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Abstract

We approximate the normals and the area of a smooth surface with the normals and the area of a triangulated
mesh whose vertices belong to the smooth surface. Both approximations only depend on the triangulated mesh
(which is supposed to be known), on an upper bound on the smooth surface’s curvature, on an upper bound on its
reach (which is linked to the local feature size) and on an upper bound on the Hausdorff distance between both
surfaces.

We show in particular that the upper bound on the error of the normals is better when triangles are right-angled
(even if there are small angles). We do not need every angle to be quite large. We just need each triangle of the
triangulated mesh to contain at least one angle whose sinus is large enough.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Replacing a smooth surface with a triangulated mesh appears in many applications. In this paper, we
are interested in the relationship between a smooth surface and a triangulated mesh inscribed in it (i.e.,
whose vertices belong to the smooth surface). In particular we wonder whether we can approximate the
normals and the area of the smooth surface with the normals and the area of a triangulated mesh. Remark
that the normals and the area of the triangulated mesh can be very different from the normals and the area
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(a) (b)

Fig. 1. Examples ofLampion de Schwarz. (a) P(19-5); (b) P(99-5).

of the smooth surface, even if the mesh is “very close” to it. The famouslampion de Schwarzis a typical
example: letC be a half cylinder of finite heightH and of radiusR. LetP(n,N) denote the triangulated
mesh whose verticesSij belong toC and are defined as follows:

∀i ∈ {0, . . . , n− 1} Si,j = (
R cos(iα),R sin(iα), jh

)
if j is even,

∀j ∈ {0, . . . ,N} Si,j =
(
R cos

(
iα+ α

3

)
,R sin

(
iα + α

2

)
, jh

)
if j is odd,

and whose faces are

SijSi+1,jSi,j+1, Si,j Si−1,j+1Si,j+1,

whereα = π/n andh=H/N .
Then for example, whenn tends to infinity, the areaA(P (n,n3)) of P(n,n3) tends to infinity and the

normals ofP(n,n3) tend to be orthogonal to the normals of the surfaceC.
That is why, without other assumptions, we cannot expect the mesh to give us a good approximation

of the normals and of the area of the smooth surface.
Under suitable additional assumptions, J. Fu already proved in [8] convergence results of the area and

curvatures of a sequence of triangulated meshes converging to a smooth surface. The assumptions are
related to thefatnessof the sequence of triangulated meshes, which must be uniformly bounded from
below by a strictly positive constant. In [1], N. Amenta and M. Bern construct an explicit triangulated
mesh inscribed in a smooth surface and obtain an approximation of the normals of the smooth surface.
In [3], N. Amenta et al. construct an explicit triangulated mesh for which the circumradii of the triangles
are small compared to thelocal feature sizeand they deduce an approximation of the normals.

Our point of view is different: in particular, we do not look for convergence results and we do not
consider the problem of reconstructing a surface. We suppose that a triangulated mesh is inscribed in a
smooth surface (we do not care about its construction) and we get explicit approximations of the area and
of the normals of the smooth surface in terms of geometric data. If we consider the triangulated mesh
constructed by the algorithm of [3], our approximation of the normals is similar to the approximation of
the normals of [3].



J.M. Morvan, B. Thibert / Computational Geometry 23 (2002) 337–352 339

The notion of thereach of a smooth surfaceis one of the main tools of this paper. It was first introduced
by H. Federer [7]. It is interesting to notice that thereach is in fact linked to the (more recent) notions
of medial axisandlocal feature size,which are used in some problems of reconstructing a surface from
scattered sample points (see [1,2] or [5]). In [13], F.E. Wolter gives many interesting results related to the
relationship betweenmedial axis, cut locusand thereach.

Roughly speaking, we evaluate these approximations in terms of the geometry of the triangulated
mesh, the local curvature of the smooth surface, its local reach and the local Hausdorff distance between
the two surfaces. We can be more precise: surprisingly, the approximation of the normals of the smooth
surface does not depend on thefatnessof the triangulated mesh but on itsstraightness(see the definition
below).

This paper is organized as follows. Section 2 gives classical and usual definitions. Section 3 states our
main results. Section 4 sketches the proofs of results.

2. Definitions

We recall here some classical definitions which concern smooth surfaces, triangulated meshes and the
relative position of two surfaces. For more details on smooth surfaces, one may refer to [4] or [12]. For
more details on triangulated meshes, one may refer to [7,8] or [11].

2.1. Smooth surfaces

• In the following, a smooth surface means aC2 surface which is regular, oriented, compact with or
without boundary. LetS be a smooth surface of the (oriented) euclidean spaceR3. Let ∂S denote the
boundary ofS. S is endowed with the Riemannian structure induced by the standard scalar product
of R3. We denote byda the area form onS and byds the canonical orientation of∂S. Let ν be the
unitary normal vector field (compatible with the orientation ofS) andh be the second fundamental
form of S associated withν. Its determinant at a pointp of S is the Gauss curvatureG(p), its trace
is the mean curvatureH(p). We putρ(p)= max(|λ1(p)|, |λ2(p)|), whereλ1(p) andλ2(p) are the
eigenvalues of the second fundamental form atp, and

ρS = sup
p∈S
ρ(p).

• We need the following

Proposition 1. Let S be a smooth compact surface ofR3. Then there exists an open setUS of R3

containingS and a continuous mapξ fromUS ontoS satisfying the following: if p belongs toUS ,
then there exists a unique pointξ(p) realizing the distance fromp to S (ξ is nothing but the ortho-
gonal projection ontoS).

A proof of this proposition can be found in [7]. Remark thatUS is an open set where the normals of
S do not intersect. We can now define thereach.

Definition 1. The reach of a smooth compact surfaceS is the largest realr > 0 for whichξ is defined
on the tubular neighborhoodUr of radiusr of S.
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Just notice that ifp is a point ofR3 which is at a distance less thanr to S (i.e.,p ∈ Ur) and if ξ(p)
is an interior point ofS, thenp− ξ(p) is a vector normal toS at the pointξ(p).

Remark 1.
– The open setUS depends locally and globally on the smooth surfaceS. Globally,US depends on

points which are far from one another on the surface, but close inR3. Locally, the normals ofS
do not intersect inUS . This implies that the reachrS of S is smaller than the minimal radius of
curvature ofS (see [10] or [13]). Thus, we have

ρSrS � 1,

whereρS is the maximal curvature ofS.
– The reach is linked to the notion of medial axis and local feature size (see [13]). The reachrS is

a global notion which measures the distance ofS to the medial axis ofS along the normals ofS.
The local feature size at a pointp of S is the distance fromp to the medial axis.

2.2. Triangulated meshes

2.2.1. Generalities
A triangulated meshT is a (finite and connected) union of triangles ofR3, such that the intersection

of two triangles is either empty, or equal to a vertex, or equal to an edge.
We denote byTT the set of triangles ofT and by a generic triangle ofT .

• η( ) denotes the length of the longest edge of , andA( ) its area.
• The fatness of is the real number

θ( )= A( )
η( )2

.

• The straightness of a triangle is the real number

str( )= sup
p vertex of 

∣∣sin(θp)
∣∣,

whereθp is the angle atp of  .

Remark 2. In particular, ifβ is any of the three angles of the triangle , we have

2θ( )� |sinβ| � str( ).

We can now define

• The areaA(T ) is the sum of the areas of all the triangles ofT .
• The height ofT is

η(T )= sup
 ∈TT

η( ).

• The fatness ofT is

θ(T )= min
 ∈TT

θ( ).
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• The straightness ofT is

str(T )= min
 ∈TT

str( ).

Remark 3. If R denotes the circumradius of the triangle , we get the following:

η( )

str( )
= 2R .

2.2.2. Hausdorff distance between two subsets ofR3

The Hausdorff distance Haussbetween two subsetsA andB of R3 is

δHauss(A,B)= max
(
sup
x∈A
d(x,B),sup

y∈B
d(A,y)

)
.

2.2.3. Triangulated mesh closely inscribed in a smooth surface
• We say that a triangulated mesh ofR3 is inscribed in a smooth surfaceS if all its vertices belong toS.
• A triangulated meshT is closely inscribed in a smooth surfaceS if

(1) all the vertices ofT belong toS,
(2) all the vertices of∂T belong to∂S,
(3) ξ is defined onT ,
(4) ξ|T is bijective.

• Let T be an oriented triangulated mesh closely inscribed in a smooth surfaceS. Everym ∈ T belongs
to d triangles(d � 1). LetN1, . . . ,Nd denote the unitary normals to all those triangles. Let

αm = sup
1�i�d

∣∣(Ni, N̂Sξ(m))∣∣,
whereNSξ(m) is the normal ofS atξ(m). So we can define the real numberα = supm∈T αm. α is called
the maximal angle between the normals ofS andT .

3. Results

3.1. Approximation of the area of a smooth surface

The following result shows that the knowledge of a triangulated mesh closely inscribed in a smooth
surface can give an estimation of its area with respect to the fatness of the triangulated mesh and the
maximal angleα between the normals defined above.

Theorem 1. Let S be a smooth compact oriented surface ofR3 and T a triangulated mesh closely
inscribed inS. If the maximal angle a between the normals ofS and T is less thanπ/6, then the
areaA(S) of S satisfies the following inequality:(

1− 3 tan2α

(1− tan2α)θ(T )

)
A(T )�A(S)� 1

cos(α)

(
1+ 3 tan2α

(1− tan2α)θ(T )

)
A(T ),

whereθ(T ) is the fatness ofT andA(T ) the area ofT .
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3.2. Approximation of the normals of a smooth surface

Let S be a smooth surface andT a triangulated mesh closely inscribed inS. The mapξ (defined in
Proposition 1) induces a bijection between any triangle of T andξ( )⊂ S.

The following result compares the normals of a triangle with the normals ofξ( ). The upper bound
depends on the triangle , on the curvature ofξ( ) and on the reach ofξ( ).

Theorem 2. Let S be a smooth compact oriented surface ofR3,  a triangle inscribed inS, such that
the mapξ induces a bijection between andξ( )⊂ S. If
(1) η < rξ( ),
(2) str( )� 20(1+ str 2)ρξ( )η ,

then for everyp ∈  , the angleαp between a normal to the triangle and the normal toS at the
point ξ(p) satisfies

sin(αp)� η ρξ( )
(

2+ 20

str( )− 20η ρξ( )

)
,

whereη is the height of , ρξ( ) is the maximal curvature ofξ( ), rξ( ) is the reach ofξ( ) andstr( )
the straightness of .

We notice that the assumptions of Theorem 2 are always satisfied if the heightη of the triangle is
small enough and if the straightness str( ) is large enough. More precisely, the assumptions are satisfied
if η /str( ) is small compared to 1/ρξ( ). Thanks to Remark 3, we see that this condition means that the
circumradiusR of the triangle is small compared to 1/ρξ( ). In the context of surface reconstruction
with an ε-sample, N. Amenta et al. (see [3]) already have a similar result: they prove thatR is small
compared to thelocal feature size(which is linked to the curvature ofS) and they deduce that the normals
of the triangulated mesh are close to the normals of the smooth surfaceS.

The following corollary is global (it concerns the whole surfaceS).

Corollary 1. Let S be a smooth compact oriented surface ofR3 and T a triangulated mesh closely
inscribed inS. If
(1) ηT < rS ,
(2) str(T )� 20(1+ √

2)ρSηT ,
then the maximal angleα betweenS andT satisfies

sin(α)� ηT ρS
(

2+ 20

str(T )− 20ηT ρS

)
,

whereηT is the height ofT , ρS is the maximal curvature ofS, rS is the reach ofS and str(T ) the
straightness ofT .

Remark that in [8], J. Fu assumes that the fatness of a sequence of triangulated meshes which converge
to a surface is bounded from below by a strictly positive constant. In Corollary 1, we do not need the
fatness to be quite large: we only need the straightness to be large enough, which is a weaker condition
(cf. Remark 2) and leads to a much more precise approximation. For instance, the fatness of a right-angled
triangle can be very small and its straightness is always 1.
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Oddly, the upper bound is better when triangles are right-angled and not equilateral. This is due to the
straightness.Remark that a condition on thefatnesswould have implied that the upper bound is better
when triangles are equilateral.

Theorem 2 can be refined in a more complicated but more general and precise approximation as
follows.

Theorem 3. LetS be a smooth compact oriented surface ofR3 and a triangle inscribed inS, such that
ξ induces a bijection between and ξ( ). In η and δ are small enough andstr( ) is large enough
to satisfy the following conditions:
(1) η < rξ( ),
(2) 4str( )(1− δ ρξ( ))4 − ρ2

ξ( )η
2
 − 4ρξ( )η > 0,

thenδ ρξ( ) < 1 andα the maximal angle betweenξ( ) and satisfies

sin(α)� η ρξ( )
(

1

1− δ ρξ( ) + ρξ( )η + 4

4str( )(1− δ ρξ( ))4 − ρ2
ξ( )η

2
 − 4ρξ( )η 

)
,

whereη is the height of , δ the Hausdorff distance between andξ( ), ρξ( ) the maximal curvature
of ξ( ), rξ( ) the reach ofξ( ) andstr( ) the straightness of .

3.3. An example

We wish to approximate the normals and the area of a smooth surfaceS. We do not need any
parameterization ofS. In applications, we have no parameterization of the smooth surface. We make
the assumption that this surface is smooth, that its curvature is bounded by a known constantρS and that
its reach is bounded by a known constantrS .

Furthermore there is a triangulated mesh which is supposed to be closely inscribed in that surface and
we make the assumption that the Hausdorff distance between the two surfaces is less thanδ. Thus we can
use our results to approximate the area and the normals of the smooth surface.

In that example, we have an image of a surface. This image has been obtained by slightly modifying
a well-known parameterized surface and we therefore do not know any parameterization of the surface.
An estimation of an upper bound ofδ, ρS andrS could be{

δ � 0.01,
ρS � 0.25,
rS � 4.

(a) (b)

Fig. 2. Example. (a) Smooth surface. (b) Triangulated mesh.
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Furthermore a calculation on the triangulated mesh gives{
ηT < 0.075,
str(T ) > 0.98,
θ(T ) > 0.21.

Then Theorem 3 tells us that the normals of the smooth surface are close to the normals of the triangulated
mesh and that the maximal angleα between the two surfaces is less than 0.013π .

Furthermore Theorem 1 tells us that the area of the smooth surface is more than 4.68 and less than 4.89.

Remark 4. By definition, 1/ρS bounds from below all the radii of curvature of the surface. Geometrically,
this means that a sphereS(m,1/ρS) of radius 1/ρS tangent to the smooth surfaceS at a pointm does not
intersectS in a neighborhood ofm (except at the pointm itself ). Using this, we have a geometrical idea
of ρS .

4. Proofs

4.1. Proof of Theorem 1

We need the following proposition:

Proposition 1. LetS be a smooth surface parameterized by the map

F :U ⊂ R2 → R3.

For everym ∈ S, let αm denote the angle between the normalNSm of S atm and the vertical(Oz0)(αm ∈
[0, π/2]). If

sup
m∈S

|αm| � α < π
2
,

then

A
(
P(S)

)
� A(S)� 1

cos(α)
A
(
P(S)

)
,

whereP(S) is the orthogonal projection ofS onto R2 × {0}, A(P (S)) the area ofP(S) andA(S) the
area ofS.

Proof of Proposition 2. Letm= F(x, y) ∈ S. LetNSm be the normal vector defined atm by

NSm =N(x, y)= ∂xF (x, y) ∧ ∂yF (x, y)=
(
β(x, y)

γ (x, y)

δ(x, y)

)
.

The areaA(S) of S is given by (see [6] for instance)

A(S)=
∫
U

√
β2 + γ 2 + δ2 dx dy.
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Fig. 3. , ξ( ) andP(ξ( )).

On the other hand, letP be the orthogonal projection ontoR2 × {0}, and define the application
F̃ = P ◦ F :U ⊂ R2 → R2. If we define byDF̃ the differential ofF̃ , we get

A
(
P(S)

)= A
(
F̃ (U)

)=
∫
U

|det(DF̃ )|dx dy =
∫
U

|δ|dx dy.

• Clearly,

A(S)�
∫
U

|δ|dx dy = A
(
P(S)

)
.

• On the other hand, remark that√
β2 + γ 2

|δ| = ∣∣tan(αm)
∣∣� tan(α).

Then

A(S)=
∫
U

√
1+

(√
β2 + γ 2

|δ|
)2

|δ|dx dy � 1

cosα

∫
U

|δ|dx dy.

Finally,

A
(
P(S)

)
� A(S)� 1

cos(α)
A
(
P(S)

)
.

We now give the proof of Theorem 1. Let be a triangle of the triangulated meshT . ξ| is a bijection
between andξ( ). Suppose without restriction that ⊂ R2 × {0}, and denote byP the orthogonal
projection ontoR2 × {0}. LetN denote the oriented normal of , NSξ(m), the normal ofS at ξ(m) and
αm denote the angle(N , N̂Sξ(m)).

1. Comparison betweenA(ξ( )) andA(P (ξ( ))). Using the last proposition, we have

A
(
P
(
ξ( )

))
�A

(
ξ( )

)
� 1

cos(α)
A
(
P
(
ξ( )

))
.
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(a) (b)

Fig. 4. Comparison of with P(ξ( )).

2. Comparison betweenA( ) andA(P (ξ( ))). Let s be a vertex of . We get

P
(
ξ(s)

)= s.
We take a pointm to of and we letm′ = P(ξ(m)). The angle ̂ξ(m)sm′ is bounded from above byα.
Therefore,

m′ξ(m) = tan
(

̂ξ(m)sm′)sm′ � tan(α)sm′ � tan(α)(sm+mm′)
= tan(α)

(
sm+ tan(αm)m

′ξ(m)
)
� tan(α)

(
sm+ tan(α)m′ξ(m)

)
,

then

m′ξ(m)� tanα

1− tan2α
sm and mm′ = tan(αm)m

′ξ(m)� tan2α

1− tan2α
sm� tan2α

1− tan2α
η ,

whereη is the length of the longest side of .
Let d = tan2α

1−tan2α
η . Sinceα � π/6, we have tan2α

1−tan2α
� 1. Then we get{

mm′ � d ,
mm′ � sm for every vertexs of  .

It implies that ifm belongs to an edgeA of  , thenm′ belongs to the rectangleDA (Fig. 4). This
implies∣∣A( )−A

(
P(ξ( ))

)∣∣ � d per( )� d 3η 

= tan2α

1− tan2α
3η2
 = 3 tan2α

(1− tan2α)θ( )
A( ),

whereθ( )= A( )/η2
 is the fatness of and per( ) the perimeter of .

Sinceθ(T ) is the fatness of the triangulated mesh, we have∣∣A( )−A
(
P(ξ( ))

)∣∣� 3 tan2α

(1− tan2α)θ(T )
A( ).

Consequently,(
1− 3 tan2α

(1− tan2α)θ(T )

)
A( )� A

(
ξ( )

)
� 1

cos(α)

(
1+ 3 tan2α

(1− tan2α)θ(T )

)
A( ).
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Sinceξ induces a bijection between the meshT and the smooth surfaceS, we obtain the expected result
by adding areas of all triangles and of all surfacesξ( ).

4.2. Proof of Theorem 3

Since Theorem 3 directly implies Theorem 2 and Corollary 1, we only prove Theorem 3 in that section.
The proof follows from Proposition 3 (Section 4.2.2) and from Proposition 4 (Section 4.2.3).
Let be a triangle ofT ,p a vertex of ands a point in . The proof of Theorem 3 needs two steps.

(1) In a first step, we compare the normalNSp of the smooth surfaceS atp (which is a vertex of ) with

the normal �N of  (Section 4.2.2).
(2) Then, we compare the two normalsNSp andNSξ(s) of S at the pointsp andξ(s) (Section 4.2.3).

First of all, we need to compare a geodesic on a smooth surface with its chord (Section 4.2.1).

4.2.1. Comparing the lengths of a geodesic and of its chord
In the following, if u is a linear map, we denote by|u| its norm defined by

|u| = sup
X �=0

‖u(X)‖
‖X‖ .

We denote byDξ the differential ofξ .

Lemma 1. Let S be a smooth oriented surface without boundary andUS be a neighborhood whereξ is
well defined. For allm ∈US , if m ∈ S \ ∂S thenξ is differentiable atm and we have∣∣Dξ(m)∣∣� 1

1− ‖ξ(m)−m‖ρξ(m) ,
whereρξ(m) is the maximal curvature ofS at ξ(m).

The calculation of the differential ofξ can be found in [9] in the case whereS is the boundary of a
convex set ofR3.

Proof of Lemma 1. Letm ∈ . LetNξ(m) denote the unitary oriented normal toS at ξ(m). We have

Nξ(m) = ε ξ(m)−m‖ξ(m)−m‖ with ε ∈ {−1,+1},
thus

ξ(m)−m= 〈
ξ(m)−m,Nξ(m)

〉
Nξ(m).

Then we obtain for allX ∈ TmUS ,
Dξ(m)X = X+ 〈

ξ(m)−m,Nξ(m)
〉
DNξ(m)

(
Dξ(m)X

)+ 〈
Dξ(m)X−X,Nξ(m)

〉
Nξ(m)

+ 〈
ξ(m)−m,DNξ(m)

(
Dξ(m)X

)〉
Nξ(m)

= X+ ε∥∥ξ(m)−m∥∥DNξ(m)(Dξ(m)X)− 〈X,Nξ(m)〉Nξ(m)
= pr |Tξ(m)S(X)+ ε

∥∥ξ(m)−m∥∥DNξ(m)(Dξ(m)X),
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where pr|Tξ(m)S(X) the orthogonal projection ofX onto Tξ(m)S. Furthermore,m ∈ US implies that
‖ξ(m)m‖ is smaller than the radius of curvature. Then‖ξ(m)−m‖ρξ(m) < 1. Thus∥∥Dξ(m)X∥∥� ‖X‖ + ∥∥ξ(m)−m∥∥ρξ(m)∥∥Dξ(m)X∥∥ and

∥∥Dξ(m)X∥∥� ‖X‖
1− ‖ξ(m)−m‖ρξ(m) .

Lemma 2. LetS be a smooth compact surface,p andq two points onS. If

pq � r and ξ
( ]p,q[ )⊂ S \ ∂S, thenlpq � 1

1− ∂ρS pq,

wherelpq is the length betweenp and q on S, ρS the maximal curvature ofS, r is the reach ofS and
δ = supx∈[a,b] d(x, S).

Proof of Lemma 2. pq � r implies that[p,q] ⊂ US . ξ([p,q]) is a curve onS. Its length is larger than
the lengthlpq of the geodesic whose ends arep andq. Thus

lpq � l
(
ξ([p,q]))� sup

m∈[p,q]

∣∣Dξ(m)∣∣pq � 1

1− ∂ρS pq.

4.2.2. Comparing the normals at a vertex

Lemma 3. LetS be a smooth compact oriented surface ofR3,  a triangle whose verticesp,q, r belong
to S. LetR > 0 be such that

(1) the lengthl1 onS betweenp andq satisfiesl1R � pq,
(2) the lengthl2 onS betweenp andr satisfiesl2R � pr .

If we suppose that

4
∣∣sin(θp)

∣∣R4 − ρ2
Sη

2
 − 4ρSη R > 0,

then the angleαp between the normals ofS and at the pointp satisfies

sin(αp)�
ρ2
Sη

2
 + 4ρSη R

4|sin(θp)|R4 − ρ2
Sη

2
 − 4ρSη R

,

whereρS is the maximal curvature ofS, η the height of the triangle andθp the angle of at p.

Proof of Lemma 3. Let c1 denote a geodesic ofS linking p andq. c1 is parameterized by arc length by

γ1 : [0, l1] → S,

with γ1(0)= p andγ1(l1)= q. A simple calculation gives

γ1(l1)− γ1(0)= l1γ ′
1(0)+

l1∫
0

(l1 − t)γ ′′
1 (t)dt,
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thus

γ ′
1(0)=

�pq
l1

− 1

l1

l1∫
0

(l1 − t)γ ′′
1 (t)dt.

Let �u1 = �pq
l1

, �v1 = 1
l1

∫ l1
0 (l1 − t)γ ′′

1 (t) dt and�e1 = �pq
pq

. We have

γ ′
1(0)= �u1 − �v1 with

{‖�u1‖ � 1,

‖�v1‖ � l1ρS

2
.

Similarly, if we denote byc2 a geodesic ofS linking p andr and parameterized by arc length byγ2, we
get

γ ′
2(0)= �u2 − �v2 with

{‖�u2‖ � 1,

‖�v2‖ � l2ρS

2
.

The normalNSp to the smooth surfaceS at the pointp is proportional to the vectorγ ′
1(0)∧ γ ′

2(0).

γ ′
1(0)∧ γ ′

2(0)= �u1 ∧ �u2 + �v1 ∧ �v2 − �u1 ∧ �v2 − �v1 ∧ �u2 = �ω1 + �ω2,

with

{ �ω1 = �u1 ∧ �u2,

�ω2 = �v1 ∧ �v2 − �u1 ∧ �v2 − �v1 ∧ �u2.

Thus,

sin(αp) = sin
(
γ ′

1(0)∧ γ̂ ′
2(0), �ω1

)= ‖(�ω1 + �ω2)∧ �ω1‖
‖�ω1 + �ω2‖‖�ω1‖ = ‖�ω2 ∧ �ω1‖

‖�ω1 + �ω2‖‖�ω1‖ � ‖�ω2‖
|‖�ω1‖ − ‖�ω2‖| .

But we have

‖�ω1‖ =
∥∥∥∥�e1 ∧ �e2pq

l1

pr

l2

∥∥∥∥= ∣∣sin(θp)
∣∣pq
l1

pr

l2
,

and ‖�ω2‖ � ρSl1

2

ρSl2

2
+ ρSl1

2
+ ρSl2

2
.

The assumptions of Lemma 3 lead to

Rl1 � η and Rl2 � η .
This yields

‖�ω1‖ �
∣∣sin(θp)|R2 and ‖�ω2‖ �

(
ρSη 

2R

)2

+ ρSη 

R
.

Thanks to the assumption, we have

‖�ω1‖ − ‖�ω2‖ � 1

4R

(
4
∣∣sin(θp)

∣∣R4 − ρ2
Sη

2
 − 4ρSη R

)
> 0.

This immediately implies

sin(αp)�
‖�ω2‖

|‖�ω1‖ − ‖�ω2‖| � ρ2
Sη

2
 + 4ρSη R

4|sin(θp)|R4 − ρ2
Sη

2
 − 4ρSη R

.
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Proposition 3. Let S be a smooth compact oriented surface ofR3,  a triangle closely inscribed inS
andp a vertex of . If
(1) η < r,
(2) 4|sin(θp)|(1− δρS)4 − ρ2

Sη
2
 − 4ρSη > 0,

then the angleαp between the normals ofS and at the pointp satisfies

sin(αp)�
ρ2
Sη

2
 + 4ρSη 

4|sin(θp)|(1− δρS)4 − ρ2
Sη

2
 − 4ρSη 

,

whereρS is the maximal curvature ofS, η the height of the triangle , r the reach ofS, θp the angle at
p of andδ the Hausdorff distance between and ξ( ).

Remark 5. The interpretation of this result is the following: the angleαp is quite small if|sin(θp)| is
large enough with respect to the productρSη .

Proof of Proposition 3. We use the notations of Lemma 3. We are going to bound the lengthsl1 andl2
of the two geodesics by using Lemma 2. Asη < r , we have

Rl1 � pq and Rl1 � pr,

with R = 1− δρS . Thanks to Lemma 3, we obtain that

sin(αp) � ρ2
Sη

2
 + 4ρSη R

4|sin(θp)|R4 − ρ2
Sη

2
 − 4ρSη R

� ρ2
Sη

2
 + 4ρSη 

4|sin(θp)|R4 − ρ2
Sη

2
 − 4ρSη 

= ρ2
Sη

2
 + 4ρSη 

4|sin(θp)|(1− δρS)4 − ρ2
Sη

2
 − 4ρSη 

.

4.2.3. Comparison of the normals of the smooth surface

Lemma 4. LetS be a smooth compact oriented surface ofR3, a andb two points ofS. Then

sin(αab)� ρSLS(a, b),

whereαab, is the angle between the normals ofS at a and atb, ρS the maximal curvature ofS and
LS(a, b) the length onS betweena andb.

Proof of Lemma 4. Using the mean-value theorem we have∥∥NSa −NSb
∥∥� |DN |∞LS(a, b)= ρSLS(a, b).

Thus,

sin(αa,b)� 2sin

(
αa,b

2

)
= ∥∥NSa −NSb

∥∥� ρSLS(a, b). ✷
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Proposition 4. LetS be a smooth compact oriented surface ofR3, a triangle closely inscribed inS, p
ands two points on .

If δρS < 1, then the angleαsp between the two normalsNSξ(p) andNSξ(s) satisfies

sin(αsp)�
ρSη 

1− δρS ,

whereη is the height of andδ the Hausdorff distance betweenT andS.

Proof of Proposition 4. Lemma 4 implies

sin(αps)� ρSLS
(
ξ(p), ξ(s)

)
.

LS(ξ(p), ξ(s)) is smaller than the lengthL(ξ([p, s])) of the curveξ([p, s]) which joinsξ(p) andξ(s)
onS. Thus,

LS
(
ξ(p), ξ(s)

)
�L

(
ξ([p, s]))� sup

m∈ 

∣∣Dξ(m)∣∣ps.
Lemma 1 implies

sin(αsp)� ρS sup
m∈ 

∣∣Dξ(m)∣∣ps � ρSη 

1− δρS . ✷
4.2.4. End of proof of Theorem 3

The proof of this theorem uses Propositions 3 and 4.
Let s ∈ andp be a vertex of . The angleαa is less thanαp + αps . Thus we get

sin(αs) � sin(αp)+ sin(αps)� tan(αp)+ sin(αps)

� η ρξ( )

(
1

1− δ ρξ( ) + ρξ( )η + 4

4str( )(1− δ ρξ( ))4 − ρ2
ξ( )η

2
 − 4ρξ( )η 

)
.

5. Conclusion and perspectives

The knowledge of a triangulated mesh closely inscribed in a smooth surface gives an approximation
of the normals and of the area of the smooth surface if we make assumptions on an upper boundρS on
the smooth surface’s curvature, on an upper boundrS on its reach and on an upper boundδ on its distance
from the triangulated mesh.

The upper bound on the error of the normals is better when the numberη × ρξ( ) is small. It implies
that when the curvature of the smooth surface is large, we need a lot of points in the surface.

Furthermore, this upper bound is better when the straightness is large, that is to say when triangles are
almost right-angled (even if there are small angles).

This paper deals with approximations of invariants of order zero (the area) and of order one (the
normals). It is interesting to ask whether we can obtain approximation of invariants of second order (i.e.,
the curvatures).
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