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ON ISOMETRIC LAGRANGIAN IMMERSIONS

JOHN DOUGLAS MOORE AND JEAN-MARIE MORVAN

Abstract. This article uses Cartan-Kähler theory to show that a small

neighborhood of a point in any surface with a Riemannian metric pos-
sesses an isometric Lagrangian immersion into the complex plane (or
by the same argument, into any Kähler surface). In fact, such immer-

sions depend on two functions of a single variable. On the other hand,
explicit examples are given of Riemannian three-manifolds which admit

no local isometric Lagrangian immersions into complex three-space. It
is expected that isometric Lagrangian immersions of higher-dimensional
Riemannian manifolds will almost always be unique. However, there is
a plentiful supply of flat Lagrangian submanifolds of any complex n-
space; we show that locally these depend on 1

2
n(n + 1) functions of a

single variable.

1. Introduction

This note is concerned with the question of which n-dimensional Riemann-
ian manifolds can be immersed isometrically as Lagrangian submanifolds of
C
n. Recall that an immersed submanifold Mn ⊂ Cn is Lagrangian if the com-

plex structure J maps the tangent space TpM at an arbitrary point p ∈ M
isometrically onto the corresponding normal space NpM .

In the special case n = 2, we use Cartan-Kähler theory to prove:

Theorem 1. Let M2 be a real-analytic Riemannian manifold of dimen-
sion two. If p ∈ M2, then there is an open neighborhood U of p which pos-
sesses an isometric Lagrangian immersion into C2. Indeed, the local isometric
Lagrangian immersions depend upon three functions of a single variable.

This local theorem should be contrasted with the fact that there are ob-
structions to the existence of global isometric Lagrangian immersions of Rie-
mannian surfaces into C2. For example, although the two-sphere S2 possesses
a Lagrangian immersion into C2 as the Whitney sphere (see [6] for instance),
there is no isometric Lagrangian immersion of S2 with any metric of strictly
positive curvature into C2, by an argument that we recall in Section 2.
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It is to be expected that (even locally) most Riemannian manifolds of
dimension n ≥ 3 possess no isometric Lagrangian immersions into Cn, because
the system of partial differential equations that would need to be solved is
overdetermined. Indeed, when n ≥ 4, the curvature tensor at any given
point must satisfy some quite explicit conditions: the Pontrjagin forms of
a Lagrangian submanifold Mn of Cn must vanish, because the Lagrangian
immersion provides a geometric trivialization of the complexification of the
tangent bundle TM ; the Chern forms of the complexification must vanish
identically and these are just the Pontrjagin forms of TM . In the case n = 3,
explicit counterexamples to the existence of isometric Lagrangian immersions
are provided by the “Berger spheres” defined at the beginning of Section 5:

Theorem 2. The Berger spheres are three-dimensional Riemannian man-
ifolds which admit no local isometric Lagrangian immersions in C3.

In addition, when n ≥ 3 one expects that for most Riemannian metrics
the isometric Lagrangian immersion, when it exists, will be unique up to rigid
motion. However, manifolds with special curvature properties can exhibit
more flexibility. In the special case of flat Riemannian manifolds, we will
apply Cartan-Kähler theory to show that there does exist a plentiful supply
of local isometric Lagrangian immersions:

Theorem 3. Let p be a point in En. The isometric Lagrangian immer-
sions from an open neighborhood U of p into Cn depend upon 1

2n(n + 1)
functions of a single variable.

The simplest explicit example of a flat Lagrangian submanifold in Cn is
the Clifford torus

S1 × S1 × · · · × S1 ⊂ C× C× · · · × C = C
n.

More general flat Lagrangian submanifolds have been studied by several au-
thors. Indeed, Pinkall [18] has shown that every conformal structure on the
two-torus can be realized by a flat Lagrangian immersion into S3 ⊂ C2 (see
also [19]). More recently, Chen, Dillen, Verstraelen and Vranken [10] have
given explicit constructions of flat Lagrangian immersions in higher dimen-
sions in terms of twistor forms.

It follows from the proof that a flat Lagrangian submanifold of Cn is de-
termined by Cauchy data on a curve by a succession of applications of the
Cauchy-Kowalewski theorem. This is quite similar to what happens in the
theory of flat n-manifolds in the constant curvature (2n − 1)-sphere S2n−1,
or n-manifolds of constant curvature −1 in E2n−1 (see [15]). In [3] Cartan
proved that such submanifolds depend upon n(n−1) functions of a single vari-
able, and in [1] Berger, Bryant and Griffiths extended this result to certain
“quasi-hyperbolic” submanifolds of E2n−1.
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Theorems 1 and 3 extend an earlier theorem due to Chen and Houh [11].
We will prove these theorems in Sections 4 and 6 after a brief exposition of
Cartan-Kähler theory in Section 3. These theorems are complemented by
nonexistence theorems. We will describe some global obstructions to the ex-
istence of isometric Lagrangian immersions in Section 2 and prove Theorem 2
in Section 5.

This collaboration began with a visit that the first author made to Lyon
in the fall of 1996, but the bulk of the work was done while the second author
visited UCSB during the summer of 1999, and it was finished during his visit
to the University of Sao Paolo, Brazil (supported by FAPESP). The second
author would like to thank his colleagues at USP (in particular F. Brito) for
their hospitality, and would also like to thank M. Geck for a helpful discussion
concerning the use of Maple and Groebner bases. This research was partially
supported by Région Rhône-Alpes (France).

2. Preliminaries and global restrictions

We consider the space FC(Cn) of unitary frames on Cn. An element of
FC(Cn) is a pair (p, (e1, . . . , e2n)), where p ∈ Cn and (e1, . . . , e2n) is a real
orthonormal frame such that Jei = en+i for 1 ≤ i ≤ n, J being the complex
structure on Cn. Note that after choice of a base frame, FC(Cn) can be
identified with the trivial bundle Cn×U(n)→ C

n, where U(n) is the unitary
group. On FC(Cn), we define differential forms ω̃IJ and θ̃I , for 1 ≤ I, J ≤ 2n,
so that

(1) deJ =
2n∑
I=1

eI ω̃IJ , dp =
2n∑
I=1

eI θ̃I ;

these forms must satisfy the Cartan structure equations

dθ̃I = −
∑

ω̃IJ ∧ θ̃J , dω̃IJ = −
∑

ω̃IK ∧ ω̃KJ .

We write i∗ = n + i for 1 ≤ i ≤ n, so that ei∗ = Jei = en+i. Since the
matrix-valued one-form ω = (ω̃IJ) takes its values in the Lie algebra of the
unitary group, we must have

(2) ω̃ij = ω̃i∗j∗ = −ω̃ji, ω̃i∗j = −ω̃ji∗ = ω̃j∗i.

Suppose that f : Mn → C
n is an isometric Lagrangian immersion. An

adapted moving frame over an open subset U of Mn is a lifting f̃ : U →
FC(Cn) of f |U such that (e1 ◦ f̃ , . . . , en ◦ f̃) are tangent to f(Mn). Let

ωIJ = f̃∗ω̃IJ , θI = f̃∗θ̃I .
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Then (θ1, . . . , θn) is an orthonormal coframe on U , θi∗ = 0 and the ωIJ
determine the Levi-Civita connection

∇Xej =
n∑
i=1

eiωij(X)

and the second fundamental form

α(·, ·) =
n∑

i,j=1

ej∗ωj∗i ⊗ θi =
n∑

i,j,k=1

ej∗hjikθi ⊗ θk.

It follows from (2) that hjik = hijk and from (1) that
n∑
j=1

ωi∗j ∧ θj = 0, and hence hijk = hikj ,

so hijk is symmetric in all three indices. The structure equations (1) imply
that the curvature

Ωij =
∑
k,l

1
2
Rijklθk ∧ θl = dwij +

∑
k

ωik ∧ ωkj

must satisfy the Gauss equation

(3) Ωij =
∑
k

ωk∗i ∧ ωk∗j =
1
2

∑
k,r,s

(hkirhkjs − hkishkjr)θr ∧ θs.

The structure equations also imply that

d

[
n∑
i=1

ωi∗i

]
= −

n∑
i,j=1

ωi∗j ∧ ωji −
n∑

i,j=1

ωi∗j∗ ∧ ωj∗i = −2
n∑

i,j=1

ωi∗j ∧ ωji = 0,

since ωji is skew-symmetric in i and j while ωi∗j is symmetric in these indices.
The closed form

µ =
n∑
i=1

ωi∗i

is called the Maslov form, and as described in [17], it is related to the mean
curvature

H =
n∑

i,j=1

ej∗hiij by the formula µ = 〈JH, ·〉.

These facts can be used to prove that if Mn is an n-dimensional compact
Riemannian manifold with finite fundamental group or nonzero Euler charac-
teristic which possesses a Lagrangian isometric immersion into Cn, then Mn

must have a point of nonpositive scalar curvature. We recall the argument for
this fact (which was presented in the proof of Theorem 4.6 of [8]). If Mn is a
compact Lagrangian submanifold of Cn with finite fundamental group, then
H1(Mn;R) = 0. Hence the Maslov form µ is exact, µ = df for some smooth
function f : Mn → R. If p is a maximum for f , df and hence H must vanish
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at p. On the other hand, if the Euler characteristic of Mn is nonzero, then
one can reason directly that the vector field JH has a zero, and hence again
there is a point p ∈ Mn at which H vanishes. In either case, it follows from
the Gauss equations (3) that∑

i,j

Rijji(p) =
∑
i,j,k

[
hiik(p)hjjk(p)− hijk(p)2

]
= H(p)2 −

∑
i,j,k

hijk(p)2 = −
∑
i,j,k

hijk(p)2 ≤ 0,

and hence the scalar curvature at p is nonpositive.
The Chern-Simons invariant provides another obstruction to the existence

of isometric or conformal Lagrangian immersions. This obstruction is a con-
sequence of the Corollary on page 139 of [16], but we give a simple direct
argument. The key fact is that the closed differential form

Φ =
−1

48π2

2n∑
I,J,K=1

ω̃IJ ∧ ω̃JK ∧ ω̃KI

on the unitary group U(n) lies in the image of the coefficient homomorphism
H3(U(n);Z)→ H3(U(n);R), and hence its integral over any cycle is an inte-
ger. To check that the coefficient is correct, one can restrict to SU(2) = S3,
and check that the restricted form integrates to ±1.

It is well-known that a compact oriented three-manifold possesses a trivial
tangent bundle. Hence if M3 is a compact oriented three-manifold which
is immersed as a Lagrangian submanifold of C3, we can construct a global
moving frame f̃ : M3 → U(3). But then

f̃∗(Φ) =
−1

48π2

 n∑
i,j,k=1

ωij ∧ ωjk ∧ ωki + 3
n∑

i,j,k=1

ωij∗ ∧ ωj∗k ∧ ωki

+ 3
n∑

i,j,k=1

ωij∗ ∧ ωj∗k∗ ∧ ωk∗i +
n∑

i,j,k=1

ωi∗j∗ ∧ ωj∗k∗ ∧ ωk∗i∗


=
−1

24π2

 n∑
i,j,k=1

ωij ∧ ωjk ∧ ωki − 3
n∑

i,j=1

Ωij ∧ ωij

 = TP1(ω),

TP1(ω) being the transgressed Pontrjagin form considered by Chern and Si-
mons [12], pulled back via the trivialization of TM . We conclude that the
reduction mod Z of TP1(ω) is zero (but not the somewhat finer mod Z reduc-
tion of (1/2)TP1(ω) also considered by Chern and Simons).

The Chern-Simons invariant depends only on the conformal structure.
Since lens spaces with constant positive curvature have a nontrivial Chern-
Simons invariant, they do not have conformal Lagrangian immersions into C3,
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even though a small neighborhood of any point is conformally equivalent to an
open subset of Euclidean space and hence possesses a conformal Lagrangian
immersion as part of a flat Lagrangian torus. Thus none of the Riemannian
metrics within the conformal equivalence class of the constant curvature lens
space admits an isometric Lagrangian immersion into C3.

3. Cartan-Kähler theory

Let W be an N -dimensional smooth manifold, Ωk(W ) the vector space of
smooth differential k-forms on W ,

Ω∗(W ) =
N∑
k=0

Ωk(W )

the algebra of differential forms on W . We say that an ideal A ⊂ Ω∗(W ) is
homogeneous if each homogeneous component of an element in A lies within
A, or equivalently,

A =
N∑
k=0

Ak, where Ak = A ∩ Ωk(W ).

A differential ideal is a homogeneous ideal A ⊂ Ω∗(W ) which satisfies the
condition dA ⊂ A.

An n-dimensional submanifold M ⊂ W is called an integral submanifold
for the differential ideal A if i∗A = 0, where i : M →W is the inclusion.

If p ∈W , let Gnp denote the set of n-dimensional linear subspaces of TpW .
An element Enp ∈ Gnp is an integral element for A if

ω ∈ An ⇒ ω(v1, . . . , vn) = 0,

when (v1, . . . , vn) is a basis for Enp . Thus an integral submanifold is just a
submanifold whose tangent spaces are integral elements.

Suppose now that Enp is an integral element for A and that (v1, . . . vn) is a
basis for Enp . The polar space for Enp is the linear space

H(Enp ) = {v ∈ TpW : ω(v, v1, . . . , vn) = 0 for all ω ∈ An+1},
or equivalently,

H(Enp ) = {v ∈ TpW : the restriction of ιvω to Enp is zero, for all ω ∈ A},

where ιv denotes the interior product. Note that En+1
p ∈ Gn+1

p is an integral
element containing Enp if and only if En+1

p ⊂ H(Enp ). Following the notation
of Kähler [14], we let

rn+1(Enp ) = dimH(Enp )− (n+ 1).

A zero-dimensional integral element E0
p is said to be regular if r1 assumes

its minimum value at E0
p and r1(E0

p) ≥ 0. Inductively, we say that an n-
dimensional integral element Enp is ordinary if it contains a regular integral
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element of dimension n− 1, and regular if in addition, rn+1 assumes its min-
imum value at Enp and rn+1(Enp ) ≥ 0. Finally, an integral submanifold is
regular if all of its tangent spaces are regular integral elements.

Cartan-Kähler Theorem. Let M be a connected regular integral sub-
manifold for the differential ideal A on W , F an (n − rn+1)-dimensional
submanifold of W containing M such that

dim(TpF ∩H(TpM)) = n+ 1, for p ∈ N .

Then there is an (n + 1)-dimensional integral submanifold M̃ for A, unique
up to extension, such that M ⊂ M̃ ⊂ F .

The proof of this theorem can be found in [2], Chapter III, Section 2 or in
the classical references [5] and [14].

By a system of n independent variables, we simply mean a decomposable
n-form Θ = θ1 ∧ θ2 ∧ · · · ∧ θn. If A is a differential ideal and Θ is a system of
n independent variables, we say that the pair (A,Θ) is in involution if there
is an n-dimensional ordinary integral element Enp with basis (v1, . . . , vn) such
that Θ(v1, . . . , vn) 6= 0. The Cartan-Kähler theorem implies that if (A,Θ) is
in involution, there exist integral submanifolds of A on which the restriction
of Θ is nonzero.

4. Lagrangian surfaces

To study Lagrangian surfaces in C2, we use a differential ideal quite similar
to that used in Cartan’s proof of the Janet-Cartan Theorem (see [4]). We let
W = M2×FC(C2), whereM2 is a given two-dimensional Riemannian manifold
and FC(C2) is the bundle of complex unitary frames over C2. Our strategy is
to construct a submanifold N of W which can serve as the graph of a mapping
f̃ : M2 → FC(C2), which defines not only an isometric Lagrangian immersion
into C2, but also a corresponding adapted moving frame along the immersion.

Since the problem is local, we can assume that M2 is parallelizable and
choose a fixed moving frame (e1, e2) for TM with corresponding coframe
(θ1, θ2). There is a unique connection one-form ω12 = −ω21 on M2 which
satisfies the equations

dθ1 = −ω12 ∧ θ2, dθ2 = −ω21 ∧ θ1.

Let Ω12 = dω12 denote the curvature two-form on M2.
We pull the differential forms θ̃I , ω̃IJ , θi, ω12 back to the product manifold

W . On W , we will take the ideal A which is generated by the differential
one-forms

θ̃i − θi, θ̃i∗, ω̃12 − ω12,

and the differential two-forms

dθi∗, d̃ω12 − dω12,
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or equivalently, the two-forms∑
j

ω̃i∗j ∧ θ̃j ,
∑
i∗
ω̃i∗1 ∧ ω̃i∗2 − Ω12.

It is quickly checked that A is closed under the exterior derivative, and is
therefore a differential ideal.

We claim that (A, θ1∧θ2) is in involution. Since there are no zero-forms in
A, an arbitrary point q = E0

q of W can be taken as a zero-dimensional integral
element. Its polar space H(E0

q ) is the collection of vectors v1 ∈ TqW which
are annihilated by the one-form generators in A. Once θi(v1) are chosen,
ω12(v1) is determined, and the one-form generators for A determine

θ̃I(v1), ω̃12(v1),

while ω̃i∗j(v1) can be chosen at will, subject to the requirement that ω̃41(v1) =
ω̃32(v1). We have two degrees of freedom in choosing θi(v1) and an additional
three in choosing ω̃31(v1), ω̃41(v1) and ω̃42(v1), so the polar space H(E0

p) has
constant dimension 5 and all zero-dimensional integral elements are regular.

Suppose now that we choose a one-dimensional integral element E1
q con-

taining E0
q and generated by a nonzero vector v1 ∈ TqW . The polar space

H(E1
q ) is the set of vectors v2 ∈ TpW which satisfy the linear equations

L1 : θ̃i(v2) = θi(v2), θ̃i∗(v2) = 0, ω̃12(v2) = ω12(v2),

together with the three equations

L2 :
∑
j

(ω̃i∗j ∧ θ̃j)(v1, v2) = 0,
∑
i∗

(ω̃i∗1 ∧ ω̃i∗2)(v1, v2) = Ω12(v1, v2).

Once θi(v2) are chosen, the linear system L1 determines

θ̃I(v2), ω12(v2),

and all that remain to be determined are the three elements ω̃31(v2), ω̃41(v2)
and ω̃42(v2). We can regard L2 as a linear system in these unknowns, and
since L2 contains three equations, its maximal possible rank is three. If we
can show that the three equations are independent, then E1

q will be a regular
integral element with dimH(E1

q ) = 2, r2(E1
q ) = 0, and E1

q will lie in a unique
two-dimensional ordinary integral element E2

q .
But we can choose v1 so that θ1(v1) = 1 and θ2(v1) = 0, and set hi∗j1 =

ω̃i∗j(v1). If hi∗j2 = ω̃i∗j(v2), the system L2 can be rewritten as

h312 = h321, h412 = h421,

∣∣∣∣h311 h312

h321 h322

∣∣∣∣+
∣∣∣∣h321 h322

h421 h422

∣∣∣∣ = K,

where K is the Gaussian curvature of M2. If h311 is nonzero, this linear
system for the unknowns h312, h412 = h322 and h422 does indeed have rank
three, so the conclusions at the end of the preceding paragraph do indeed
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hold. If we choose v2 so that θ1(v2) = 0 and θ2(v2) = 1, then θ1 ∧ θ2 will
be nonzero on the ordinary integral element E2

q , and we conclude that our
differential system is indeed in involution.

Proof of Theorem 1. Suppose that C is a real analytic curve in M2 which
contains an arbitrary point p ∈M2 and suppose that (e1, e2) is chosen so that
along C, e1 is tangent to C. Given arbitrary functions h311, h321 = h411 and
h421 along C, we can construct a real analytic moving frame

f : C → FC(C2) such that f∗(ω̃12) = ω12, f∗(ω̃i∗j) = hi∗j1θ1.

We can lift this to a real analytic map

f̃ : C → C
2 × FC(C2) such that f̃∗θ̃1 = θ1, f̃∗θ̃2 = 0.

The graph of f̃ is an integral submanifold Ĉ ⊂ W for A which projects to C
via the obvious projection π : W →M and satisfies the condition

ω̃31(ê1) = h311, ω̃32(ê1) = h321 ω̃42(ê1) = h421,

where ê1 projects to e1. If h321 is never zero, the tangent spaces to Ĉ will
be regular integral elements, and since r2 = 0 the Cartan-Kähler theorem
will guarantee the existence of a two-dimensional integral submanifold N of
W , unique up to extension, which contains Ĉ. Since θ1 ∧ θ2 is nonzero along
N , the inverse function theorem implies that the projection π|N : N → M
possesses a local inverse map σ : U → N from an open neighborhood U of p
in M2. The composition of σ with the obvious projection W → C

2 yields the
desired isometric Lagrangian immersion from U into C2. The immersions so
constructed depend upon the functions h311, h321 = h411 and h421 which can
be completely arbitrary, except for the requirement that the one-dimensional
integral elements they determine be regular. Thus we see that the isometric
Lagrangian immersions do indeed depend upon three functions of a single
variable, as claimed. �

Remark. From the proof, it is clear that we could replace the ambient
space C2 by any Kähler manifold of complex dimension two, or more generally
any Riemannian four-manifold with compatible almost complex structure J
satisfying ∇J = 0 (in which case a Lagrangian submanifold would be regarded
as a submanifold for which J interchanges tangent and normal spaces).

5. Berger spheres

In higher dimensions, the system of equations for isometric Lagrangian
immersions is overdetermined, so we expect that most Riemannian manifolds
would not admit such immersions. When n ≥ 3, the analog of the differential
system with independent variables considered in the previous section is no
longer in involution. For any given Riemannian metric, we might try to solve
the local problem by means of Cartan’s method of prolongation (see Chapter
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VI in [5]), and this would typically lead to algebraic problems that might be
difficult to solve. An interesting example is provided by left-invariant metrics
on the Lie group S3 of unit quaternions. In this section, we will show that
many of these metrics admit no isometric Lagrangian immersion into C3.

We regard S3 as the double cover of SO(3), which possesses the standard
left-invariant one-forms φij , for 1 ≤ i, j ≤ 3, which satisfy the structure
equations

dφij = −φik ∧ φkj ,
where (i, j, k) is a permutation of (1, 2, 3). if we set

αi = φjk, for (i, j, k) a positive permutation of (1, 2, 3),

we can rewrite the structure equations as

dαi = αj ∧ αk, for (i, j, k) a positive permutation of (1, 2, 3).

If we set
θ1 = εα1, θ2 = α2, θ3 = α3,

where ε > 0, then
ds2 = θ2

1 + θ2
2 + θ2

3

is a left-invariant metric on SO(3) which lifts to a left-invariant metric on S3.
We call the resulting manifold a Berger sphere in the case where 0 < ε < 1
(see [7], Example 3.35).

According to the fundamental theorem of Riemannian geometry, the con-
nection forms ωij on SO(3) are determined by the structure equations

dθi = −
∑
j

ωij ∧ θj , ωij + ωji.

A straightforward calculation shows that

ω23 = [1− (ε2/2)]α1, ω31 = (ε/2)θ2, ω12 = (ε/2)θ3,

and from this we can determine the curvature:

R1212 = R1313 = (1/2)ε2, R2323 = 1− (3/4)ε2,
Rijik = 0 when i, j, k are distinct.

Proof of Theorem 2. We first seek the solutions hijk to the Gauss equa-
tions. Using the symmetry in three variables, we can write these as

h1jk =

x a f
a d u
f u c

 , h2jk =

a d u
d y b
u b e

 , h3jk =

f u c
u b e
c e z

 .

We have the freedom of rotating the part of the coframe (θ2, θ3), and using
this freedom, we can arrange that u = 0 at a given point.
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The Gauss equations divide into two groups, those of the form Rijij =
something, and those of the form Rijik = something, where i, j, k are distinct.
The first group of these is

dx+ ay = (1/4)ε2 + a2 + d2 − bf, cx+ fz = (1/4)ε2 + c2 + f2 − ae,
ey + bz = 1− (3/4)ε2 + b2 + e2 − cd,

while the second group is

−af + ab+ fe = 0, −df + db− bc = 0, ac+ de− ce = 0.

We can analyze this system of six quadratic equations by means of Maple
or Mathematica; in particular, the calculations can be guided by finding a
Groebner basis as described in [13]. This procedure leads to the conclusion
that if ε 6= 1, then automatically a = f = 0.

In more detail, an explicit calculation could proceed as follows. We can
look at the first group of Gauss equations as a linear system for the unknowns
(y, z, ε2). This system will possess a unique solution in terms of the other
variables so long as the determinant of the coefficient matrix is nonzero. Us-
ing a computer to do the calculations (if necessary), we can check that the
determinant of coefficients is af , and that if this determinant is nonzero, one
piece of the unique solution is ε2 = 1. Therefore if ε2 6= 1, we see that af = 0.
Since a and f are interchanged under interchange of θ2 and θ3, we can assume
without loss of generality that a = 0. It then follows from the second group
of Gauss equations that ef = 0. If f 6= 0, then e = 0 and we can analyze the
first group of Gauss equations as a linear system for the unknowns (x, z, ε2).
This time we find that either ε2 = 1 or the determinant of coefficients df
vanishes. Thus if f 6= 0, we must have d = e = 0, which implies that b c = 0.
We leave it to the reader to check that either case, b = 0 or c = 0, leads to
a contradiction with the Gauss equations. By this procedure, we are finally
forced to conclude that a = f = 0.

The upshot is that the second fundamental form simplifies to

h1jk =

x 0 0
0 d 0
0 0 c

 , h2jk =

0 d 0
d y b
0 b e

 , h3jk =

0 0 c
0 b e
c e z

 .

The Codazzi equations are equivalent to the assertion that the functions
hijkl are symmetric in all indices, where∑

l

hijklθl = dhijk − hmjkωmi − himkωmj − hijmωmk.

Since h11i = 0 unless i = 1, the Codazzi equations in the case where (i, j, k) =
(1, 1, 1) imply that

h111i = ei(h111) = e1(x).
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In the case where (i, j, k) = (1, 1, 2), the Codazzi equations yield

(4) h1121θ1 + h1122θ2 + h1123θ3 = (2h122 − h111)ω12.

Since ω12 is a multiple of θ3, we conclude that h1121 = h1122 = 0. Similarly,
we can show that h1131 = h1133 = 0, and by polarization we have h1123 = 0
as well. Applying (4) once again now yields

2h122 − h111 = 0, or 2d = x.

It then follows from the first of the Gauss equations that d2 = ε2/4. In
particular, h111 and h122 are constant and hence h1111 = 0. We now know
that h11ij = 0, for all i and j. Similarly, we show that 2c = x and hence

h1jk = ±

ε 0 0
0 (1/2)ε 0
0 0 (1/2)ε

 .

In the cases where (i, j, k) = (1, 2, 2), (1, 3, 3) or 1, 2, 3) the Codazzi equa-
tions become

h1222θ2 + h1223θ3 = (ε/2)(h222θ3 − h322θ2),

h1332θ2 + h1333θ3 = (ε/2)(h233θ3 − h333θ2),

h1232θ2 + h1233θ3 = (ε/2)(h223θ3 − h323θ2) + (. . . )θ1,

where we have used the facts that ω12 = (ε/2)θ3, ω31 = (ε/2)θ2 and ω23 =
(. . . )θ1. These equations imply that

h222 = −h323, h333 = −h223,

or equivalently y = −e and b = −z. It therefore follows from the third of the
Gauss equations that

−y2 − z2 = 1− (3/4)ε2 + y2 + z2 − cd ⇒ 1− ε2 ≤ 0.

In particular, we see there are no local solutions for 0 < ε < 1, or in other
words, the Berger spheres do not possess isometric Lagrangian immersion in
C

3, even locally. On the other hand, in the constant curvature case (ε = 1),
it is known that there do exist local isometric Lagrangian immersions (see
[9]). �

6. Flat Lagrangian submanifolds

Since hijk is symmetric in its three indices, the trilinear form

(x, y, z) 7→ 〈α(x, y), Jz〉

is symmetric in its three arguments. For x ∈ TpM , define a linear transfor-
mation

A(x) : TpM → TpM by A(x)(y) = Jα(x, y).



ON ISOMETRIC LAGRANGIAN IMMERSIONS 845

Then

〈A(x)y, z〉 = 〈Jα(x, y)z〉 = −〈α(x, y), Jz〉
= −〈α(x, z), Jy〉 = 〈y, Jα(x)z〉 = 〈y,A(x)z〉,

so A(x) is symmetric with respect to the inner product 〈·, ·〉. Moreover, if R
denotes the Riemann-Christoffel curvature tensor of Mn, it follows from the
Gauss equation

〈R(x, y)z, w〉 = 〈α(y, z), α(x,w)〉 − 〈α(x, z), α(y, w)〉
that

〈A(x)A(y)z, w〉 = 〈A(y)z,A(x)w〉 = 〈Jα(y, z), Jα(x,w)〉
= 〈α(y, z), α(x,w)〉 = 〈α(x, z), α(y, w)〉+ 〈R(x, y)z, w〉
= · · · = 〈A(y)A(x)z, w〉+ 〈R(x, y)z, w〉,

and hence we can reformulate the Gauss equations as

[A(x), A(y)] = R(x, y), for x, y ∈ TpM .

Thus in the special case in which Mn is flat, the linear transformations
A(x) will all commute with each other and we can prove:

Lemma. If Mn is a flat Lagrangian submanifold of Cn and p ∈ Mn,
there is an orthonormal basis (e1, . . . , en) for TpM such that if ei∗ = Jei, for
1 ≤ i ≤ n, then

〈α(ei, ej), ek∗〉 = 0, unless i = j = k.

Proof. Since the linear transformations A(x) commute, we can find an or-
thonormal basis (e1, . . . , en) for TpM which simultaneously diagonalizes them,
so that

A(x)ei = λi(x)ei,
where each λi : TpM → R is a linear functional. In particular, we find that

〈Jα(x, ei), ej〉 = 〈A(x)ei, ej〉 = 0, unless i = j.

It follows by trisymmetry that

〈α(ei, ej), ek∗〉 = −〈Jα(ei, ej), ek〉 = 0, unless i = j = k,

which is exactly what we needed to prove. �

In terms of the differential forms described in Section 2, the lemma implies
that

ωi∗j =

{
uiθi, if i = j,
0, if i 6= j.

To prove the existence of flat Lagrangian submanifolds of Cn, we will need
to use a differential ideal which takes into account this special nature of the



846 JOHN DOUGLAS MOORE AND JEAN-MARIE MORVAN

second fundamental form. We will choose an appropriate differential ideal on
the manifold

W = F (Mn)× FC(Cn)× Rn,
where F (Mn) is the bundle of orthonormal frames on Mn and FC(Cn) is the
space of unitary frames on Cn, whose integral submanifolds can represent the
graphs of maps which represent isometric Lagrangian immersions together
with adapted moving frames.

On the frame bundle F (Mn), we have the familiar tautological one-forms
(θ1, . . . , θn) and connection one-forms ωij = −ωji which satisfy the equations

(5) dθi = −ωij ∧ θj , dωij = −ωik ∧ ωkj ,
the last of these holding because Mn is assumed to have curvature zero.

We pull these differential forms and the differential forms defined in Section
2 back to the product manifold W . Our ideal A on W will be generated by
the differential one-forms

θ̃i − θi, θ̃i∗, ω̃ij − ωij , ω̃i∗i − uiθi, ω̃i∗j if i 6= j,

where (u1, . . . un) are the coordinates on the Rn factor in W , together with
certain differential two-forms which will make A closed under d. It follows
from the structure equations (1) and (5) that we can take the two-form gen-
erators to be

d(uiθi), ω̃i∗i ∧ ω̃ij + ω̃ij ∧ ω̃j∗j .
Modulo the one-form generators, we can replace these by

(6) ωij ∧ (uiθi − ujθj), dui ∧ θi − ui
∑
j

ωij ∧ θj .

As a final simplification, we substitute the first of these into the second, so
that the two-form generators become

(7) ωij ∧ (uiθi − ujθj),

dui −∑
j

u2
i

uj
ωij

 ∧ θi.
Once again, we claim that (A, θ1 ∧ · · · ∧ θn) is in involution. As before,

an arbitrary point q = E0
q of W can be taken as a zero-dimensional integral

element for A. The polar space H(E0
q ) of this integral element is the collection

of vectors v1 ∈ TqW which are annihilated by the one-form generators in A.
Once θi(v1), ωij(v1) and dui(v1) are chosen, the one-form generators for A
determine

θ̃I(v1), ω̃ij(v1), and ω̃i∗j(v1).
We have n degrees of freedom in choosing θi(v1), an additional (1/2)n(n− 1)
in choosing ω̃ij(v1), and yet another n degrees of freedom in choosing dui(v1),
so the polar space H(E0

q ) has constant dimension 2n+ (1/2)n(n− 1) and, as
before, all zero-dimensional integral elements are regular.
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Suppose now that E1
q is a one-dimensional integral element containing E0

q

and generated by a nonzero vector v1 ∈ TqW . The polar space H(E1
q ) is the

set of vectors v2 ∈ TqW which satisfy two sets of linear equations which come
from the one-form generators of A,

L1 : θ̃i(v2) = θi(v2), θ̃i∗(v2) = 0, ω̃i∗j(v2) =

{
uiθi(v2), if i = j,
0, if i 6= j,

L2 : ω̃ij(v2) = ωij(v2),

together with two sets of equations which come from the two-form genera-
tors (6),

L3 : (uiθi(v1)− ujθj(v1))ωij(v2) = (uiθi(v2)− ujθj(v2))ωij(v1),

L4 : θi(v1)dui(v2) = θi(v2)dui(v1)− ui
∑
j

ωij ∧ θj(v1, v2).

Once θi(v2) are chosen, the linear system L1 determines θ̃I(v2) and ωi∗j(v2).
If

uiθi(v1)− ujθj(v1) 6= 0,
then L3 determines ωij(v2), and L2 determines ω̃ij(v2). Finally, if θi(v1) 6= 0,
the equations L4 determine dui(v2). In other words, once θi(v2) is chosen, the
entire basis

θi(v2), ωij(v2), θ̃I(v2), ω̃IJ(v2), dui(v2)

is completely determined, so long as the condition

(8) uiθi(v1)− ujθj(v1) 6= 0, θi(v1) 6= 0

is satisfied. Thus we see that E1
q is a regular element exactly when (8) holds,

and in this case dimH(E1
q ) = n.

We claim that the polar space H(E1
q ) is itself an integral element of di-

mension n on which, moreover, θ1 ∧ · · · ∧ θn is nonzero. Since the one-form
generators of A automatically vanish on H(E1

q ), we need only check that the
two-form generators given by (7) vanish when evaluated on arbitrary elements
v2, v3 ∈ H(E1

q ). Alternatively, it suffices to show that there exist linear func-
tionals, which we denote by ωij , dui : H(E1

q )→ R, which satisfy the equations

ωij ∧ (uiθi − ujθj) = 0,

dui −∑
j

u2
i

uj
ωij

 ∧ θi = 0,

and take the appropriate values on v1. But such solutions do exist and are
given by the explicit formulae

ωij = aij(uiθi − ujθj), dui =
∑
j

u2
i

uj
ωij + biθi,
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where the aij ’s and bi’s are determined so as to yield the correct values for
ωij(v1) and dui(v1).

It follows immediately that a regular integral element E1
q lies in a flag of

integral elements

E1
q ⊂ E2

q ⊂ · · · ⊂ En−1
q ⊂ Enq = H(E1

q ),

all of which have the same polar space H(E1
q ). Moreover,

rk+1(Ekq ) = dimH(Ekq )− (k + 1) = dimH(E1
q )− (k + 1) = n− k − 1,

and each of the integral elements is regular except for the last one which is
ordinary. Since θ1 ∧ · · · ∧ θn is nonzero on H(E1

q ), we see that the differential
system A is indeed in involution.

Proof of Theorem 3. Suppose that C is a real analytic curve in Mn which
contains an arbitrary point p ∈Mn and choose submanifolds

C = F 1 ⊂ F 2 ⊂ · · · ⊂ Fn−1 ⊂Mn

so that F i has dimension i. Let F̃ i = π−1(F i), where π : W → Mn is the
obvious projection. Given arbitrary functions fij = −fji and gi along C, we
can construct an integral submanifold Ĉ ⊂ W for A which projects to C via
the projection π : W →M and satisfies the condition

ωij(ê1) = fij , dui(ê1) = gi,

where ê1 projects to e1, just as we did in the case of Lagrangian surfaces.
Moreover, we can choose Ĉ so that

uiθi(ê1)− ujθj(ê1) 6= 0, θi(ê1) 6= 0

along Ĉ, where ê1 projects to the unit speed tangent e1 to C, which will
ensure that Ĉ is a regular integral submanifold. Then the Cartan-Kähler
theorem guarantees the existence of a two-dimensional integral submanifold
N2 ∩ F̃ 2 of W , unique up to extension, which contains Ĉ. If 2 < n, this
integral submanifold will be regular, so a second application of the Cartan-
Kähler theorem yields a three-dimensional integral submanifold N3 ∩ F̃ 3 of
W , unique up to extension, which contains N2 ∩ F̃ 2. Continuing in this
manner, we finally obtain an n-dimensional integral submanifold Nn of W .
Since θ1 ∧ · · · ∧ θn is nonzero along Nn, the inverse function theorem implies
that the projection π|N : N → M possesses an inverse map σ : U → N from
an open neighborhood U of p in Mn. The composition of σ with the obvious
projection W → C

n yields the desired isometric Lagrangian immersion from U
into Cn. The immersions so constructed depend upon the functions fij = −fji
and gi which can be completely arbitrary, except for the requirement that the
one-dimensional integral elements they determine be regular. Thus the local
isometric Lagrangian immersions depend upon (1/2)n(n + 1) functions of a
single variable, as claimed.
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[5] , Les systemes différentiels extérieurs et leurs applications géométriques, Her-
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