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Abstract

We approximate the normals and the area of a smooth surface with the normals and the area of a triangulated
mesh whose vertices belong to the smooth surface. Both approximations only depend on the triangulated mesh
(which is supposed to be known), on an upper bound on the smooth surface’s curvature, on an upper bound on its
reach (which is linked to the local feature size) and on an upper bound on the Hausdorff distance between both
surfaces.

We show in particular that the upper bound on the error of the normals is better when triangles are right-angled
(even if there are small angles). We do not need every angle to be quite large. We just need each triangle of the
triangulated mesh to contain at least one angle whose sinus is large enough.
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1. Introduction

Replacing a smooth surface with a triangulated mesh appears in many applications. In this paper, we
are interested in the relationship between a smooth surface and a triangulated mesh inscribed in it (i.e.,
whose vertices belong to the smooth surface). In particular we wonder whether we can approximate the
normals and the area of the smooth surface with the normals and the area of a triangulated mesh. Remar
that the normals and the area of the triangulated mesh can be very different from the normals and the are
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(@) (b)
Fig. 1. Examples oEampion de SchwarZa) P(19-5); (b) P(99-5).

of the smooth surface, even if the mesh is “very close” to it. The farteoupion de Schwaris a typical
example: letC be a half cylinder of finite heigh# and of radiusRk. Let P(n, N) denote the triangulated
mesh whose vertice§; belong toC and are defined as follows:

Vie{0,....,n—1} S;;=(Rcodia), Rsin(ia), jh) if jiseven
Vje{0,....N} S, = (Rcos(ia n %) Rsin<ia n %) jh> if j is odd

and whose faces are

SiiSiv1,jSij+1, SiiSi—1,j+15i j+1

wherea =7 /nandh = H/N.

Then for example, when tends to infinity, the areal(P (n, n®)) of P(n, n®) tends to infinity and the
normals ofP (n, n®) tend to be orthogonal to the normals of the surface

That is why, without other assumptions, we cannot expect the mesh to give us a good approximation
of the normals and of the area of the smooth surface.

Under suitable additional assumptions, J. Fu already proved in [8] convergence results of the area and
curvatures of a sequence of triangulated meshes converging to a smooth surface. The assumptions ar
related to thdatnessof the sequence of triangulated meshes, which must be uniformly bounded from
below by a strictly positive constant. In [1], N. Amenta and M. Bern construct an explicit triangulated
mesh inscribed in a smooth surface and obtain an approximation of the normals of the smooth surface.
In [3], N. Amenta et al. construct an explicit triangulated mesh for which the circumradii of the triangles
are small compared to thecal feature sizeind they deduce an approximation of the normals.

Our point of view is different: in particular, we do not look for convergence results and we do not
consider the problem of reconstructing a surface. We suppose that a triangulated mesh is inscribed in a
smooth surface (we do not care about its construction) and we get explicit approximations of the area and
of the normals of the smooth surface in terms of geometric data. If we consider the triangulated mesh
constructed by the algorithm of [3], our approximation of the normals is similar to the approximation of
the normals of [3].
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The notion of theeach of a smooth surfadge one of the main tools of this paper. It was first introduced
by H. Federer [7]. It is interesting to notice that tleachis in fact linked to the (more recent) notions
of medial axisandlocal feature sizeywhich are used in some problems of reconstructing a surface from
scattered sample points (see [1,2] or [5]). In [13], F.E. Wolter gives many interesting results related to the
relationship betweemedial axis, cut locuand thereach.

Roughly speaking, we evaluate these approximations in terms of the geometry of the triangulated
mesh, the local curvature of the smooth surface, its local reach and the local Hausdorff distance between
the two surfaces. We can be more precise: surprisingly, the approximation of the normals of the smooth
surface does not depend on fatnessof the triangulated mesh but on gaightnesgsee the definition
below).

This paper is organized as follows. Section 2 gives classical and usual definitions. Section 3 states our
main results. Section 4 sketches the proofs of results.

2. Definitions

We recall here some classical definitions which concern smooth surfaces, triangulated meshes and the
relative position of two surfaces. For more details on smooth surfaces, one may refer to [4] or [12]. For
more details on triangulated meshes, one may refer to [7,8] or [11].

2.1. Smooth surfaces

e In the following, a smooth surface meang4surface which is regular, oriented, compact with or
without boundary. Le§ be a smooth surface of the (oriented) euclidean sdceet 9 denote the
boundary ofS. S is endowed with the Riemannian structure induced by the standard scalar product
of R®. We denote byla the area form or§ and byds the canonical orientation &fS. Let v be the
unitary normal vector field (compatible with the orientationSdfand/ be the second fundamental
form of S associated withv. Its determinant at a point of S is the Gauss curvaturé& (p), its trace
is the mean curvaturéd (p). We putp(p) = max(|r1(p)], [A2(p)]), wherer,(p) andiz(p) are the
eigenvalues of the second fundamental forrp aand

ps = supp(p).
peS

e We need the following

Proposition 1. Let S be a smooth compact surface ®f. Then there exists an open dé¢ of R3
containing S and a continuous mapg from U onto S satisfying the following if p belongs taUs,
then there exists a unique poifp) realizing the distance fronp to S (¢ is nothing but the ortho-
gonal projection ontc).

A proof of this proposition can be found in [7]. Remark tliat is an open set where the normals of
S do not intersect. We can now define tieach.

Definition 1. The reach of a smooth compact surfacs the largest real > 0 for whiché¢ is defined
on the tubular neighborhoad, of radiusr of S.
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Just notice that i is a point ofR? which is at a distance less tharo S (i.e., p € U,) and if(p)
is an interior point ofS, thenp — &(p) is a vector normal t& at the point(p).

Remark 1.

— The open sel/s depends locally and globally on the smooth surfac&lobally, Us depends on
points which are far from one another on the surface, but clo&.ih.ocally, the normals of
do not intersect irUs. This implies that the reacky of S is smaller than the minimal radius of
curvature ofS (see [10] or [13]). Thus, we have

psrs < 1,
wherepg is the maximal curvature .
— The reach is linked to the notion of medial axis and local feature size (see [13]). Thergaach

a global notion which measures the distance ¢ the medial axis of along the normals of.
The local feature size at a poiptof S is the distance fronp to the medial axis.

2.2. Triangulated meshes

2.2.1. Generalities

A triangulated meslT is a (finite and connected) union of trianglesif, such that the intersection
of two triangles is either empty, or equal to a vertex, or equal to an edge.

We denote by7; the set of triangles of and byA a generic triangle of .

e 1(A) denotes the length of the longest edge\ofand.A(A) its area.
e The fatness oA\ is the real number

A(A)

n(A)2

e The straightness of a triangle is the real number

0(A) =

str(A)= sup [sin(@,)|,

p vertex of A

wheref,, is the angle ap of A.

Remark 2. In particular, if 8 is any of the three angles of the triangle we have
20(A) < |sing| < str(A).

We can now define

e The aread(T) is the sum of the areas of all the trianglesTof
e The height ofT is

n(T) = supn(A).
AeTr

e The fatness of is
0(T) = min 6(A).
AETT
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e The straightness df is

St (T) = Anglfp Str(A).
T

Remark 3. If R, denotes the circumradius of the triangle we get the following:

n(A)
Str(A)

A~

2.2.2. Hausdorff distance between two subse®df
The Hausdorff distanca yaussbetween two subseis and B of R3 is

Shausd A, B) = max(supd(x, B), supd(A, y)).
xXeA yeB

2.2.3. Triangulated mesh closely inscribed in a smooth surface
e We say that a triangulated mesh®ft is inscribed in a smooth surfadf all its vertices belong tc.
e Atriangulated meslIT is closely inscribed in a smooth surfagef
(1) all the vertices off" belong toS,
(2) all the vertices 0BT belong tod S,
(3) ¢ is defined or’,
(4) &7 is bijective.
e Let T be an oriented triangulated mesh closely inscribed in a smooth sutféaserym € T belongs
tod triangles(d > 1). Let Ny, ..., N, denote the unitary normals to all those triangles. Let

o= sup |(Ni, N§,)

1<igd|

’

WhereNES(m) is the normal ofS at&(m). So we can define the real numbes sup, ., «,,. « is called
the maximal angle between the normalsSand T.

3. Results
3.1. Approximation of the area of a smooth surface

The following result shows that the knowledge of a triangulated mesh closely inscribed in a smooth
surface can give an estimation of its area with respect to the fatness of the triangulated mesh and the
maximal anglex between the normals defined above.

Theorem 1. Let S be a smooth compact oriented surfaceRsf and 7 a triangulated mesh closely
inscribed in S. If the maximal angle a between the normalsSoand T is less thanz/6, then the
area A(S) of S satisfies the following inequality

( 3 3tarfa 1 (1+ 3tarfa
(1 —tarfa)d(T) coqw) (1 —tarfa)é(T)
whered (T) is the fatness of and A(T) the area ofT.

)A(T) SAWS) < )A(T),
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3.2. Approximation of the normals of a smooth surface

Let S be a smooth surface arfd a triangulated mesh closely inscribedSnThe mapé (defined in
Proposition 1) induces a bijection between any trianglef 7 and&(A) C S.

The following result compares the normals of a trianglevith the normals of (A). The upper bound
depends on the triangl&, on the curvature of (A) and on the reach df(A).

Theorem 2. Let S be a smooth compact oriented surfaceRSf A a triangle inscribed inS, such that
the mapg induces a bijection betweet and&(A) C S. If

(D) na <rga)s

(2) str(A) > 20(1 4+ str2) pzayna,
then for everyp € A, the anglex, between a normal to the triangla and the normal taS at the
point&(p) satisfies

20
Sin(a,) < nap, (2+ )
PSP T St (A) — 2004 peca)
wheren, is the height oA, pz(a) iS the maximal curvature @f(A), r¢a) is the reach o€ (A) andstr(A)
the straightness oh.

We notice that the assumptions of Theorem 2 are always satisfied if the higtitthe triangle is
small enough and if the straightnesg aty is large enough. More precisely, the assumptions are satisfied
if na/str(A) is small compared to/bs(a). Thanks to Remark 3, we see that this condition means that the
circumradiusR » of the triangleA is small compared to/Joz(a). In the context of surface reconstruction
with an e-sample, N. Amenta et al. (see [3]) already have a similar result: they prove thiast small
compared to théocal feature sizéwhich is linked to the curvature ¢f) and they deduce that the normals
of the triangulated mesh are close to the normals of the smooth sutface

The following corollary is global (it concerns the whole surféje

Corollary 1. Let S be a smooth compact oriented surfaceR5fand T a triangulated mesh closely
inscribed inS. If

D) nr <rs,

(2) st(T) =201+ v/2)psnr,
then the maximal angle betweenS and 7T satisfies

20
sin(a) < 2 ,
n@) 77T,05< * Stn(T') — 2077TPS)

where ny is the height ofT’, pg is the maximal curvature of, rg is the reach ofS and str(T') the
straightness of’.

Remark that in [8], J. Fu assumes that the fatness of a sequence of triangulated meshes which converg
to a surface is bounded from below by a strictly positive constant. In Corollary 1, we do not need the
fatness to be quite large: we only need the straightness to be large enough, which is a weaker condition
(cf. Remark 2) and leads to a much mare precise approximation. For instance, the fatness of a right-angled
triangle can be very small and its straightness is always 1.
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Oddly, the upper bound is better when triangles are right-angled and not equilateral. This is due to the
straightnessRemark that a condition on tHatnesswould have implied that the upper bound is better
when triangles are equilateral.

Theorem 2 can be refined in a more complicated but more general and precise approximation as
follows.

Theorem 3. Let S be a smooth compact oriented surfacékdfand A a triangle inscribed inS, such that
& induces a bijection betweeft and£(A). In n, andd, are small enough andtr(A) is large enough
to satisfy the following conditions

(D) na <rga),

(2) AStA) (1= 8apea)® — PE A — 4Psara > O,
thenda psa) < 1 anda the maximal angle betweéniA) and A satisfies

1 + peayna +4 >
1—8apea)  ASUA)L = 8apea)* — PEayia — 40eayiia )

sin(ar) < nApg(A)(

wheren, is the height oA, §, the Hausdorff distance betweeanand£(A), ps(a) the maximal curvature
of £(A), r¢(a) the reach of(A) andstr(A) the straightness oA.

3.3. An example

We wish to approximate the normals and the area of a smooth suffatée do not need any
parameterization of. In applications, we have no parameterization of the smooth surface. We make
the assumption that this surface is smooth, that its curvature is bounded by a known cenataththat
its reach is bounded by a known constant

Furthermore there is a triangulated mesh which is supposed to be closely inscribed in that surface and
we make the assumption that the Hausdorff distance between the two surfaces is lés$thsnwe can
use our results to approximate the area and the normals of the smooth surface.

In that example, we have an image of a surface. This image has been obtained by slightly modifying
a well-known parameterized surface and we therefore do not know any parameterization of the surface.
An estimation of an upper bound 8f pg andrg could be

5 <£0.01,
ps < 0.25,
rs 2 4.

(@ (b)

Fig. 2. Example. (a) Smooth surface. (b) Triangulated mesh.



344 J.M. Morvan, B. Thibert / Computational Geometry 23 (2002) 337—-352

Furthermore a calculation on the triangulated mesh gives

nr < 0.075
str(T) > 0.98,
0(T) > 0.21

Then Theorem 3 tells us that the normals of the smooth surface are close to the normals of the triangulatec
mesh and that the maximal anglebetween the two surfaces is less thadil@r .
Furthermore Theorem 1 tells us that the area of the smooth surface is more than 4.68 and less than 4.89

Remark 4. By definition, 1/ ps bounds from below all the radii of curvature of the surface. Geometrically,
this means that a sphefém, 1/ps) of radius ¥ ps tangent to the smooth surfadeat a pointn does not
intersects in a neighborhood of: (except at the point itself). Using this, we have a geometrical idea

of Ps.

4. Proofs
4.1. Proof of Theorem 1
We need the following proposition:

Proposition 1. Let S be a smooth surface parameterized by the map

F:UCR?>-R3
For everym € S, leta,, denote the angle between the normé) of S at m and the vertical Ozo) (o, €
[0, 77/2)). If

T
Sup'“ml < o< =,
meS 2

then

A(P(S)) < AS) < A(P(S)),

coqw)
where P(S) is the orthogonal projection af onto R? x {0}, A(P(S)) the area ofP(S) and A(S) the
area of §.

Proof of Proposition 2. Letm = F(x, y) € S. Let N3 be the normal vector defined atby

B(x,y)
Np =N, y) =0F, ) AdFx,y)=r&y |
8(x,y)
The aread(S) of S is given by (see [6] for instance)

A(S)=fx/ﬁ2+y2+82dxdy-
U
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£(A)

- P(&(A))

Fig. 3. A, £(A) and P (£(A)).

On the other hand, leP be the orthogonal projection onﬂﬁ2 x {0}, and define the application
F=PoF:UcCR2- R2 If we define byD F the differential ofF, we get

A(P(S)):A(ﬁ(U)):/|det(Df)|dxdy:/|3|dxdy.
U

e Clearly,
A(S)>/|5|dxdy=A(P(S)).

U
e On the other hand, remark that

Vil & = |tan(e,,) | < tan(a).

3]
Then

VBZ+ 72 1
1 < — .
A(S) = /\/ —i— H ) |8] dx dy COSa/lSIdxdy
U

Finally,
A(P(S)).

A(P(S)) <AS) < cos@)

We now give the proof of Theorem 1. Latbe a triangle of the triangulated meghé , is a bijection
betweenA and&(A). Suppose without restriction that ¢ R? x {0}, and denote byP the orthogonal
projection ontdR? x {0}. Let N* denote the oriented normal o, Ng(m), the normal ofS at & (m) and
a,, denote the anglen™, N5 ).

1. Comparison betweed (£(A)) and A(P(£(A))). Using the last proposition, we have

A(P(£(A))) SA(E(A)) < A(P(E(A))).
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P(£(A)

rectangle D 4

edge A

(a) (b)
Fig. 4. Comparison oA with P(£(A)).

2. Comparison betweed (A) and A(P (§(A))). Lets be a vertex ofA. We get
P(E(s)) =s.

We take a poinin to of A and we letn’ = P(£(m)). The anglqm/ is bounded from above hy.
Therefore,

m'E(m) = tan(ém’)sm/ <tan(a)sm’ <tan(a)(sm + mm')
= tan(a) (sm + tan(a,,)m'& (m)) < tan(er) (sm + tan(a)m'é (m)),

then
m'E(m) < taism and mm’ =tan(a,,)m’E(m) < tart sm < tart na
1—tarfa " S 1—tarfe  1-—tarfa
wheren, is the length of the longest side of.
Letd, = 1‘_6‘tfrga na. Sincea < /6, we hav 1‘_""tfrga < 1. Then we get
{mm’ <da,
mm’ < sm for every vertexs of A.

It implies that if m belongs to an edgd of A, thenm’ belongs to the rectangl®, (Fig. 4). This
implies
|A(A) — A(P(E(A)))| < daper(A) < da3na
_ tarfa 32 — 3tarfa
T 1 tarfe AT (1-tarfa)s(d)
whered(A) = A(A)/ni is the fatness oA and pe(A) the perimeter ofA.
Sinced (T) is the fatness of the triangulated mesh, we have
3tarfo

1—tarfa)o(T)

A(A),

|AA) — A(PEA))| < ( A(A).

Consequently,

( 3tarfa
1—
(1 —tarfa)d(T)

(1+ 3tarfo
coSa) (1 —tarfa)d(T)

)A(A) <A(E()) < )A(A>.
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Sinceé induces a bijection between the meskand the smooth surfacg we obtain the expected result
by adding areas of all triangles and of all surface§(A).

4.2. Proof of Theorem 3

Since Theorem 3 directly implies Theorem 2 and Corollary 1, we only prove Theorem 3 in that section.
The proof follows from Proposition 3 (Section 4.2.2) and from Proposition 4 (Section 4.2.3).
Let A be atriangle off', p a vertex ofA ands a point inA. The proof of Theorem 3 needs two steps.

(1) In afirst step, we compare the norni@ of the smooth surfac$ at p (which is a vertex ofA) with

the normalN, of A (Section 4.2.2).
(2) Then, we compare the two normaN’% andNES(S) of S at the pointsp andé(s) (Section 4.2.3).

First of all, we need to compare a geodesic on a smooth surface with its chord (Section 4.2.1).

4.2.1. Comparing the lengths of a geodesic and of its chord
In the following, if u is a linear map, we denote by| its norm defined by

X
] = supl“
xz0 |IXI|
We denote byD¢ the differential oft.

Lemma 1. Let S be a smooth oriented surface without boundary &idbe a neighborhood wheigis
well defined. For alin € Uy, if m € S\ 95 thené is differentiable atn and we have

1
1—[lE(m) — m|l psmy’
wherepg ) is the maximal curvature of at £ (m).

| DE(m)| <

The calculation of the differential @¢f can be found in [9] in the case wheseis the boundary of a
convex set o3,

Proof of Lemmal. Letm € A. Let N¢,, denote the unitary oriented normalSaat&(m). We have

E(m) —m

Sm with ¢ € {—l, +1},

Nemy =

thus
§(m) —m = (§(m) — m, Nem) ) Nen)-
Then we obtain for alk € T,,Us,
DE(mM)X = X + (§(m) — m, Neu))D Neny(DE(m)X) + (DE(m)X — X, Ne(y)Nemy
+(§(m) — m, DNgny(DE(m) X)) Nem)
= X +¢&|§@m) — m|| DNy (DEm)X) — (X, Neu) Neom
= PP s(X) + €| EGm) —m | D Neuy (DE(m) X)),
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where priz,,,s(X) the orthogonal projection ok onto 7;(,,S. Furthermore,m € Us implies that
| (m)m|| is smaller than the radius of curvature. THgGm) — m|| pgn) < 1. Thus

11Xl

|DEmMX || <X+ |[§Gm) — m| pen | DE(m)X | and ||D§(m)x||<1_”§(m)_m||ps(m).

Lemma 2. Let S be a smooth compact surfageandg two points onS. If

pg<r and &(Ip.ql)CS\dS, thenl,, < q.

1- 3,05p
wherel,, is the length betweep andg on S, ps the maximal curvature of, r is the reach ofS and
6 == Sugce[a’h]d(.x, S).

Proof of Lemma 2. pg <r implies that[p, g] C Us. £([p, ¢]) is a curve onS. Its length is larger than
the length/,,, of the geodesic whose ends arandg. Thus

1
lpg <1(E(p,gqD) < sup !Dé(m)!pq<1 =P
melp.ql — 0ps

4.2.2. Comparing the normals at a vertex

Lemma3. LetS be a smooth compact oriented surfacéRf A atriangle whose vertices, ¢, r belong
to S. LetR > 0 be such that

(1) the length/; on S betweernp andq satisfied: R < pgq,
(2) the lengthl; on S betweenp andr satisfied,R < pr.

If we suppose that
4|Sin(91,,)|R4 — ,05772 —4psnaR > 0,
then the angler, between the normals ¢fand A at the pointp satisfies

PENA + 4psnaR
4sin(6,)|R* — p§n3 — 4osnaR’

whereps is the maximal curvature of, n the height of the triangle\ and6, the angle ofA at p.

sin(er,) <

Proof of Lemma 3. Let ¢; denote a geodesic ¢flinking p andg. c; is parameterized by arc length by
y1:10, 1] — S,

with y1(0) = p andyy(l1) = g. A simple calculation gives

Iy
ya(la) — y2(0) = Liy(0) + / (= Dy] () db,
0
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thus

-

I1
1
yo=24_2 / (o — y{ (1) db.
I I
0

Letu, = % U1 = (ll —1)y{(t)dt ande; = ”" . We have
0 ) [l ]l < l’
[(0) =11 — vy Wit 105
(O =t = foal < 222,

Similarly, if we denote by, a geodesic of linking p andr and parameterized by arc length a3y we
get

<
() = iip— T, with
v2(0) =z =2 {n ol < 2

The normalle to the smooth surfacg at the pointp is proportional to the vectay; (0) A y;(0).
Y1(0) A y5(0) = iy Alip + V1 A U2 — Ui A Up — U1 Al = 1 + @2,

, w1 =11 A Uiy,
with St~ 21722
W2 =V1 AVp— UL NV2— VU1 A U>.

Thus,
. . ~ . [ (@14 @2) Al llo2 A @1 l|oa |l
sin(er,) = sin(y;(0) Ay4(0), 1) = ———————— = ——— < — —.
|1 + wal|[|w1]| w1+ w2llllo1ll [l — [[w2]l]
But we have
- Pq PC]PF
ol = 61/\62——H |Sln(9p)|
11 psl / l
and ” ool < ,0s1,0s2+/)51+/)52

2 2 2
The assumptions of Lemma 3 lead to

RlI;<na and Rl <na
This yields

2
PSUA) n PsNA ‘

01| = |sin(@,)|R?> and ||@y| <
@]l = |sin@,) |2l (ZR R

Thanks to the assumption, we have
- - 1 :
léall = lé2ll > o= (4[sin@,)|R* — o], — 4psnaR) > 0.
This immediately implies

@zl - 0213 +4psnaR
— = X . .
ol — @zl — 4sin@,)|R* — p2n3 — 4psnaR

sin(er,) <
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Proposition 3. Let S be a smooth compact oriented surfaceR3f A a triangle closely inscribed ir§
and p a vertex ofA. If

(1) na < r,
(2) 41sin(8,)(1 — 8p5)* — pin3 — 4psna >0,
then the angler, between the normals ¢fand A at the pointp satisfies

0202 + 4psna
4| sin(@,)|(1 — 8ps)* — p2n% — dpsna’

wherepy is the maximal curvature of, n, the height of the triangle\, r the reach ofS, 6, the angle at
p of A and$ the Hausdorff distance betweeénand £(A).

sin(a,) <

Remark 5. The interpretation of this result is the following: the anglgis quite small if| sin(g,)| is
large enough with respect to the prodyg A .

Proof of Proposition 3. We use the notations of Lemma 3. We are going to bound the lehgémsl/,
of the two geodesics by using Lemma 2. As < r, we have
RlI1 < pg and Rl < pr,

with R =1 — §pg. Thanks to Lemma 3, we obtain that

p3nA + 4psnaR

sine,) < —
"7 4lsin6,)|RY — pini — 4psnaR

- P20 + 4psna
~ .
4| sin(8,)|R* — pZni — 4psna

P03 + 4psna
4SiN(6,)1 (L — 8ps)* — P2 — 4psiia

4.2.3. Comparison of the normals of the smooth surface

Lemma4. Let S be a smooth compact oriented surfacefs, « and b two points ofS. Then
sin(etay) < psLs(a, b),

where«,;,, is the angle between the normals $fat ¢ and atb, ps the maximal curvature of and
Ls(a, b) the length onS betweer: andb.

Proof of Lemma 4. Using the mean-value theorem we have
IN? — N | <IDN|wLs(a, b) = psLs(a, b).
Thus,

sin(ag ) < 2sin(“LZ’”) =|NS =N | < psLs(a,b). O
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Proposition 4. Let S be a smooth compact oriented surfaceR5, A a triangle closely inscribed ii§, p
ands two points onA.
If 5ps < 1, then the angler,, between the two normalg; , and N/, satisfies

’

sin <
(@) S 72 3ps

wheren, is the height oA ands the Hausdorff distance betweé&handS.

Proof of Proposition 4. Lemma 4 implies

Sin(opg) < ,OSLS(S(P)» 5(5))-
Ls(¢(p). £(s)) is smaller than the length (& ([p. s1)) of the curve ([p. s1) which joins (p) and (s)
on S. Thus,

Ls(£(p),£(s)) < L(E(Ip, sD) < sup| D&(m) | ps.

meA
Lemma 1 implies

; PsNA
Sin(es,) < ps SUP| DE(m)| ps < T—~.
meA — 0ps

4.2.4. End of proof of Theorem 3
The proof of this theorem uses Propositions 3 and 4.
Lets € A andp be a vertex ofA. The anglay, is less than, 4+ «,,. Thus we get

sin(a,) < Sin(e,) + Sin(e ) < tan(er,) + sin(e )

1 n pzaya +4 )
1—8apsa)  ASMA)(L = 8apeca))® — PEaIZ — 4Pe(a) A

< T]A,Og(A)(

5. Conclusion and per spectives

The knowledge of a triangulated mesh closely inscribed in a smooth surface gives an approximation
of the normals and of the area of the smooth surface if we make assumptions on an uppessonnd
the smooth surface’s curvature, on an upper boyrah its reach and on an upper bouhan its distance
from the triangulated mesh.

The upper bound on the error of the normals is better when the numberp; ) is small. It implies
that when the curvature of the smooth surface is large, we need a lot of points in the surface.

Furthermore, this upper bound is better when the straightness is large, that is to say when triangles are
almost right-angled (even if there are small angles).

This paper deals with approximations of invariants of order zero (the area) and of order one (the
normals). It is interesting to ask whether we can obtain approximation of invariants of second order (i.e.,
the curvatures).
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