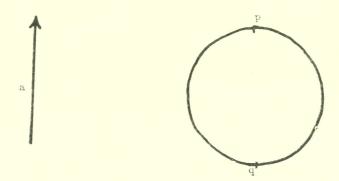
# SOME TOPOLOGICAL PROPERTIES OF THE LIPSCHITZ-KILLING CURVATURE

By JEAN-MARIE MORVAN

#### 1. Introduction

In order to find relations between local properties of a submanifold and its topology, an interesting method is an application of Morse theory. We shall show, in this paper, that the sign of the Lipschitz-Killing curvature of the submanifold in a fixed direction gives important restrictions on its homology.

Let us consider the following situation: The circle  $S^1$  in the plane  $\mathbf{E}^2$ .



It is clear that the Lipschitz-Killing curvature of  $S^1$  at p and q with respect to the direction a, is positive at p and negative at q. By a suitable deformation of  $S^1$ , it is possible to find some imbedding of  $S^1$  in  $\mathbf{E}^2$  satisfying:

The curve is still the boundary of a compact set and there is at most one point q such that the Lipschitz-Killing curvature at q is strictly negative.

We shall prove the following theorem which is a generalization of this situation:

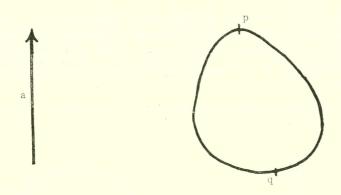
THEOREM. Let  $f: M^n \to \mathbb{E}^{n+p}$  be an isometric immersion of a compact Riemannian manifold  $M^n$  of odd dimension n, into the Euclidean space  $\mathbb{E}^{n+p}$ ,  $p \ge 1$ .

Received Jan. 4, 1980. Revised Sep. 30, 1980

1) If there exists a fixed vector a in  $\mathbf{E}^{n+p}$ , such that the Lipschitz-Killing curvature of  $M^n$  is not null at every point where a is normal to  $M^n$ , and positive at every point, except one, where a is normal to  $M^n$ , then  $M^n$  is an

homology sphere.

2) If  $n \neq 3k$ ,  $\forall k \in \mathbb{N}$ , if 2p < n, and if there exists a fixed vector a in  $\mathbb{E}^{n+p}$ , such that the Lipschitz-Killing curvature of  $M^n$  is not null at every point where a is normal to  $M^n$ , and positive at every point, except at most two, where a is normal to  $M^n$ , then  $M^n$  is the boundary of a compact manifold.



## 2. Notations and definitions

1) The second fundamental form of an isometric immersion.

Let  $f: M^n \to \mathbf{E}^{n+p}$  be an isometric immersion of a Riemannian manifold  $M^n$  into the Euclidean space. We denote by  $\langle \cdot \rangle$  the scalar product on  $\mathbf{E}^{n+p}$  and  $M^n$ , V the Levi-Civita connexion on  $M^n$  and  $\widetilde{V}$  the trivial connexion on  $\mathbf{E}^{n+p}$ .  $TM^n$  and  $T^{\perp}M^n$  are the tangent bundle and the normal bundle over  $M^n$ . It is well known that the second fundamental form of the immersion is the symmetric tensor  $\sigma: TM^n \times TM^n \to T^{\perp}M^n$  defined by the equation

$$\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \quad \forall X, Y \in TM^n.$$

We shall need the following:

DEFINITION. Let  $m \in M^n$ , and  $\xi \in T_m^{\perp}M^n$ . The Lipschitz-Killing curvature of  $M^n$ . at m, in the direction  $\xi$ , is the determinant of the symmetric bilinear form  $\langle \sigma(\cdot, \cdot), \xi \rangle$ .

2) The height function on a submanifold.

We suppose now that  $M^n$  is compact. Let  $\vec{x}$  be the position vector of  $M^n$ 

in  $E^{n+p}$ . If a is a fixed vector of  $E^{n+p}$ , we can consider the height funtion  $h_a = \langle x, a \rangle$ . It is well known that:

- (i) A critical point m of  $h_a$  is a point m such that  $\langle X_m, a \rangle = 0$ ,  $\forall X_m \in T_m M^n$ .
- (ii) At a critical point, the hessian of  $h_a$  is given by  $d^2h_a(X, Y) = \langle \sigma(X, Y), a \rangle.$
- (iii) For almost every a,  $h_a$  has non-degenerate critical points. Then  $h_a$  is a Morse function, in the case where  $M^n$  is compact.

Using the Morse inequalities (cf. [1]), we have, in this case:  $\beta_k \leq \tau_k$ , where  $\beta_k$  is the k-th Betti number of  $M^n$  (i. e.,  $\beta_k = \dim H_k(M^n, F)$ , where  $H_k(M^n, F)$  is the k-th homology group of  $M^n$  over any field F) and  $\tau_k$  is the number of critical points of index k.

3) The Stiefel Whitney numbers of a manifold (cf. [2]).

Let  $H^k(M^n, \mathbb{Z}/2\mathbb{Z})$  will denote the *k*-th cohomology group of  $M^n$ , with coefficient in  $\mathbb{Z}/2\mathbb{Z}$ .

Let  $\omega_k$  will denote the k-th Stiefel-Whitney class of  $M^n$ . And  $\omega = 1 + \omega_1 + \cdots + \omega_n$  is the total Stiefel-Whitney class of  $M^n$ . We denote by  $\overline{\omega} = 1 + \overline{\omega}_1 + \cdots + \overline{\omega}_n$  the inverse of  $\omega$ .

A Stiefel-Whitney number N is defined by the following:

$$N = \omega_1^{r_1} \omega_2^{r_2} \cdots \omega_n^{r_n}$$
, with  $1r_1 + \cdots + nr_n = n$ ,

We recall now the well known theorem of Thom (cf. [2]).

THEOREM (Thom.) Let  $M^n$  be a compact manifold. If all the Stiefel-Whitney numbers of  $M^n$  are null, then  $M^n$  is the boundary of a compact manifold.

We shall use this theorem in the proof of our result.

#### 3. Proof of the theorem

Since  $M^n$  is compact, there exists at least one point q on  $M^n$  such that the height function  $h_a$  has a maximum value at q. At q, we have:

$$\begin{cases} d \ h_{a_q} = 0 \\ d^2 h_{a_q}(X, X) \leqslant 0, \quad \forall X \in T_q M^n. \end{cases}$$

On the other hand, the Lipschitz-Killing curvature at q is not null, by assumption. Then.

$$\det \langle \sigma(\cdot, \cdot), a \rangle_q = \det d^2h_{a_q} < 0.$$

We shall now examine the two different cases:

1) Suppose that every point  $m \neq q$  where a is normal to  $T_m M$  satisfies

 $\det \langle \sigma(\cdot, \cdot), a \rangle_m > 0$ . Then, we have  $\det d^2h_{a_m} > 0$  and  $h_a$  is a Morse function. We shall conclude that  $M^n$  is a homology sphere: The index of  $d^2h_{a_q}$  is n. Since  $\det d^2h_{a_m} > 0$ , the index of  $d^2h_{a_m}$  is even. Then, with the notation of (2, 2),  $\tau_k = 0$  and consequently,  $\beta_k = 0$  as soon as k is odd,  $k \neq n$ .

If we replace a by -a, we can conclude, in the same way, that  $\beta_k=0$ 

if k is even,  $k \neq 0$ .

Consequently, all the Betti numbers of  $M^n$  are null, except  $\beta_0$  and  $\beta_n$ . Thus  $M^n$  is a homology sphere.

2) Suppose that there exists two points q and q' such that

 $\det \langle \sigma(\cdot, \cdot), a \rangle_q = \det d({}^2h_{a_q} < 0), \text{ and } \det \langle \sigma(\cdot, \cdot), a \rangle_{q'} = \det d^2h_{aq'} < 0.$ 

If m is a critical point of  $h_a$ , such that  $m \neq q$ ,  $m \neq q'$ , we have, by assumption: det  $d^2h_{a_m} = \det \langle \sigma(\cdot, \cdot), a \rangle_m > 0$ .

Then  $h_a$  is a Morse function. Let s be the index of  $d^2h_{aq'} \cdot s$  is odd.

We need now the following lemmas.

LEMMA 1. Under the assumptions of 2),  $\beta_k=0$  if  $k \neq 0$ , s, n-s, n.

*Proof.* If k is odd,  $k \neq n$ , s, then  $\tau_k = 0$ . Consequently,  $\beta_k = 0$  if  $k \neq n$ , s. Replacing a by -a, we conclude that  $\beta_k = 0$  if k is even,  $k \neq 0$ , n-s. Then, only  $\beta_0, \beta_s, \beta_{n-s}, \beta_n$  are eventually not null.

LEMMA 2. Under the assumptions of 2), the Stiefel-Whitney numbers of  $M^n$  are null.

*Proof.* We have  $H_k(M^n, \mathbb{Z}/2\mathbb{Z}) = 0$  if  $k \neq 0$ , s, n-s, n. Then,

 $H^{n-k}(M^n, \mathbb{Z}/2\mathbb{Z}) = 0$  if  $k \neq 0$ , s, n-s, n. That is,

 $H^{k}(M^{n}, \mathbb{Z}/2\mathbb{Z}) = 0$  if  $k \neq 0$ , s, n-s, n.

Consequently, the k-th-Stiefel-Whithney classes of  $M^n$  is null if  $k \neq 0$ ,

On the other hand, if  $\overline{\omega}_k$  denotes the k-th-inversed Stiefel-Whitney class of  $M^n$ , we have  $\overline{\omega}_k=0$  as soon as k>p (cf. [2]).

Suppose that s < n-s. We have

$$\overline{\omega}_n = \omega_{n-1}\overline{\omega}_1 + \omega_{n-2}\overline{\omega}_2 + \dots + \overline{\omega}_{n-s}\overline{\omega}_s + \dots + \omega_s\overline{\omega}_{n-s} + \dots + \omega_n$$

$$= \omega_{n-s}\overline{\omega}_s + \omega_s\overline{\omega}_{n-s} + \omega_n.$$

Since n>2p,  $\bar{\omega}_n=0$ , and n-s>p. Then,  $\bar{\omega}_{n-s}=0$ , and

$$\omega_{n-s}\bar{\omega}_s+\omega_n=0.$$

We shall prove now that  $\omega_{n-s}=0$ , and  $\omega_n=0$ . We have:

$$\overline{\omega}_{n-s} = 0 = \omega_{n-s-1}\overline{\omega}_1 + \omega_{n-s-2}\overline{\omega}_2 + \cdots + \omega_s\overline{\omega}_{n-2s} + \cdots + \omega_{n-s}$$

with  $\omega_{n-s-1}=\cdots=\omega_{s+1}\cdots 0$ , and  $\overline{\omega}_{n-2s}=0$  (for  $n-2s\neq s$ ). Consequently  $\omega_{n-s}=0$ . Using (1), we conclude that  $\omega_n=0$ . Thus, only  $\omega_s$  is eventually not null.

Consider now a Stiefel-Whitney number N,

$$N = \omega_1^{r_1} \omega_2^{r_2} \cdots \omega_n^{r_n}$$
, with  $1r_1 + \cdots + nr_n = n$ .

The only non null Stiefel-Withney number is eventually  $\omega_s^l$ . In this case, n is a multiple of s, say n=ls, where l is odd,  $l\neq 1$ ,  $l\neq 3$ . Since

 $\omega_s^2 \in H^{2s}(M^n, \mathbb{Z}/2\mathbb{Z}) = 0$ ,  $\omega_s^l = 0$  and N = 0. Thus, all the Stiefel-Whitney numbers of  $M^n$  are null.

The case where n-s < s can be treated with the same method. We can now end the proof of the theorem applying the theorem of Thom (cf. par 2, 3).

## References

- 1. J. Milnor, Morse theory (1963), Annals of Mathematics Studies, Princeton University Press.
- 2. J. Milnor and J.D. Stasheff, *Characteristic classes* (1974), Annals of Mathematics Studies, Princeton University Press.

Faculté des Sciences de Limoges

