J. Math. pures et appl.,
66, 1987, p. 321 a 335

GEOMETRIE
DES SURFACES LAGRANGIENNES
DE C?

Par Bang-Yen CHEN et Jean-Marie MORVAN

Dédié au Pr. André Lichnerowicz, a
I'occasion de son 70° anniversaire.

Introduction

Soit C? le plan complexe, muni de sa structure complexe canonique J et de sa structure
symplectique canonique Q. Une surface M de C? est dite lagrangienne si Q(x, y)=0 pour
tous vecteurs x et y tangents & M. Dans ce cas, le complexifié TM®C du fibré tangent
TM est trivial. Réciproquement, un résultat de Gromov [Gr] implique que si le complexifié
du fibré tangent a une surface est trivial, alors cette surface admet une immersion
lagrangienne dans C?. Par suite, la nature topologique des surfaces lagrangiennes de
C? est parfaitement déterminée. On connait cependant peu de choses des propriétés
riemanniennes des surfaces lagrangiennes de C2. Dans cette direction, un résultat bien
connu est que la courbure de Gauss G d’une telle surface égale sa courbure bormale GP,
(puisque le fibré tangent et le fibré normal a la surface sont isomorphes). Dans cet article,
nous étudions la réciproque de cette propriété et introduisons un tenseur #, défini a
partir de la seconde forme fondamentale de la surface. Nous obtenons alors le résultat
suivant : si une surface analytique M de espace euclidien E* est telle que G=GP et
H =0, alors il existe une structure complexe J sur E* telle que M soit lagrangienne
relativement a la forme symplectique Q associée a J. L’idée principale de la démonstration
est la suivante : La grassmannienne G (2,4) des deux plans orientés de E* a une décomposi-
tion bien connue G(2,4)~S?xS? comme produit de deux sphéres. Nous remarquons
d’abord que cette décomposition a une connotation symplectique, puisque la premiére
composante S* du produit S? x S? peut étre considérée comme Iespace des structures
symplectiques positives sur E*. De cette fagon nous pouvons montrer que M est lagran-
gienne relativement a une structure complexe quelconque J sur E* si et seulement si
I'image de v, appartient & un grand cercle de S?, (ou v, désigne la premiére composante
de l'application de Gauss v=(v,, v,) de M dans S* x S?). Dans ce cas, le rang de v, est
évidemment inférieur ou égal a 1. Comme I'ont remarqué D. Hoffman et R. Osserman,
cette condition équivaut a G=GP[7]. La nullit¢ du tenseur # implique alors que
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322 B.-Y. CHEN ET J.-M. MORVAN

'application v, est totalement géodésique. Ainsi, I'image de v, appartient a un grand
cercle. Comme application de notre résultat, nous obtenons qu’une immersion isométrique
lagrangienne d’une surfacé simplement connexe et plate de C* est homotope a I'immersion
standard (totalement géodésique) de cette surface, a travers des immersions isométriques
lagrangiennes a un déplacement prés. Nous montrons également qu’une surface minimale
de E* est lagrangienne relativement a une structure complexe de E* si et seulement si c’est
une courbe complexe relativement a une autre structure complexe. Remarquons enfin que
image v, (M) d’une surface M appartient a un hémisphére ouvert de S” si et seulement
si il existe une structure complexe sur E* telle que la surface ne possede aucun plan
tangent lagrangien relativement a cette structure. Nous en déduisons des restrictions
topologiques et géométriques sur une telle surface.

Une partie de ce travail a été effectuée alors que le second auteur était invité a
Michigan State University. Il profite de cette occasion pour remercier ses collégues du
Département de Mathématiques pour leur hospitalité.

1. Géométrie de A% E*

Soit (E*, ¢ , ») Iespace euclidien de dimension 4. Soit A E* I'espace des 2-vecteurs
de E* A?E* est un espace vectoriel de dimension 6, muni d’un produit scalaire défini
par

(xAy, zaw =X, 23y, wy—<x, wH<{y, z).

Soit V=x Ay un 2-vecteur unitaire décomposable. V définit un plan orienté de E*,
noté également V. Réciproquement, si V est un plan orienté de E*, et (x, y) est une base
orthonormée de V, alors x Ay est un 2-vecteur unitaire décomposable. De cette fagon,
on peut identifier x A y avec le plan orienté associé dans E*. Supposons E* muni d’une
orientation weA*(E**. Si V est un plan orient¢ de E* nous notons V* le plan
supplémentaire orthogonal & V, dont I'orientation est déterminée naturellement par celle
de V et celle de E* Si P est un 2-vecteur unitaire décomposable, nous notons P* le
2-vecteur unitaire décomposable correspondant au supplémentaire orthogonal de P
dans E*.

1.1. GEoMETRIE DE G (2,4).

DeriNiTION 1. — Soit (E*, ( , )) 'espace euclidien muni d’une orientation ® € A* (EM*.
Soit V un 2-vecteur unitaire de A* E*.

(i) V est un 2-vecteur symplectique positif s’il existe un 2-vecteur P décomposable, de
longueur 1/2, tel que V=P+P*.

(i) V est un 2-vecteur symplectique négatif il existe un 2-vecteur P décomposable, de
longueur 1/2, tel que V=P—P*.

Notons S% (resp. S%) I'espace des 2-vecteurs symplectiques positifs (resp. négatifs),
dans A2E*. Notons G (2,4) I'espace des deux plans orientés de E*. Nous aurons besoin,
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GEOMETRIE DES SURFACES LAGRANGIENNES DE C? 323

dans ce qui suit, de préciser la décomposition bien connue de G(2,4) (cf-[5], [7], [8]) en
termes de 2-vecteurs symplectiques.

PROPOSITION 1. — Soit (ey, e,, €3, e,) une base orthonormée et orientée de E*. Notons
P le sous-espace vectoriel de A*E* engendré par les 2-vecteurs symplectiques positifs
{1/2(e; ney+esney), 1/2(e; nes—eyney), 1/2(e; ney+e,ne3) ). Notons N le sous-
espace vectoriel engendré par les 2-vecteurs symplectiques négatifs {1/2(e; Ae,—esz ney),
1/2 (e;nes+e,ney), 12 (eyne,—e, nes)}. Ona

(i) A’E*=P@®N, la somme directe étant orthogonale.

(i) Si Q=Q;+Q, est un 2-vecteur unitaire décomposable, tel que Q,eP et Q,eN,
alors Q*=Q, —Q,.

(iii) S2 est une 2-sphére de rayon l/ﬂ dans P, et S* est une 2-sphére de rayon 1/\/2
dans N.

(iv) L’application j : G (2,4) » A>E*=P@®N, définie par
Jj(P)=1/2[(P+PH)®(P—P)],

induit une isométrie de G (2,4) sur S% x S2.

Démonstration de la Proposition 1 :
(1) est trivial.

(i) Soit Q=Q,+Q,, avec Q,eP, Q,eN. On peut décomposer Q de la fagon
suivante :

Ecrivons
Q,=a(e;rneytesne)+b(egres—ey Aey)+c(eg Aeg+e, Aey),
Q,=0a(e;re;—ezne,)tPBlegneytey ney)+y(eg Aeg—ey Aey),
oua, b, ¢, a, B, vy sont des réels.
On a alors
Q=(a+a)e;ne,+(b+P)eynes+(c+V)e ne,
+a—a)esne,+(b—B)eyneg+(c—v)e, nes,

avec

(1) { (a+o)(a—0)+(b+PB) (b—P)+(c+y)(c—7)=0

@+ +@B+PB>*+(Cc+y)2+@—a)2+(B—PB)2+(c—7)=1.

Remarquons que les coefficients de la décomposition de (Q, —Q,) dans le repére (e, Ae,,
e, nes, e Aey, e, Aes, €, Ae,, e5Ae,) satisfont exactement la méme condition (1). Ainsi,

Q, —Q, est décomposable et |Q, |=|Q, | Ceci implique que (Q, +Q,) et (Q, —Q,) sont
orthogonaux dans A? E*. D’autre part,
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324 B.-Y. CHEN ET J.-M. MORVAN

(Q+Q) A (Q—Qy)=a’+ a2+ b2+ P+ +y2=|| Q||> #0.

Par conséquent, Q, —Q,=Q".
(iii) Soit V un vecteur symplectique positif. Ecrivons V=Q+Q", ou Q est associé a
un plan orienté de E*. Utilisons la décomposition (i) et (ii). Nous avons :

Q=Q1 +Q2’ leQl_er

avec Q;eP, Q,eN. Ainsi V=Q+Q*=2Q, eP. Inversement, si V est un vecteur de
longueur 1 \ﬁ dans A E*, qui appartient & P, nous pouvons écrire :

V=a(e,ne,+esne)+b(e,nes—e, ne,)+c(e, Ae,+e, Aey),

ou a, b, ¢ sont des réels tels que a®+b*+c2=1/2.
Soit V'=a (e; ney—esne,)+b (e nes+e,ne)+ce (e Aey—e, Aey).

Nous avons
V+V'=e, A(ae,+bes+ce,).

Ainsi, V4V’ est décomposable, et, en utilisant (i), (V+ V")t =V —V’. Par suite, V=1/2
(V+V)+(V+V)L

Ceci prouve que V est un vecteur symplectique positif, d’ot nous déduisons que S2
est la sphére de rayon 1/ \ﬂ dans P.

(iv) Est une conséquence directe de (i), (ii) et (iii).

Remarque. — Dans la suite, lorsqu’il n’y aura pas de confusion possible, nous iden-
tifierons G (2,4) et j (G (2,4)).
1.2. LES GRASSMANNIENNES LAGRANGIENNES ET COMPLEXES % (C?) ET % (C?). — Soit C?

le plan complexe muni de sa structure complexe J, de son produit scalaire habituel ¢ , »,
et de sa forme symplectique Q définie par

Q(x’ y):<x’ Jy>

pour tous vecteurs x, y de C2. Un sous-espace vectoriel de C2, de dimension réelle 2 est
dit J-invariant s’il est stable par J (i.e. xe P=J xeP). Un sous-espace vectoriel P de C2,
de dimension réelle 2, est dit Lagrangien, si JP est orthogonal & P (i.e. xe P=JxePb).
Notons % (C?) [ou % (E* J)], l'espace des plans J-invariants (orientés) de C2. Notons
Z(C? [ou Z(E* J)], 'espace des plans lagrangiens de C2. De fagon claire, on a
F(CH=G(2,4) et Z(C>)cG(2,4). La proposition suivante décrit les inclusions
precédentes, en utilisant la décomposition canonique de G (2,4) comme produit de deux
sphéres (cf. §1).

ProposiTION 2. — 1. (i) L’espace #(C?) des plans lagrangiens orientés s'identifie a
S' x S, ou S! est un grand cercle de S*.

(ii) L’espace € (C?) des plans J-invariants munis de Iorientation induite par celle de C2,
s'identifie a { pt } x S%, ou {pt} est un point de S>.
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2. Réciproquement :

(i) Soit S' un grand cercle de S*. Alors il existe sur E* une structure complexe J telle
que S* x S? Sidentifie a £*(E*, J).

(ii) Soit {pt} un point de S*. Alors il existe sur E* une structure complexe J telle que
{pt} x S? Sidentifie a € (E*, J).

Démonstration de la proposition 2. — 1. (i) Soit (g, €,, J&,, J¢,) le repére standard
unitaire de C?, et (0%, 0%, J0', J0?) le repére dual, dans la dualité définie par le produit
scalaire canonique de C2. La forme symplectique s’écrit alors

Q=0'"AJO'+0>AJ 0%

Soit (g, le vecteur dual de Q dans la dualité définie par le produit scalaire. Ce vecteur
s’écrit

CQ=81 /\J81+82/\J82.

Un plan L défini par le 2-vecteur e, Ae, est lagrangien si et seulement si Q(e,, ¢,)=0,
c’est-a-dire (g, L »=0. De plus, si L est lagrangien, L* est aussi lagrangien. Par suite
{(Lg, L+L*»=0. Donc, 1/2(L+L*) est dans le 2-plan de A2E* orthogonal a {, dans
P. Par conséquent, 1/2(L +L*) appartient a un grand cercle S} de L et L appartient a
S' x S?. Réciproquement, si P est un plan orienté, représenté par un 2-vecteur appartenant
a S x S%, alors ce 2-vecteur est orthogonal a , et P est lagrangien.

1. (ii) Un plan C défini par le 2-vecteur e, Ae, (ou {e,, e, } est une base orthonormée
directe), est J-invariant si et seulement si Q(e,, e,)=1. Ceci signifie que {({, C)>=1.
Dans ce cas, C* est également J-invariant. Par suite, {({y C')>=1. Par conséquent,
C+C* appartient a Iintersection de la droite engendrée par {, et S2. C’est donc un
point { pt }. La réciproque est également vraie.

2. (i) Soit S* un grand cercle de S2. Soit {eS2 I'un des deux 2-vecteurs symplectiques
positifs normaux & S'. On peut écrire {=Q+Q*, o Q est un 2-vecteur décomposable.
Soit (ey, e,, es, e,) une base orthonormée directe de E* telle que Q=¢e, re,, Q' =e; Ae,.
Considérons la structure complexe J définie sur E* par J (e;)=e;, J(e,)=e,. 1l est clair
que

{ C=e ne,+Te nTe,
(L, V>=0, VVeS!xSZ.

Ceci signifie que tous les éléments de S* x S2 représentent des plans lagrangiens orientés.

2. (ii) se démontre de la méme fagon.

2. L’application de Gauss d’une surface de E*

2.1. LES EQUATIONS FONDAMENTALES (cf. [1]). — Soit x : M — (E*, { , ) une immersion
isométrique d’une surface riemannienne M & valeurs dans I’espace euclidien de dimension
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quatre E*. Soit V la connexion de Levi-Civita définie sur M, et V' la connexion de Levi-
Civita définie sur E* Le second tenseur fondamental h associé a x est le tenseur
symétrique & valeurs dans le fibré normal T+ M, défini par 'équation

(2) V.y=V.y+h(x, y),

pour tous vecteurs x, y de I'espace tangent TM de M. Si { est un champ de vecteurs
normal & M, on a

(3) V.i=—A,(x)+D,G, VxeTM,

ou —A,(x) et D_{ sont les composantes tangentes et normales de V. D est la connexion
normale définie sur le fibré normal T* M. On a

(4) CAL (), y>=Ch(x, ), ().

H =Trace (h) est le vecteur de courbure moyenne de I'immersion x. Si H=0, I'immersion
est dite minimale. Soit R et R les tenseurs de courbure respectifs de V et D. Ecrivons
I'équation de Gauss et ’équation de Ricci.

4 CR(x, y)z, wH=<h(y, 2), h(x, w) > —<h(x, w), h(p, 2) )
(5) (RP(x, )G M >=CA(x), A, (1> <A 0 A, (X))
Vx, 2z weTM, V{, neTt M.

On définit la dérivée covariante du tenseur h par la formule
(6) (Veh) (¢, =D, (b, 2)—h(V,y, 2)—h(¥, V,2).
L’équation de Codazzi s’écrit alors
(7 (V. (, 2)=(V, h) (x, 2), Vx,y, ze TM.
On définit la courbure de Gauss G de M par
(8) G=<R(ey, ey) ey € ),

ou (e,, e,) est un repére orthonormé local de TM. Si M et E* sont orientés, on définit la
courbure normale GP de T* M par

9 GD:<RD(e1a ey)es, €4

ou (ey, e,, €3, e,) est un repére orthonormé local direct de TM@T* M, tel que (e,, e,)
soit un repere direct de TM.
Nous aurons besoin, dans la suite du tenseur suivant : Définissons le crochet « V h, h >
par
«<Vh h>»(x, y, =V, 1) (x, ;) h* (3, e))
+(VE (x, e) h* (v, €)= (V. h%) (x, e)) B> (0, e,)
— (V. h% (x, e)) h* (3, e,), Vx,y, ze TM.
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Définissons de méme (V h, h) par

(Vi h)(x, y, 2)=(V. 1) (x, e)) h* (1, €y)
+(vz h3) (X, 82) h4 (,Vv ez)_(vzh4) (X, el)h3 (_V, el)
— (V1% (x, e)) h? (3, ,), Vx, y, ze TM.

Posons a présent
(10) H(x, y, 2)=(<Vh, h>»>—(Vh, h)(x,y, 2).

Il est clair que # est un tenseur de type (0,3), indépendant du repére orthonormé
direct ey, e,, €3, €4.

2.2. IMMERSION LAGRANGIENNE. — Soit x : M — C? une immersion isométrique d’une
surface riemannienne M a valeurs dans C2. x est lagrangienne si, pour tout point p de
M, T,M est un plan lagrangien de C2. Ceci est équivalent au fait que J(T,M)= TLM
pour tout point p de M, ou J est la structure complexe canonique de C2. Puisque J est
paralléle, il est facile de vérifier que I'on a[3] :

(11) Chx, p), Jzp=<h(x, 2),Jy>
(12) D,(Jy)=IV.y
(13) Jh(x9 y):_Any
Vx,yzeTM
2.3. L’APPLICATION DE GAuss. — Soit x : M — E* une immersion isométrique d’une

surface riemannienne orientée M a valeurs dans E*. L’application de Gauss v associee a
x est application qui associe a tout point p de M le plan vectoriel orienté défini par le
plan tangent T, M ramené a I'origine. Considérons maintenant 'identification de G(2,4)
avec S% x S% et son inclusion dans A2E*=2@®./" (cf. §1). On obtient ainsi une suite

M5 G(2,4) ~S2 xS2 > P®AN =A2E*

Notons v, (resp. v,) la premiére (resp. la seconde) projection de v sur S2 (resp. S%), et
posons v=(vy, v,). On a la

PROPOSITION 3. — Soit x : M — E* une immersion isométrique d’une surface rieman-
nienne orientée a valeurs dans E*. Soit v=(v,, v,) Papplication de Gauss de x. Alors, si
(e, e,) est un repére local orthonormé direct de TM, et (e5, €4) est un repére orthonormé
direct de T*M, on a :

() vix()=12[—>(x, ) +h* (x, €;)](e; Aes+ex A e3)

+1/2[h3 (x, ) +h* (x, e))] (e; Aes—ey Aey).
(i) Le rang de v,x est égal a 2 en tout point ou G —GP est non nul.
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iii) La seconde forme fondamentale o, de v,: M — S2 est donnée par la formule
1 1 + V4

o1 (6, 1)=12[—(V, 1) (x, e))+ (Y, h*) (x, ey)] (e Aeg+e; Aey)
+1/2 [(Vy h?) (x, e)+ (vy h*) (x, el (e, Aes—e, ney).
(iv) Si G=GP et # =0, alors v, est une application totalement géodésique. (En particu-

lier, si v, est de rang constant sur un ouvert U, v, (U) appartient a un grand cercle de S?).
Démonstration de la proposition 3 :

(i) 2vi(x)=Vx(e, A e,+e; Aey)
=h(x, e;) ney+e Ah(x, e;)—A,,(X) Ae,—es AA,, (%)
=[—h*(x, e))+h*(x, e;)] (e, A e +e, A e3)

+[h3 (x, e))+h*(x, e))] (e, A es—e, A €,).

(i) Calculons det v, dans la base (e, e,, €5, e,).

/

_h3 +h4 _h3 +h4
S 120 ==k b)) (B, + ) — (B, + ) (— h3y + k).

detv, =
U R+t B, +ht,

Utilisant les équations de Gauss et Ricci, on obtient immédiatement det v, =G —GP.
(Ce reésultat est déja dans [7].)

(iii) On peut considérer v, comme une application a valeurs dans S? ou comme une
application & valeurs dans 2. Notons o, la seconde forme fondamentale de v,: M — S?,
et h, la seconde forme fondamentale de v,: M — 2. On a alors

(14) hy (x, J’)=Vy(V1*(x))_V1*(Vyx)-

D’autre part,
2V, (vis () =p (k> (x, e))+h*(x, €,)) (e; A es+e, A e3)
+ (=R (x, e)+h*(x, ;) V, (e, A eg+e; A €3)
+y(h3(x, ey)+h*(x, e,)) (e; A es—e, A ey)
+ (1 (x, &) +h*(x, e))V, (e, A e3—e, A ey).

De plus,
Vil Anegte, ney)=V,e; Ae,+h(y, e) Aey+ep ADje,—e AA, (D)

+V,e, nesth(y, e;) Aes+e, ADjes—e, A A, (1),
et
Vy(e; Aes—e; ne)=V,e; Aes+h(y, e) Aeyg+e; ADjes—e; A A, ()

—V,ye; nes—h(y, e;) neg—e; A Dyegte, A A O)
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Or,
(vy hu) (X, ei) o < Dy (h (X, ei))a eu > = hoc (Vy X, ei) i ha (xs Vy ei)
Vae {3, 4}, Vie{l, 2}.
On conclut alors, par un calcul facile, que

hl (X, y):[(_h3 (X, €1)+h4 (x’ 62) (h3 (y’ 81)—1’14 (ya eZ))
— (B (x, e))+h*(x, ) (B (v, e))+h* (y, e))]vy

+[=(Y, 5} (5, @) +(V, 1) (x, 6’2)][;(81 Negte, A ea):l
+(V, 1) (x, e)+(V, h*) (x, el)][%(fﬁ Aez—e; A 64)}

D’ou I'on déduit (iii).

(iv) Supposons que G = GP sur M. (ii) implique alors que le rang de v, est < 1.
L’image de v, est donc une courbe de S2. Soit U={peM | rgv;=1}. U est un ouvert de
M. L’image de U est un grand cercle de S* si et seulement si v, est totalement géodésique,
C’est-a-dire si et seulement si 'image de o, est tangent a v, (U), ou encore

(15) (X, ¥) A vix(2)=0, Vx,y, zeTU.

Utilisons la proposition 3 (i), (iii). (15) est équivalent a
(16) H# =0 sur U.

Sur lintérieur de M —U, v, est constant et le résultat est trivial. Par conséquent, on en
déduit immédiatement (iii).

3. Le théoréme principal

Dans ce paragraphe, nous montrons le principal résultat de ce travail. Il est de nature
globale dans le cas analytique, et de nature locale dans le cas C*.

THEOREME 1. — Soit x: M — E* une immersion isométrique analytique d’une surface de
Riemann M a valeur dans E*. Alors il existe une structure complexe sur E* telle que M
soit lagrangienne si et seulement si G=GP et # =0.

THEOREME 2. — Soit x: M — E* une immersion isométrique d’une surface M a valeur
dans E*. Alors il existe une famille (O,), ., d’ ouverts disjoints tels que :
iliel ] q
(i) UO;=M;
iel
(i) Viel, Il existe une structure complexe J; sur E* telle que O, soit Lagrangienne dans
(E*, 1)) si et seulement si G=GP® et # =0.

JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES.



330 B.-Y. CHEN ET J.-M. MORVAN

L’exemple suivant montre qu’'on ne peut pas espérer un résultat global dans le cas
C* : Soit C la courbe C* de E* définie par

VI€:|O, %[, c(t):<1—exp<; —t2>, t, 0>,

Vte|:%, %} c(0)=(0, t, 0),

Vte}i, 1[, c(t):(O, t, 1—exp<g—t2>>.

Considérons la surface C x R de E3 x R ~ E*. 1l est clair que

i Qi 3D

sont lagrangiennes pour des structures complexes différentes de E*. Ce n’est cependant
pas le cas globalement. En effet, 'image de v, a P'allure suivante :

== Im ()
2
S+
Démonstration des deux théorémes. — Si G=GP" et # =0, le rang de v, est inférieur

ou égal a 1. (¢f. proposition 2). Soit U={peM/Rang(v,),=0}. Si U contient un ouvert,
v, est constant sur un ouvert. Dans le cas analytique, v, est donc constant. Si Int U= (7,
le rang de v, est nul en des points isolés. Par conséquent, le rang de v, égale 1 presque
partout. Appliquons la Proposition 2 a M\UInt(U). On conclut que v,(M\Int(U))
appartient a un grand cercle. Donc M\Int((U) est Lagrangien pour une structure
complexe J sur E* et, par continuité, il en est de méme pour M. La réciproque est
évidente. Dans le cas C*, on a simplement un résultat local.

4. Probléeme d’existence d’immersions isométriques lagrangiennes
Nous allons montrer, dans ce paragraphe, que localement, une surface de Riemann
peut toujours étre isométriquement et analytiquement immergée dans E* telle que G=GP.

Globalement, nous montrons qu’il existe des surfaces riemanniennes qui peuvent étre
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isométriquement immergées dans E*, ou E*, mais qui ne peuvent pas étre isométriquement
immergées comme surface lagrangienne de C2.

THEOREME 3. — Localement, toute surface de Riemann admet une immersion analytique,
isométrique dans E* telle que G =GP".

THEOREME 4. — Si la courbure de Gauss d’une surface riemannienne compacte est
strictement positive en tout point, il n’existe pas d’immersion isométrique lagrangienne de
cette surface dans C*.

En particulier, il n’existe pas d’immersion isométrique lagrangienne de la sphere a
courbure constante dans C2, bien que 'immersion de Whitney (cf. [Wh] par exemple)

f:EB3=C?
(x4, X35 X3) = f (x4, X, X3)=(%1; Xa5 2%y X3, 2X; X3)

soit telle que f lsz soit lagrangienne de S? dans C2.

Démonstration du théoréme 3. — Soit M une surface de Riemann et p un point de M.
Soit U un voisinage de p de coordonnées isothermes (x, y) sur U. Le tenseur métrique g
sur U s’écrit

(17) g=E(dx*+dy’);  x(p)=y(P)=0.

ou E est une fonction analytique positive. On déduit de (1)

gii= i,
1 0E
18 I't. =T%2 =_TL = ’
( ) 11 12 22 2E 8x
1 JE
FZ =F1 =_r2 = D
22 12 1t S E ay
ou I'on a posé
0 0 0
Voor— =11 +I'2,—,
a/o ax 11 % 1lay
0 0 0
Vooe—=D1,— +I3,—,
a/o a 12 % llay
0 0 0
Vg, — =T3p— +T2;—
d/0y ay 22 ax 22 ay
On déduit de (2) que
(19) Gy B0
2E
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Considérons le systeme d’équations suivant :

(20) EG=ay—B2+B5—72

1) Z—I—Z—E=<a—v>ril+(ﬁ—6>r§2,
@) S—E—Z—Z?zﬁril—zvr%z,
23) i—?;:2ﬁrh+2yr§2.

Utilisons le théoréme d’existence de Cauchy-Kovalewski: Le systtme admet une solu-
tion (o, B, v, 8) sur un voisinage simplement connexe W de p. Soit N=W x E2. Considé-
rons N comme I’espace total d’un fibré trivial au dessus de W. C’est un fibré vectoriel
riemannien, si 'on munit chaque fibré du produit scalaire usuel. Soit (es, e,) le repere
canonique (orthonormé) de E2. Définissons une connexion métrique D sur E* par

Da/ax(\ﬁ%):ﬂ1 ﬁeﬁ-Fﬁ \/Ee4,
(24) Dyor( /Ee)=T}, JEe;+T%, [Ee,,

Dﬁ/ay(\/ﬁe‘t)zl"é2 \/Ee3 +I2, \/Ee,,,
Définissons également un tenseur bilinéaire symétrique

h: TWxTW >N

par
0o 0

h{ —, — |=a_/Ee,+ Ee,,

<6x 0x> & B\/— ¢

(25) h(i 2)—B\/Ee + Ee

E’x’ay s s

h(i,i>=y Ee;+6 _/Ee,.
ay dy

(20), (21), (22), (23), (24) montrent que, sur le fibré riemannien N=W x E2, de base W,
le tenseur h et la connexion D vérifient les équations de Gauss, Codazzi, Ricci. Le
théoréme fondamental d’existence des sous-variétés (cf. [1] par exemple) implique que W
peut étre isométriquement immergé dans E* de fagon telle que sa seconde forme
fondamentale soit & et sa connexion normale soit D. On déduit de (25) que G=GP pour
une telle immersion.

Démonstration du théoréme 4. — Soit M une surface Lagrangienne compacte de C2.
D’apreés le théoréme 2, on a, en tout point, dim Ker (v,)« = 1. Si dim Ker (v,)«=1 partout,
alors TM admet une section partout non nulle et x(M)=0 ce qui est impossible d’aprés
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le théoréme de Gauss-Bonnet puisque G est strictement positif. Par suite, il existe un
point p tel que ((v,)«),=0. Avec les notations de la Proposition 3, ceci implique

s =B h3a=his, hty=—hi,, h3,=—hi,.
Au point p, la courbure de Gauss G, vérifie
Gp:z (‘(h‘h); _(hfz)lzj) <0.

(En particulier, p et un point minimal.)

5. D’autres résultats

5.1. COURBES COMPLEXES ET SURFACES LAGRANGIENNES MINIMALES. — Une des conséquen-
ces de la proposition 2 est le résultat suivant :

THEOREME 5. — Soit x: M — E* une immersion isométrique minimale d’une surface dans
E*. Les affirmations suivantes sont équivalentes :

(i) Il existe sur E* une structure complexe telle que M soit lagrangienne.

(ii) Il existe sur E* une structure complexe telle que M soit une courbe complexe.

Démonstration du théoréme 5. — Soit v=(v,, v,): M — S% x S Tl'application de Gauss
associée a x. Il est bien connu que x est minimal si et seulement si v, et v, sont
holomorphes (cf. [9] par exemple). Soit U un ouvert de M. v{(U) est un ouvert ou un
point. Puisque x est Lagrangien, v, (U) est une courbe. C’est donc un point. On applique
alors la Proposition 2.2 (i). La réciproque est également une conséquence directe de la
Proposition 2. 2 (ii).

5.2. DEFORMATION DES SOUS VARIETES LAGRANGIENNES PLATES. — En appliquant un
résultat de Witt [12], on montre facilement le théoréme suivant :

THEOREME 6. — Si x: U — C? une immersion isométrique lagrangienne analytique d’un
ouvert simplement connexe U du plan Euclidien E?, a valeur dans C%. Alors x est homotope
a l'immersion lagrangienne standard (totalement géodésique) de U dans C?, a travers des
immersions isométriques analytiques lagrangiennes a un déplacement pres.

Démonstration du théoréme. — On applique le théoréme fondamental d’existence
d’immersion, en construisant une famille de fibres TU x N,, une famille de connexions
D, et de tenseurs h,, te[0, 1], tels que

N,=T'U, Vielo, 1],
D,=D, VtelO, 1],
h,=th, Vtel0, 1].
Puisque G=GP=0, les équations de Gauss-Codazzi-Ricci sont satisfaites pour tout ¢.

On obtient donc wune homotopie d’immersions isométriques  x,, telle que
G, =GP =4#,=0. On applique alors le théoréme 1 pour conclure.
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5.3. SOUS-VARIETES QUI NE SONT NULLE PART LAGRANGIENNES. — Dans [8], D. Hoffman,
R. Osserman et R. Schoen ont étudié les surfaces de E* telles que I'image de v, appar-
tienne a4 un hémisphére ouvert de S2. En utilisant notre interprétation de A*E®, ceci
signifie qu’il existe une structure complexe sur E* telle que cette surface ne soit lagran-
gienne en aucun point. Nous donnons ici des restrictions géométriques et topologiques
de telles surfaces.

THEOREME 7. — Soit x: M — C? une immersion d’une surface compacte M a valeurs
dans C?. Si M rest lagrangienne en aucun point, alors

(i) II existe un point p de M telle que G,=G};
(i) x(M)=x(T*M).

Démonstration du théoréme 7. — Soit v=(v,, v,) I'application de Gauss associée a x.
Si aucun plan tangent & M n’est lagrangien, I'image de v, appartient a un hémisphére
ouvert de S. Par conséquent, v, (M) & un bord. Si ped(v;(M)), ((vy)x), @ un rang < 2.
Ceci implique que G=GP".

Appliquons le théoréme de I'index a I'application v;. Nous obtenons

f v’f(dSZ)=J (G—GP)dM =y (M) —y (T M) =0.
M M X
D’ou I'on déduit (ii).

En utilisant le fait que (T M)/2=¢q, ol ¢ est le nombre d’autointersections de x, on
déduit du théoréme 7 les deux corollaires suivants :

COROLLAIRE 1. — Soit x: S? — C? une immersion d’une sphére dans C*. Si x a un
nombre d’ auto-intersections q # 1, il existe un plan tangent a S* dans C?, qui est lagrangien.

COROLLAIRE 2. — Soit x: S? = C? une immersion telle que x soit réguliérement homotope
au plongement standard de S* dans un hyperplan de C*. Alors il existe un plan tangent de
S? qui est lagrangien.

5.4. UNE REMARQUE SUR L'HYPOTHESE G=GP. — Comme nous I'a fait remarquer
J. Weiner, I’hypothése G =GP n’est pas suffisante pour affirmer I’existence d’une structure
complexe qui rende la sous-variété lagrangienne. L’exemple suivant permet de s’en
convaincre: Soient v;: (0, 1) > S?, ie{l, 2} deux courbes réguliéres de S% Soit
v=v, xV,: (0, 1) x(0, 1) »> S* x S* ~ G (2, 4). En utilisant les résultats de [10], il est facile
de montrer que v est I'application de Gauss d’une immersion x : (0,1) x(0,1) - E* telle
que G=GP=0. Cependant, si 'image de v, n’apparient pas a un grand cercle de S2. %
n’est lagrangienne pour aucune structure complexe sur E*.
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