frame over M.

We deduce from the Gauss equation:
c=H - lIni’.

In particular, if M is a surface in E3, its Gauss curvature K satisfies:

2 2
K =H"- Il
wherellhl*= Z;; <h(e;e)), £5>2

where (¢;) is an g-orthonormal frame on M, and (&) is an orthonormal frame on E™,
3.2. Second fundamental form of a map

3.2.1. Classical fiber bundles induced by a map

Let M, M' be two differentiable manifolds. Let

f:M->M
bea G° -map, (k 2 2).

3.2.1.1. The fiber bundle -1(TM")

We denote by £"}(TM") the pull-back of TM' by the map f :

f(TM") ™'
l 1

M - M'
f
The basis of this bundle is M, and the fiber over a point me M, is TymM'. A oP-
section of
f-ITM",
is called a GP-field along f. In particular, every field x on M spanns the field f,(x) along
f, defined by:
£, = E)n(On




Moreover, every field X' over M" induces a field f.(x") along f, defined by

£,y = X'fm)-

3.2.1.2. The fiber bundle f.(TM)

We denote by f.(TM) the fiber subbundle of f-1(TM’), whose fiber at the point

mis fu(T M).

3.2.2. Canonical connexion on f*{(TM'). [Li]

3.2.2.1. Proposition

Let (M, g) et (M', g°) be two Riemannian manifolds, endowed with there Levi-

Civita connexion ¥V, V.
Let

fiM—-M

be a G - map, (k 2 2).

Then, there exists an unique linear connexion V'over f-1(TM') such that, foreveryX €
TM, and every vector-field Y' over M', we have:

Il A b A A8 i

V%€ = [Vt (x)¥ Trenmys
(if &' = (y").

The proof of this proposition can be found in [Li].

3.2.2.2. Definition

The connexion V' is called the pull-back of the connexion V'

3.2.2.3. Local expression of v

Let (x1,.xi, ...xm), (resp. (y!,..y%, ...y™)) be local coordinates over M,

BN L

(resp. M'). Let g; =i yi=1,.,m, (resp. 9'y

oXi

na } be the vector fields associated to
d

o
these local coordinates over M. (resp. M), let (y;%),, = (%y—}m be the Jacobian matrix of

f at m., and aziiy.r = 9
o axiaxj‘
If x = xiy;, &'=06%,, then

T s B B UL

be the Hessian of f at m.

V' &' =xi(g97 5; + )’;“fbﬁrlﬂ}a'y.
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where l"lﬁ are the Riemann-Christoffel symbols of V.

In particular, if &' =f,(y), we get:

V'xE' = xiyi(y" + v, y;P F'la)a'«, + X1 9yl 9;y79'y-
3.2.3. Definition of the second fundamental form of a map

In the following, we shall assume that (M, g), (M', g') are two Riemannian
manifolds and fisa G~ -map of constant rank, (k = 2):
f: (M, g)— (M, g).

3.2.3.1. The connexion V_’

We denote by V the connexion which is the direct sum of Vand 6', défined on
™ @ {-1{TM). We have:

(VE(xy) = V'ixfu(y) - £:(Vyy)
3.2.3.2. Definition

The symmetric tensor

h: TMxTM — TM'
defined by

h(x,y) = (VE)(Ly), V x, y € TM,
is called the second fundamental form of f.
3.2.3.3. Expression in local coordinates

Using the usual notations , we get:

h(x,y) = xiyl(y;7 + y,* y;P I“‘zﬂ : Yx"fl“fj )3y

3.2.4. Composition of maps

Let (M, g), (M, g") and (M", g") be Riemannian manifolds.

f:(Mg) = (M'.g),
£:(Mg)— (M"g")
be two maps of constant rank, of class t¥k22)and T k' 22) respectively.

Leth, h'eth" be the secund fundamental forms of f, f’ et f'of respectively.



Then,
h"(x,y) = £x[h(x,y)] + h'(£«(x),E:(y))-

The proof can be found in [Ee-Le].

The local expression of h" can be easily given, By using the following notations:
f(xi) = y* ; f(y?) = 2%,

we get:
h*(xy) = xiyi{zVypi ¥a + ¥ii® 2.7 + 2% y;2 7 ijr"la " Z,! Ykar; 13y -

3.3. Canonical decomposition of an immersion
(A detailled exposition of this paragraph can be found in [No]).

Let
f: (M, g)—> M, g)

be an immersion between two Riemannian manifolds.

The submanifold f{M) in M' can be endowed with the metric g/, restriction of the
metric of M’ on M. We get obviously the following diagram, where f, is an isometry :

;
Mg - M)

Id\ A,
(M, £*(g9)

Applying 3.2.4.1, we obtain, with obvious notations :
h(x,y) = i, [ha()] + hy(xy)

where hyy is the second fundamental form of 1d,
where h is the second fundamental form of f;, and where we identify x and [d.(x).

We put :
hg =f; .0 hyg.

3.4. Geometrical interpretation

The decomposition:

is interesting for it separates directly the geometrical and analytical properties of f.
Roughly speaking, we can say that:
- h; measures the shape of f(M) in M’
- hy measures how M is sent onto {(M).
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Using this point of view, it is clear that h, does not depend on the parametrisation, and h,,
does not depend on the shape of f(M). Consequently to control the shape of a
submanifold in M', we need to control h;. If we consider a parametrisation

6:E*> E’
of a surface into [E*» we can control the shape of ¢(IE2) with the following technique :
2
1- Compute D¢ = h.
2- Decompose D% into hg + h;.
3- Control h;.

However, we must be careful on the fact that we never consider the particular
problems which appear on the boundary. They need a particular treatment. On the other

hand, we must also be careful on the fact that if hdepends only on the shape of ¢(U), its
norm |l h1112 depends also on the metric g, since
hyli*= %,; <h(ese), £q>2

where (¢;) is an g-orthonormal frame on M, and (&) is a g-orthonormal frame on M'.
4. The fundamental tensor inequality

In this paragraph, we compare the norm of the second fundamental form of an
immersion, and the norm of the second fundamental form of its range. Let f be an
immersion from (M, g) to (M, g'). We put, (with the notations of § 3 ):

where hy, is the tangent part of hy, and hgpy= hy, is the second fundamental form of the
submanifold f(M) in (M, g'). We put:

2 2
(llh_;oll(g.g-)) = Ei‘j_u Chfo(ei.ﬂj), eubg. ),
2
(Mgl g g9)” = ;.0 <hleye), eq>g),

2
(”hf{M)Hg') :Ei,j,l:l'. {hffM)(ci‘ej)‘ eu>g.2),

where {e;} is a g-orthonormal frame over M, {e,]} is a g'-orthonormal frame over M',
{e;} is a g- rthonormal frame over of Tf(M), {e,] is a g'-orthonormal frame over of
TLE(M).

We shall prove the following
4.1. Theorem

Let (M,g), (M'.g') be Riemannian manifolds. Let a, A be two positive constants.
Let

f: (M, g) »M', g

be an immersion such that, at each point,




a< I <A Y xe TM, Ixl = 1.

Then, there exist two positive constants c, C (depending only on (a, A)), such that, at
each point,

2 2 2 2 W 2
“hfo"(g.g‘] +Cuhr{M)“g' < th"(g‘g-) < thﬂ"(g,g') + C“hf{M)dg- 4

4,2. Proof of the theorem

Consider the decomposition of ¢ given in § 3:

=]
M,g) —= M.g)
Id N l o
(M, o*(g"))

It induces the decomposition
h¢ =h¢0 + h@(M]‘
QObviously,

Ihellg gy = Mhglghiggy” + Thouylieg)”

Let us look at each term (hg(M))ij*

‘We have:
(hoomy)i®= <hy(€;.8i)€0>g = <hymy(€isC;): g

If we assume that there exist two constants a and A such that
as< lo,(e)ly <A, Vi,

we obtain the result.

5. The global problem

5.1. The global frame-work

Let (M.g) be a n-dimensional Riemannian manifold. We denote by E the trivial
vector bundle over M, whose fibers are the Euclidean spaces E"*P. and by L(TM, E) the
space of fiber-homomorphisms beetween TM and E. L(TM, E) has a canonical
Riemannian vector bundle structure over M given by

<A B> = TraceA'B

It is endowed with a canonical connection given by:




(VxA)y) = V'x(Aly) - A(Vyy)

where V, (resp. V") is the Levi-Civita connexion on M, (resp.E™*P).
If ¢ is an immersion (or any map),
o: Mo E™P

we can identify ¢ with a section of E. Let T (E) be the space of B sections of E. We
can define VE € G™(L(TM,E)), and by induction,

VE e T (UM, E)),
where Lj(TM,E) denotes the space of j-linear vector bundle maps between TM and E.
L)(TM,E) has a standard Riemannian structure, and we can define the norm CK(E} and
LP(E) by:

IElco = Sup, _, 15

k k
"gllck = E]ﬂllv &Ilcﬂ = E‘Jﬂ( SupXEMIV E‘.lcﬂ
wiP k. p
IEI° P = Big jM(rv er).

G~ (E) is not complete for these norms. We define Ck(E) and LP,(E) as the completed

spaces of G~ (E) for the norms Il,ﬂck(g) andII‘IIka(E), respectively. (As usual, we put

H, = Lzm). The Sobolev inequalities give

LP.(E) C G%E),

as soon as
koD g
n+p
In particular, if n = 2,
H, < T%E).

5.2. The minimisation problem

Let
o:(M, g)—> E"?P

be an immersion, and hg be its second fundamental form. In general, ¢ is not isometric.
So we define on M the new metric

g =9¢"(<>),
where <> is the standard scalar product on E™*P,




6: (M, g)—> E™

is now an isometric immersion. We denote by hyy, its second fundamental form. Using
the metric g', we can introduce

]Ih¢,{M)ll 2[_ "= jM]Ihq’(M)ﬂzg-dv,
(where the norm is computed with respect to g°).
If T is a set of constraint, the minimisation problem can be stated as follows:
5.3. Problem (%)

Does there exist an unique class of T -immersions ¢, in 9m/~, such that ¢ satisfy the
constraint G, and

Iyl = infpe gm/~Ihgonnll-

6. A study of the problem (%) for surfaces in E°>.

In this paragraph, we precise the problem ® as follows: Let 4m/.. be the set of all
%% immersions of U into E?, where U is a bounded domain of E? (with smooth
boundary). Let F be the operator defined on dm/.. by

F(0) = juuhw % da,

where hy is the second fundamental form of the submanifold (‘L) in E> I
denotes the norm in E°, and da is the area element of ¢(U). Let {m,,....my} , k=3 be k
points in E’.

6.1.Problem (%)
Does there exist an unique class of immersions ¢ in 9m/~ , such that

m; € 6(W), Vie{1....k},

2 v 2
_Luﬂh,b(u JPda=inf o g0 j,"j'uuh\MJL W da.

(where §I
“h\P{'U. }HL = 2” (h\pf'l.l )(Ei’ej}‘€'3>‘ g

with the previous notations).




First of all, to approach this problem, we shall compare hyq, and the second

derivative of y . Then, we shall solve a problem ® which is closed to P,

6.2.Decomposition of the second derivative of an immersion of a surface
.3
inE

Let U be a domain of E2, and
0: U — E’,

be an immersion. Let (e, e,) be the standard (orthonormal) frame on U, and
(€1, €7, €3) be an orthonormal frame over ¢(W), such that (g, €,) is tangent to ¢(‘U), €
is normal to ("W). We denote by

(h\p')iju = chw(ci,ej),eu>.

We have:

a2y (hy)*y (hy)%
BKEBYJ' (hv)ulz (hw)u:ﬁ
‘With the notations of 2.4.2, we can write

¢=fpold,

(where f, is an isometric immersion), and

h¢ = hﬂ + hl'
with
Prrpanyt = F1° ha =fo,
pr‘rlﬂu )h = hl= h@{u )

9%
axdy;

The "shape of &(U)" is controlled by h3¢, that is , by

6.3. The frame-work

Let U be a bounded domain of E*, with smooth boundary 0'U.
Leti={i}i} be a couple of positive integers.

We put



We introduce the spaces

LY(U,E? = {f: W — E?, f mesurable, such that juaf(_u)lﬁdu <)
endowed with the L*-norm LIy, defined by
il = Irdw?
U u

and the space
HY(W.E? = {(fe LAW,E?), Vi, li< 2, D'f e L3(U,E>)}

endowed with the H*-norm ILIl_ - defined by

Il = (Tpen ID'AIRYY?
yq ~ <2

(HA(U,E>), 111 u} is complete, and by Sobolev inequalities,
2,
H (U B’ c %u EY).

Finally we need to introduce the semi-norm || o of length 2 defined on HA(U,E®) by

ilo : H(UW.E’) - R*
£ = Iy

where _
Ifl 4 = Eyyiez i|DIﬂI1)“2, v fe HY(W.E 3)‘

we get
Wl T o M ey 503
We shall prove the following

6.4. Theorem




Let U be a bounded domain of E° Let {ay . ak), (k23), be k points of U.
Assume that the points a; are not aligned.Then, there exists two constants C; and C,
such that

C il oy < [101%5 oy + Z1<klf@P1"? <C,ligll, oy, ¥ 6 € HA(U,E?).
We need the following

6.5. Lemma

Let faj], (i = 1,...,k), be k points of U, such that at least three are not aligned.
Let L, I<i<k, be the linear forms defined on H* U, R) by

Ly(f) = f(a), ¥ f € H(W,R).

Let f be a polynomial of degree <1 on U.Then
ZiglL(@)’ =0 0=0

6.6. Proof of the lemma
First of all, L; is well defined since
H (U B c 8% E).
HE 4iL(0)2=0,thenLy(p)=0, Vi, 1=i=k.

This implies that ¢(a;) = 0,V i, 1< i <k. Since ¢ is polynomial of degree <1, and three of
the points {a;} are not aligned, this implies that ¢ = 0. The converse is trivial.

6.7. Proposition

Let U be a bounded domain of IE2. Let P, be ihe space of polynomials of degree
=1. Let f;, 1=i =l be functions defined on H(U,R) such that, for every
we Py

L4 @)= 0 & o =0.
Then, there exists nwo positive constant C; and C, such that
. 12 :
Cliivlly = {Ivilz‘u + Z1<ilf(w)iZ] <Gilivilp g , Vv e H2(U,R).

“We do not give the proof of this proposition, which is an obvious consequence of a well-
known theorem of equivalence of norms. (See [Ne] p. 110-111).

7. A problem P .closed to ®.
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; Before working on P, we shall use the previous results to solve a problem ® ,
closed to ®. We have the following

7.1. Theorem

Let U be a domain of [E? (which smooin boundary). Let {ay,....ax} be k points
of U, (k23), such that three at least are not aligned. Let {x],...,.xJ be k points of E%.
Let

o = {f e HA(W,E?), f(a)) = xi}.
Then the problem P : "Find fin O such that

[ 0yldu=int, | 10,0 du"

u - Q- u ”

has a unique solution.
7.2. Proof of the theorem

Let
F(9) = Z|is=2j,u 163,04 1°du.

€1 is an affine space on which
F(0) + Z, 0@l =0 q,

Then, up to a constant, F and IL.IIZ, ¢, coincide on Q. The solution of the problem of

minimizing lIlI2, ¢, in & exists and is unique. Then P has an unique solution.

7.3. Remark on the theorem

The solution of ® exists and is unique. However, we don't know if ¢ is a Clor
2 -immersion. We oniy know that o € HA(W,E?).

7.4. Relations between ¥ and P
Let y be an immersion

Wil — E’
We know that

2 . .
Dw = h‘# = h"e’ﬂ + n..ﬂu )

B e i o b GGt b
e
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Then,
2w 2 2
IDyll* = llh%H + iy~

and
WP .du = [ Iyl gdu + fuuhw(muz(g,g-).du.
On the other hand, we have seen that, under the condition:
asily(x)Il<A,¥x,Ilxll <1,
there exists two positive constants ¢ and C such that
j'u|1h‘,_,0;iﬂ.glg.1du + cjuflhw(M)illg-du < ] Mg godu + CIullhw(u)Ilzgdu.

Consequently, using the previous paragraph, we deduce that, if o, B, ¥ are three positive

constants, there exists two positive constants, b and B, depending on (a,A,a.,B.y) such
that:

blil, o < a.Sicy ly(xi)l? + Bjulihwilz(g’g.)du + yj'ulzhwmnzg,du

< Bliyll, o
So we can state the

7.5. Theorem

Let a, A, a, B, v be positive constants. Let v be an immersion belonging to Q,
such that

A<y (IS A,V x, lIxll <.

Then, there exists two positive constants b and B, ( depending only on (a, A, &, 3, ),
such that

bilyli%y oy < aZjey hy(xp)l + B juuh%uz{g’g.)du * 7jullhwmlizg-du < Bliyii% o,

Now we remarx that we can find a minimizing sequence y, for ® in & , but we
don’t know if this sequence minimizes ®. More generally, we don't know if there exist
minimizing sequences for ®. However remark that

llhy a3 l1°.du
J-(u wiw) g

is defined on 9m/~ , and that




J

is only defined on 9m. Then, we can apply our method of finding critical points of

]
o rdu

2
f hyewi’gdu

to the function f defined by

£9) = [y g0

Finally, remark that the term
2
Julthwil pdu

is defined on 9m/~ , (and can be interpreted as an F, in the terminology of §.2). On the
other hand , the tangent part h‘FD can be interpreted as @, (with the same notations) since

any "normal perturbation” does not affect it. So we can apply our method of finding
critical points to

F={ llhyq)iFedu,
j'U. V‘:'u-) &
by finding the zeroes of  + dF.

8. Remarks on the singularities of the limit of a sequence of immersions

We have already seen that the limit of a sequence ¥, of immersions may have

singularities. To find them, we can add assumption of on the curvature of each y,. (The
reader can consult [La] for a study of this point of view). In fact, the type of singularity
depends on the behaviour on the induced metric on the sequence of surfaces The
following theorem, essentially due to S. Gmira [Gm], gives an exemple of this
phenomena:

8.1.Theorem

Let
f:D— E’,
be a sequence of conformal immersions, defined on the unit disc DC 3, such that

i) (f,) converges uniformally G over any compactio f, where f is a non constant

map.
ii) the sequence of Gauss map ( G‘,-ﬂ ) associated to (f,,) converges uniformally over

any compact.
Then f does not admit any isolated singuiarity.

8.2. Sketch of proof

AT bR it

el i o =




Let
f,:D—- E’,

be the converging sequence. We put

En = fre(Bp) :)'ng()v
where g, is the standard metric on D. We need the following
8.3. Lemma

Let ky, be the curvature of the metric g,. Then, there exists a positive constant C
such that, on a neighborhood of 0, we have

n

ki< <& VneN.
)\'I‘l

8.4. Proof of the lemma
Consider the sequence

G :D — AXE)

m = (fra(e)Afe(es))n

{where {e,e,]} is an orthonormal frame of D , and Az(]E?') denotes the space of two-
vectors in [E”). The second fundamental form of fy is the normal part of(an). From the
assumption we deduce that there exist a constant C, such that
C
oyt < =1
n

on a suitable neighborhood U of 0. Using Gauss equation, we deduce that, on this
aeighborhood.there exists a constant C such that

ki< =

n
So the lemma is proved. To end the proof of the theorem, we remark that

Alog(A,)
0 A

n

Suppose that 0 is an isolated singularity, and apply Green formula in a pointed disc
D\{0}, included in U. We get a contradiction.

8.5. Remark on the theorem
A more general theorem of this type can be found in [Gm)]. For the case where f,,
is pseudo-holomorphic, see [La), from which the technic is transfered.
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X,¥, 2. Cartesian
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} coordinates of the data points

0.10 250 4.90 0.10 2.00 3.9y
0.05 1.25 2.45 0.05 1.00 195
0.05 1.25 2.45 0.20 4.00 7.80)

FIG. 1. Coordinates of the data points used in Figures 2a 1o 2f.

FIG. 2. Comparison between the minimization of curvature (a, ¢, ¢) and second derivatives (b, d, ).
Surface boundaries in dotted lines. Contour interval in z: 0.05. First contour at z=0.




Here is an example of application of the technics that we have described in this
article. Different curvatures are minimized to get a foliation of surfaces from which
four leaves are visualised.
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