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Abstract. This paper deals with the approximation of the unfolding of a smooth globally
developable surface (i.e. “isometric” to a domain of E2) with a triangulation. We prove the
following result: let Tn be a sequence of globally developable triangulations which tends to
a globally developable smooth surface S in the Hausdorff sense. If the normals of Tn tend to
the normals of S, then the shape of the unfolding of Tn tends to the shape of the unfolding
of S.

We also provide several examples: first, we show globally developable triangulations
whose vertices are close to globally developable smooth surfaces; we also build sequences
of globally developable triangulations inscribed on a sphere, with a number of vertices and
edges tending to infinity. Finally, we also give an example of a triangulation with strictly
negative Gauss curvature at any interior point, inscribed in a smooth surface with a strictly
positive Gauss curvature. The Gauss curvature of these triangulations becomes positive (at
each interior vertex) only by switching some of their edges.

1. Introduction

Developable surfaces appear naturally in several problems of geometric modeling, such
as the modeling of developable strata in structural geology [16], the modeling of clothes
[17] and so on. . . . In some of these applications the quality of the shape of the unfolding

∗ This work was partially supported by the IST Programme of the EU as a Shared-cost RTD (FET Open)
Project under Contract No. IST-2000-26473 (ECG—Effective Computational Geometry for Curves and Sur-
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is important. It is therefore natural to consider the problem of developable surfaces
construction and also to validate the geometric shape of the unfolding of a surface.

A smooth surface is usually said to be developable if its Gauss curvature is identically
equal to zero. In this paper we say that a smooth surface is globally developable if it is
globally isometric to a domain of plane E2. Notice that the Teorema Egregium of Gauss
implies that a globally developable surface is developable. Similarly a triangulation is
said to be globally developable if there exists a homeomorphism from the triangulation
onto a domain of plane E2 that preserves distances. Notice that such a triangulation is
also developable, in the sense that its discrete Gauss curvature is equal to zero.

We are interested in this article in the following question: if two globally developable
surfaces are geometrically close to one another, does it imply that their unfoldings have a
“similar shape”? In the main part of this paper we consider a smooth globally developable
surface S, and we suppose that there exists a sequence of developable triangulations Tn

which tends to S in the Hausdorff sense. We show that if the normals of Tn tend to the
normals of S, then the unfolding of Tn tends to the unfolding of S in the Hausdorff sense
(up to a motion of the plane).

Notice that the unfolding of a triangulation can be very different from the unfolding
of a smooth surface even if both surfaces are very close for the Hausdorff distance. The
unfolding of the half Schwarz lantern convinces us easily. (This problem appears in
many applications, such as geology, where people want to unfold strata under isometric
deformations. At a certain scale, the stratum can be considered as a smooth surface,
approximated by a triangulation.)

The problem of developable surface reconstruction from scattered sample points S
has already been studied. First, notice that we can always build an infinity of cylindri-
cal triangulations that contain a given sample of points S (as explained in Section 3).
However, these triangulations can be geometrically very far in the Hausdorff sense from
the set S. Peternell [13] has recently proposed an algorithm that allows us to build a
developable smooth surface close to a set S of sample points. Thibert et al. [16] have
also proposed an algorithm of surface reconstruction which is based on the geometrical
properties of developable smooth surfaces (the set of sample pointsS belongs to different
level curves). Their algorithm allows us to build globally developable triangulations in
simple cases (if S is included in simple developable surfaces, like cones or cylinders).
In more complicated situations, they build triangulations that are “almost developable”
(in the sense that the Gauss curvature is very small). The problem of developable surface
reconstruction from scattered sample points S is still open and difficult, although it has
been solved in particular cases.

We provide in this paper some examples of globally developable triangulations whose
vertices are close to globally developable smooth surfaces. Besides the half Schwarz
lantern, we propose an analogous triangulation (the Schwarz cone) whose vertices belong
to a cone. We also use the program detailed in [16] to build two simple examples.

We also devote a section to contradicting the mistaken belief that the geometry of
a smooth surface is better and better approximated if the triangulation approximation
has a bigger and bigger amount of vertices on it. We construct a sequence of globally
developable triangulations whose cardinal of vertices and edges goes to infinity, and
which are all inscribed on a portion of a sphere of fixed radius. We end this paragraph
with an example of a triangulation with a strictly negative Gauss curvature at each
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interior vertex, incribed on a convex smooth surface, which has the following property:
by switching some edges and keeping its vertices fixed, it is still inscribed on the same
smooth surface but is now positively curved at each interior vertex.

It is important to notice that our approach is different from the works of Sheffer and
de Sturler [14], Desbrun et al. [3] and Lévy et al. [8], who give explicit algorithms to
unfold triangulations which are not necessarily globally developable. These authors min-
imize an energy [3], [8] related to the distortion of the angles of the triangles. However,
there is no underlying smooth surface in their work, and then no comparison between
smooth and discrete unfoldings is possible. On the contrary, we give a theorem which
compares the unfolding of a smooth globally developable surface with the unfolding of
a globally developable triangulation.

The notion of the reach of a smooth surface is one of the main tools of this paper.
It allows us to compare a smooth surface with a triangulation “close to it”. It was first
introduced by Federer [5]. It is interesting to notice that the reach is in fact linked to
the (more recent) notions of medial axis and local feature size, which are used in some
problems of reconstructing a surface from scattered sample points. In [18] Wolter gives
many interesting results related to the medial axis and the cut locus.

This paper is organized as follows. Section 2 gives classical and usual definitions.
Section 3 gives examples of globally developable triangulations. Section 4 states the main
result (Theorem 1), which deals with the approximation of the shape of the unfolding of
a smooth surface. Section 5 gives some “bad examples’” concerning the Gauss curvature
of smooth surfaces and inscribed triangulations. The other sections sketch the proofs of
results: Sections 6 and 7 prove Theorem 1 (Section 6 gives intermediate results of the
approximation of the lengths of curves; Section 7 gives a result about plane geometry).
Section 8 gives the proof of the existence of the bad examples of Section 5.

2. Definitions

We recall here some classical definitions which concern smooth surfaces, triangulations
and the relative position of two surfaces. For more details on smooth surfaces, one may
refer to [1], [4] or [15]. For more details on triangulations, one may refer to [2], [5], [6]
or [10].

2.1. Smooth Surfaces

In the following a smooth surface means a C2 surface which is regular, oriented, compact
with or without boundary. Let S be a smooth surface of the (oriented) euclidean spaceE3.
Let ∂S denote the boundary of S. S is endowed with the Riemannian structure induced
by the standard scalar product of E3. We denote by da the area form on S and by ds the
canonical orientation of ∂S. Let ν be the unit normal vector field (compatible with the
orientation of S) and let h be the second fundamental form of S associated with ν. Its
determinant at a point p of S is the Gauss curvature G p, its trace is the mean curvature
Hp. The maximal curvature of S at p is ρp = max(|λ1

p|, |λ2
p|), where λ1

p and λ2
p are the

principal curvatures of S at p (that is, the eigenvalues of the second fundamental form).
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The maximal curvature of S is

ρS = sup
p∈S

ρp.

We denote by kp the geodesic curvature of ∂S at p.
We need the following:

Proposition 1. Let S be a smooth compact surface of E3. Then there exists an open set
US of E3 containing S and a continuous map ξ from US onto S satisfying the following:
if p belongs to US , then there exists a unique point ξ(p) realizing the distance from p to
S (ξ is nothing but the orthogonal projection onto S).

A proof of this proposition can be found in [5].
The open set US depends locally and globally on the smooth surface S. Locally, it

is related to the curvature. Globally, US depends on points which can be far from one
another on the surface, but close in E3.

We shall also need the notion of the reach of a surface, introduced by Federer in [5].

Definition 1. The reach of a surface S is the largest r > 0 for which ξ is defined on
the open tubular neighborhood Ur (S) of radius r of S.

Note that the reach rS of S is smaller than the minimal radius of curvature of S (which
is 1/ρS) (see [9] or [18] for more details). Thus, we have

ρSrS ≤ 1,

where ρS is the maximal curvature of S.

2.2. Triangulations

2.2.1. Generalities. A triangulation T is a (finite and connected) union of triangles of
E3, such that the intersection of two triangles is either empty, or equal to a vertex or
equal to an edge.

We denote by TT the set of triangles of T and by � a generic triangle of T .

• η� denotes the length of the longest edge of �, and A(�) the area of �.
• The area A(T ) is the sum of the areas of all the triangles of T .

For the following, we need to define a new geometric invariant on the triangulation:

Definition 2. Let � be a triangle of a triangulation T .

• The rightness of a � is the real number

rig(�) = sup
p vertex of �

sin(θp),

where θp is the angle at p of �.
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• The rightness of T is

rig(T ) = min
�∈TT

rig(�).

Remark 1. In particular, if β is any of the three angles of the triangle �, we have:

sinβ ≤ rig(�).

2.2.2. Triangulation Close to a Smooth Surface.

• A triangulation (or a smooth surface) M is closely near a smooth surface S if:
1. M lies in Ur (S), where r is the reach of S,
2. the restriction of ξ to M is one-to-one (where ξ is the map defined in Proposi-

tion 1).
• We say that a triangulation ofE3 is inscribed in a smooth surface S if all its vertices

belong to S.
• A triangulation T is closely inscribed in a smooth surface S if:

1. T is closely near S,
2. all the vertices of T belong to S.

• Let T be a triangulation closely near a smooth surface S. Let m be a point lying in
the interior of a triangle � of T . Let N� be the normal line through m to �. We
put

αm = 〈N�, νS
ξ(m)〉 ∈

[
0,
π

2

]
.

The real number αm is defined almost everywhere on T . (If m is a point on an edge
or a vertex, one can define αm by taking the supremum of the angles between the
triangles which contain m and the normal νS

ξ(m).)
We can define the real number

α = sup
m∈T

αm .

α is called the maximal angle between the normals of S and T .

We now introduce an invariant which relates the triangulation and the smooth surface:

Definition 3. Let T be a triangulation (or just a triangle) closely near a smooth surface
S. The relative curvature of S to T is the real number defined by

ωS(T ) = sup
m∈T \∂T

‖ξ(m)− m‖ρξ(m).

Remark 2. A compact triangulation T closely near a smooth surface S satisfies

ωS(T ) ≤ 1.

(If m ∈ T , then the two points m and m − 2
−−−→
mξ(m)—which is the orthogonal symmetric

of m with respect to the tangent plane of S at ξ(m)—belong to Ur (S). This implies that
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‖ξ(m)−m‖ is strictly less than the radius of curvature 1/ρ(ξ(m)) of S at the point ξ(m),
see [9] or [18] for more details).

Moreover, a triangulation T closely inscribed in a smooth surface S satisfies

ωS(T ) ≤ sup
�∈TT

η�ρξ(�).

(In fact, if m belongs to a triangle�, then ‖ξ(m)−m‖ is smaller than the distance from
m to any point of S. If s is a vertex of �, we have ‖ξ(m)− m‖ ≤ ms ≤ η�.)

2.2.3. Gauss Curvature of a Triangulation. Let T denote a triangulation, p a vertex
of T and TT (p) the set of triangles of T which contain p as a vertex. Let So

T denote the
set of interior vertices of T and S∂T the set of vertices of the boundary ∂T of T .

• We call the angle at the vertex p the real:

αT (p) =
∑

σ∈TT (p)

ασ (p),

where ασ (p) is the angle at p to the triangle σ .
• The discrete Gauss curvature at a vertex p ∈ So

T is

GT (p) = 2π − αT (p).

• The discrete geodesic curvature at a vertex p ∈ S∂T is

k(p) = π − αT (p).

• The total interior Gauss curvature of T is

Gint (T ) =
∑

p∈So
T T

GT (p) =
∑

p∈So
T T

(2π − αT (p)).

• The total geodesic curvature of ∂T is

K(∂T ) =
∑

p∈S∂T

k(p) =
∑

p∈S∂T

(π − αT (p)).

2.3. Developable Surfaces

A smooth surface (resp. a triangulation) M is usually said to be developable if its Gauss
curvature is null at each interior point (resp. vertex).

In this paper a surface M is said to be globally developable if there exists a homeo-
morphism gM : M → u(M) from M onto a domain u(M) ⊂ E2 that preserves distances
(a domain of the plane E2 is either an open connected set of E2 or the closure of an open
connected set of E2). To be more precise, if M is a smooth surface, we suppose that the
map gM is a C2-diffeomorphism.

Note that the theorema egregium of Gauss implies that the Gauss curvature of a
globally developable smooth surface is identically equal to zero. Similarly, if M is a
globally developable triangulation, its Gauss curvature is equal to zero.

The surface u(M) is called an unfolding of M .
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2.4. Hausdorff Distance between Two Subsets of E3

The Hausdorff distance between two subsets A and B of E3 is

δHaus(A, B) = max

(
sup
x∈A

d(x, B), sup
y∈B

d(A, y)

)
.

Remark 3. A compact triangulation T closely near a smooth surface S satisfies

ωS(T ) ≤ δHaus(T, S)ρS.

3. Examples of Globally Developable Surfaces

In this section we consider the following problem: given a setS = {p1, . . . , pn} of points
of E3, is it possible to build a globally developable triangulation T which is “close” (for
example in the Hausdorff sense) to S? Suppose now that such a globally developable
triangulation T exists and that the set of points S belongs to a globally developable
surface S. Then another question arises: does the unfolding of T give a good estimation
of the shape of the unfolding of S?

First, notice that it is always possible to build a globally developable triangulation
T which contains the points of S. To do so, we consider a plane P , a line D and the
projection pr onto P and parallel to D. Note that there exists a polygonal curve C of
the planeP which contains {pr(p1), . . . , pr(pn)} and that the cylinder generated by the
directrix C and whose rulings are parallel to D is piecewise linear and contains all the
points of S. We can therefore build a triangulation T (included in this cylinder) which
contains S (see Fig. 1). However, the Hausdorff distance between T and S can be very
large (some points of the triangulation T may be ”far” from S). We also notice that we
could build another globally developable triangulation T̃ containing S (for example by
using another projection p̃r ), such that the Hausdorff distance between T and T̃ is large
and such that the unfoldings of T and T̃ are very different from one another.

T

pr

C

S

P

Fig. 1. Developable triangulation containing a set S of data points.
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The problem of developable surface reconstruction has already been studied: Peter-
nell [13] proposed an algorithm that enables us to build a smooth developable surface
close to a set of data points. However, his algoritm does not allow us to build globally
developable surfaces in the general case (the set of data points has to satisfy a crite-
rion). In [16] Thibert et al. proposed an algorithm of construction of triangulations that
mimicks the geometrical properties of developable smooth surfaces. They also proposed
an algorithm that “slightly” modifies a triangulation so as to improve its developability.
Their algorithms allow us to build globally developable triangulations in some particular
cases, but there is no warranty in the general case.

Building a globally developable triangulation T close to a set of data points of E3 in
the Hausdorff sense is still an open problem, which is difficult since it is constrained both
locally and globally: locally, the discrete Gauss has to vanish and globally the problem
is constrained by the Gauss–Bonnet theorem. In this section, we give several examples
of globally developable triangulations:

• In Section 3.1 we describe the half Schwarz lantern. This example is well known
for the non-convergence of the area. Since it is a globally developable triangulation,
it is also a counterexample of the approximation of the shape of the unfolding of a
smooth surface.

• In Section 3.2 we define the Schwarz cone whose vertices belong to a cone (the
construction mimicks the construction of the half Schwarz lantern).

• In Section 3.3, using the program described in [16], we build two triangulations
close to cones or cylinders.

3.1. Half Schwarz Lantern

We consider the following situation: S is a smooth globally developable surface and T is
a globally developable triangulation close to S. We aim at knowing whether the unfolding
of T gives a good estimation of the shape of the unfolding of S. A nice example of this
situation is the famous Schwarz lantern. It is a developable triangulation inscribed on a
cylinder. It is not simply connected, but we can “cut a piece of it” which is homeomorphic
to a topological disc: we consider here a half Schwarz lantern (which is inscribed in half
a cylinder) (Fig. 2). We illustrate two phenomena:

• In Section 3.1.1 we give two half Schwarz lanterns whose unfoldings are very dif-
ferent from one another. Therefore we cannot expect to have a result of convergence
without other assumptions.

• In Section 3.1.2 we build two triangulations which have the same vertices but whose
unfoldings are very different from one another. That implies that the shape of the
unfolding depends on the construction of a triangulation from scattered sample
points.

3.1.1. Comparison of Two Half Schwarz Lanterns. Let C be a half-cylinder of finite
height H and of radius R. It can be parametrized by

∀t ∈ [0, π ], ∀u ∈ [0, H ], f (t, u) = (R cos(t), R sin(t), u).
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(a) P(19,5) (b) P(99,5) (c) Half cylin-
der C

Fig. 2. Examples of half Schwarz lanterns.

Let P(n, N ) denote the triangulation whose vertices Si, j belong to C and are defined as
follows:

∀i ∈ {0, . . . , n − 1}, Si, j = (R cos(iα), R sin(iα), jh) if j is even,

∀ j ∈ {0, . . . , N }, Si, j = (R cos(iα + α
2 ), R sin(iα + α

2 ), jh) if j is odd,

and whose faces are

Si, j Si+1, j Si, j+1,

Si, j Si−1, j+1Si, j+1,

where α = π/n and h = H/N .
Those triangulations P(n, N ) are called half Schwarz lanterns.

Proposition 2. Half Schwarz lanterns are globally developable.

Proof of Proposition 2. First, notice that all the triangles of P(n, N ) are isometric to
one another. Therefore, for every interior vertex p of P(n, N ), the angle αP(n,N )(p) at
the vertex p is equal to twice the sum of the three angles of one triangle, that is to say
2π . That implies that the Gauss curvature G P(n,N )(p) is equal to zero and that P(n, N )
is developable.

Let us prove that P(n, N ) is globally developable, i.e. there is no overlap during the
unfolding. Let j ∈ {0, . . . , N − 1}. Let us consider the set Stripj of all the triangles of
P(n, N )whose vertices have jh or ( j+1)h as a third component. Let j ∈ {1, . . . , n−1}.
Since all the triangles are isometric to one another, the sum of the angles of the triangles
of Stripj at the vertex Si, j is equal to π . This implies that the vertices S0, j , . . . , Sn, j

of the unfolding of Stripj belong to the same line segment L j . Similarly the vertices
S0, j+1, . . . , Sn, j+1 of the unfolding of Stripj belong to the same line segment L j+1.
Note, furthermore, that the two line segments L j and L j+1 are parallel (this is also due
to the fact that all the triangles are isometric to one another). Therefore the unfolding of
Stripj is a trapezoid delimited by the two parallel line segments L j and L j+1.

Now consider two consecutive sets of triangles Stripj and Stripj+1 (Fig. 3). Their
unfoldings do not overlap and share the common line segment L j+1. Since the line
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Lj+1 unfolding of Stripj+1
Lj+2

unfolding of Stripj

Lj

Fig. 3. Proof of the developability of the half Schwarz lantern.

segments L0, . . . , L N+1 are parallel to each other, the unfolding of P(n, N ) is made of
a union of trapezoids that do not overlap. P(n, N ) is therefore globally isometric to a
domain.

It is well known that we can construct a half Schwarz lantern whose area is as large
as we wish (see [1] or [11]). That implies that its unfolding can be “very different” from
the unfolding of the half-cylinder C .

Note that the boundaries of the two unfolded half Schwarz lanterns of Fig. 4 are very
different from one another and can be very different from the unfolding of the half-
cylinder C . The unfolding of C is a rectangle of height H . The height of the unfolded
half Schwarz lanterns P(99, 5) is more than 1.5H . In fact, the height of a half Schwarz
lantern increases when it is unfolded.

Furthermore, if we consider the problem of the convergence of a sequence of trian-
gulations, we may notice that the height of the unfolding of the half Schwarz lantern
P(n, n3) tends to infinity when n tends to infinity.

That is why, without other assumptions, we cannot expect the unfolding of a sequence
of triangulations to give us a good approximation of the unfolding of the smooth surface.

(a) Unfolded P(19,5) (b) Unfolded P(99,5) (c) Unfolded half cylinder

Fig. 4. Unfolding of C and of two half Schwarz lanterns closely inscribed in C (the scale is the same).



Unfolding of Surfaces 403

(a) A developable triangu-
lation whose vertices are
S

(b) A half Schwarz

lantern whose vertices are
S

(c) Unfolding of 5(a) (d) Unfolding of 5(b)

Fig. 5. Unfolding of two triangulations which have the same set of vertices S.

As we will see in Section 4, this is linked to the fact that the normals of P(n, n3) do not
converge to the normals of the half-cylinder C (or that the rightness of P(n, n3) tends
to zero).

3.1.2. Two Globally Developable Triangulations with the Same Vertices. We consider a
finite family of pointsS (which belong to a half-cylinder) and we build two triangulations
whose vertices are these points (Fig. 5). The triangulation shown in Fig. 5(b) is a half
Schwarz lantern. The two unfoldings are different from one another.

Every internal edge of the triangulation shown in Fig. 5(a) is contained in two triangles
which form a quadrilateral with the edge as a diagonal. Just notice that if we delete the
“vertical” internal diagonals and we replace them by the other diagonals, we get the
triangulation shown in Fig. 5(b) (if we do not consider the boundary of the two surfaces).

3.2. Schwarz Cone

The Schwarz cone is a triangulation (denoted by C(n, N )) whose construction is inspired
by the half Schwarz lantern. The vertices belong to a cone instead of a cylinder.

Detailed Construction. Let C be a cone whose center is the origin O , whose basis is
the circle of equation x2 + y2 + (z − 1)2 = 1. Let r denote the rotation of axis (Oz) and
of angle 2π/n, let hk denote the homothetic transformation of ratio k and center O , let
Ph be the horizontal plane defined by z = h and let Ch be the circle C ∩ Ph .

Let u1, . . . , un be n points regularly positioned on the circle C1. We consider a circle
Cz1 (with 0 < z1 < 1). For every i ∈ {1, . . . , n}, we put vi = r(hz1(ui )). Let T1

denote the “slice” composed of the 2n triangles uivi ui+1 and vi ui+1vi+1 (by convention
un+1 = u1 and vn+1 = v1).
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(a) (b) Unfolding of (a)

(c) (d) Unfolding of (c)

Fig. 6. Examples of Schwarz cone.

We now define the “slice” T2 = r(hz1(T1)). The triangles of T2 are homothetic to the
triangles of T1. This implies that the sum of angles of T1 ∪ T2 at a vertex vi is equal to
2π . The triangulation T1 ∪ T2 is therefore developable.

Similarly, we define the “slices” T3, . . . , TN by induction in the following way: if
the third components of the vertices of Ti are zi and zi−1 (with zi < zi−1), then we put
Ti+1 = r(hki (Ti )) where ki = zi/zi−1.

As far as the half Schwarz lantern is concerned, we can show that the normals of
C(n, n3) do not converge to the normals of the cone, and the unfolding of C(n, n3) does
not converge to the unfolding of the cone (Fig. 6). This is also due to the fact that the
rightness of C(n, n3) tends to zero (see Section 4).

3.3. Cones and Cylinders

In this part we use the algorithm of surface reconstruction described in [16]. In particular
cases this algorithm allows us to build globally developable triangulations that are “close”
to a set of data points S (when S is included in a set of level curves).
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(a) Set of points S on a
cone

(b) Developable triangu-
lation obtained

(c) Unfolding of 7(b)

(d) Set of points S on a
cylinder

(e) Developable triangula-
tion

(f) Unfolding of 7(e)

Fig. 7. Globally developable triangulations built by the program detailed in [16].

We give two examples of globally developable triangulations (Fig. 7) generated by this
program (when the set of level curves belongs to a cylinder or a cone). The triangulations
obtained are globally developable and we unfold them.

4. Convergence of the Unfolding

The main result of this paper is the following theorem. It states that the unfolding u(S) of
a smooth surface S can be approximated by the shape of the unfolding of a triangulation
T which is close to S in the Hausdorff sense and whose normals are close to the normals
of S.

Theorem 1. Let S be a smooth compact connected globally developable surface of E3

and let (Tn)n≥0 be a sequence of globally developable triangulations closely near S such
that:

1. the normals of Tn tend uniformly to the normals of S,
2. Tn tends to S in the Hausdorff sense;
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then the sequence (u(Tn))n≥0 of unfoldings of (Tn)n≥0 tends in the Hausdorff sense to an
unfolding u(S) of S.

The second condition may be weakened by asking that the relative curvature ωS(Tn)

tends to zero when n tends to infinity (in some sense, the Hausdorff distance between
Tn and S may be large when the curvature of S is small). Furthermore, we know that the
convergence of the normals is implied by a condition on the rightness when the vertices
of triangulations belong to S [12]. Therefore we have the following corollary:

Corollary 1. Let S be a smooth compact connected globally developable surface ofE3

and let (Tn)n≥0 be a sequence of globally developable triangulations closely inscribed
in S such that:

• the rightness of the sequence (Tn)n≥0 is uniformly bounded from below by a strictly
positive constant;

• the lengths of the edges of Tn tend to zero when n tends to infinity;

then the sequence (u(Tn))n≥0 of unfoldings of (Tn)n≥0 tends in the Hausdorff sense to an
unfolding u(S) of S.

5. Some Remarks on the Approximation by Developable Triangulations

The crucial assumption in the previous theorem is that both smooth surface and triangu-
lation are developable. The goal of this section is to insist on the mistaken belief that one
can get a good approximation of the Gauss curvature of a smooth surface by computing
the Gauss curvature of an inscribed triangulation closely inscribed on it, and having a
big amount of vertices. In particular, the fact that the triangulation is developable does
not imply at all that the smooth underlying surface has a “weak Gauss curvature” at
some points.

The following theorem gives a family of examples of developable triangulations (the
Gauss curvature is thus zero at each interior vertex) closely inscribed in a piece of the
sphere S2(r) of radius r > 0.

Theorem 2. Let n ≥ 3. There exists α0 ∈ ]0, 1] such that for every α ∈ ]0, α0], there
exists a developable triangulation T n

α satisfying:

1. T n
α is closely inscribed in Sn

α , where Sn
α is “an open connected portion of

sphere S2(r)”;
2. T n

α contains (3n + 1) vertices ((n + 1) of them are interior) and 4n faces.

Remark 4. The parameter α depends on the diameter of T n
α : if α tends to zero, then

the diameter of T n
α tends to zero.

Since the Gauss curvature of Sn
α is 1/r2 at every interior point, the smooth surface Sn

α

is not developable. However, the triangulation T n
α , which is closely inscribed in Sn

α , is
developable. That implies in the general case that the knowledge of the Gauss curvature
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of a triangulation closely inscribed in a smooth surface does not give enough information
about the Gauss curvature of the smooth surface.

However, the shape of the unfolding of a triangulation T n
α of Theorem 2 is “unusual”:

the discrete geodesic curvature at each vertex of the boundary is large and the normals
between two adjacent triangles of T n

α are not close to one another (and not close to the
normals of the sphere). This seems to indicate that it is very difficult to build a developable
triangulation closely and over a large region of sphere S2(r) simultaneously.

This observation is coherent with the results of Fu [6], who showed that the conver-
gence of the curvature measures of a sequence of triangulations which tends to a smooth
surface in the Hausdorff sense was implied by a result of convergence of the normals.

Remark 5. The (developable) triangulations T n
α are homeomorphic to a disc. In fact,

there does not exist any compact developable triangulation without boundary closely
inscribed in the whole sphere. This is an obvious consequence of the Gauss–Bonnet
Theorem (see [4]): it states that the Euler characteristic χ(S) of a smooth compact
surface S (whose boundary ∂S is composed of C1, . . . ,Cn positively oriented closed
curves of class C2) satisfies

2πχ(S) =
∫

S
G p da(p)+

n∑
i=1

∫
Ci

kp ds(p)+
p∑

i=1

θi ,

where {θ1, . . . , θp} is the set of all external angles of the curves C1, . . . ,Cn .
The discrete analogous result for the Euler characteristic χ(T ) of a triangulation T

is the following:

2πχ(T ) = G int(T )+K(∂T ).

Since the Euler characteristic of a smooth surface S equals the Euler characteristic any
triangulation T closely inscribed in it, one gets∫

S
G p da(p)+

n∑
i=1

∫
Ci

kp ds(p)+
p∑

i=1

θi = G int(T )+K(∂T ).

In particular, if S is a sphere, we have

G int(T ) =
∫

S
G p da(p) = 4π �= 0.

In Figs. 8–11 we present some of those triangulations T n
α which are closely inscribed

in a piece of sphere S2 and we unfold them. We use Geomview [7] to visualize the
examples.

The triangulation of Fig. 12 is still inscribed in sphere S2 and the discrete Gauss
curvature at each interior vertex is strictly negative (GT (p) ≈ −0.02 if p is the central
vertex and GT (p) ≈ −0.04 otherwise). Thus we have a triangulation with strictly
negative Gauss curvature inscribed in sphere S2.

The triangulation of Fig. 13 is developable and its boundary “is quite regular” in the
sense that the discrete geodesic curvature at each vertex of the boundary is not too large.
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(a) triangulation (b) Unfolded triangulation

Fig. 8. The case n = 20, α = 0.4.

(a) triangulation (b) Unfolded triangulation

Fig. 9. The case n = 50, α = 0.6.

(a) triangulation (b) Unfolded triangulation

Fig. 10. The case n = 7, α = 0.6.
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Fig. 11. The case n = 500, α = 0.2.

Fig. 12. Triangulation with negative Gauss curvature inscribed in S2.

(a) Developable triangulation (b) Unfolded triangulation

Fig. 13. Developable triangulation inscribed in a smooth surface with strictly positive Gauss curvature.

(a) Smooth surface with Gauss curvature
larger than 0.5

(b) triangulation

Fig. 14. Triangulation of strictly negative Gauss curvature inscribed in a smooth surface with strictly positive
Gauss curvature.
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This triangulation is not inscribed in a sphere, but in a smooth surface of revolution,
whose Gauss curvature is strictly positive at each interior point.

The triangulation of Fig. 14 is not developable. More precisely, the discrete Gauss
curvature at each interior vertex is strictly negative (in fact GT (p) ≤ −0.02 at each
interior vertex p). However, this triangulation is closely inscribed in a smooth surface
of revolution, whose Gauss curvature is strictly positive at each interior point.

Thus we have a triangulation with strictly negative Gauss curvature inscribed in a
smooth surface with strictly positive Gauss curvature.

6. Comparison of Shortest Paths

This section gives some intermediate results which are used in Section 7 to prove Theorem
1. The main result of this section is Proposition 3. Roughly speaking, it states that a
triangulation closely near a smooth surface, whose normals are close enough to the
normals of the smooth surface and which is close enough to the smooth surface, is
“almost isometric” to it.

Proposition 3. Let S be a smooth compact connected surface of E3 and let T be a
triangulation closely near S. Then for every (locally lipschitz) curve C of T ,

cos(α)

1 + ωS(T )
L(C) ≤ L(ξ(C)) ≤ 1

1 − ωS(T )
L(C),

where L(C) is the length of the curve C, L(ξ(C)) is the length of the curve ξ(C), ωS(T )
is the relative curvature of S to T and α is the maximal angle between the normals of S
and T .

In the following we denote by ‖·‖ the euclidean norm. For every pair of points u ∈ E3

and v ∈ E3, we denote by uv = ‖u − v‖ the euclidean distance between u and v. For
every compact surface M , we denote by CM(m1,m2) a shortest path of M joining two
points m1 and m2 of M and by dM(m1,m2) the distance between m1 and m2 on M , i.e.
the length of CM(m1,m2).

Proposition 3 directly implies the following corollary which compares the shortest
paths of S and T .

Corollary 2. Let S be a smooth compact connected surface of E3 and let T be a
triangulation closely near S. Then for every pair of points a ∈ T and b ∈ T ,

cos(α)

1 + ωS(T )
dT (a, b) ≤ dS(ξ(a), ξ(b)) ≤ 1

1 − ωS(T )
dT (a, b).

If the two surfaces S and T are globally developable, we have the same inequalities
with the two unfoldings. Therefore we have:

Corollary 3. Let S be a smooth compact connected and globally developable surface
of E3 and let T be a globally developable triangulation of E3 closely near S. Then
there exists a homeomorphism f : u(S) → u(T ) from an unfolding u(S) of S onto an
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unfolding u(T ) of T which satisfies for every pair of points a ∈ u(T ) and b ∈ u(T ),

cos(α)

1 + ωS(T )
du(T )(a, b) ≤ du(S)( f (a), f (b)) ≤ 1

1 − ωS(T )
du(T )(a, b).

Corollary 3 leads us to introduce the following definition:

Definition 4. Let ε ∈ [0, 1[ and let U and V be two compact connected domains in
E2. A homeomorphism f : U → V is an ε-isometry if it satisfies for every pair of points
a and b in U ,

(1 − ε)dU (a, b) ≤ dV ( f (a), f (b)) ≤ (1 + ε)dU (a, b).

Note that the map of Corollary 3 is an ε-isometry with ε = (1 + ωS(T ))/cos(α)− 1.

Remark 6. Just notice that if T and S are totally geodesic (that is, included in two planes
and the angle between the normals is constant), then Proposition 3 leads to equalities
(ωS(T ) = 0). Indeed, if the curve C = [a, b] is parallel to the two surfaces T and S, then
we have

L(ξ(C)) = dS(ξ(a), ξ(b)) = 1

1 − ωS(T )
dT (a, b) = 1

1 − ωS(T )
L(C).

Now, if we take two points c and d in T such that C̃ = [c, d] is orthogonal to [a, b], then
we have

L(ξ(C̃)) = dS(ξ(c), ξ(d)) = cos(α)

1 + ωS(T )
dT (c, d) = cos(α)

1 + ωS(T )
L(C̃).

6.1. Proof of Proposition 3

The curve C is parametrized by a locally lipschitz map γ : [a, b] → C. We can sup-
pose that γ is unit speed. The curve ξ(C) is then parametrized by the map ξ ◦ γ . By
Rademacher’s theorem [10], the map γ is differentiable almost everywhere. Therefore
the Coarea Formula [10] implies that the lengths of these two curves (Fig. 15) (with the
Lebesgues measure) are

L(C) =
∫ b

a
‖γ ′(t)‖ dt and L(ξ(C)) =

∫ b

a
‖Dξ(γ (t)) ◦ γ ′(t)‖ dt . (1)

The estimation of L(ξ(C)) is based on the differential of the application ξ and uses the
following proposition:

Proposition 4. Let S be a smooth compact oriented surface of E3 and US a neighbor-
hood of S where the map ξ is defined. For every m ∈ US , if ξ(m) ∈ S\∂S then ξ is
differentiable at m. If ‖ξ(m)− m‖ρξ(m) < 1, then for every X ∈ TmUS we have

‖pr|Tξ(m)M(X)‖
1 + ‖ξ(m)− m‖ρξ(m) ≤ ‖Dξ(m)X‖ ≤ ‖X‖

1 − ‖ξ(m)− m‖ρξ(m) ,

where pr|Tξ(m)S is the orthogonal projection onto Tξ(m)S.
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a

ξ(a)

ξ(b)

b

curve ξ(C)

curve C of ∆

Fig. 15. L(C) is the length of the curve C and L(ξ(C)) is the length of the curve ξ(C).

A proof of this proposition can be found in [12]. This implies that ξ is continuously
differentiable at every point m ∈ T . This also implies that the boundary of S is piecewise
continuously differentiable.

Remark 7. If the two principal curvatures of S at the the point ξ(m) are opposite
(λ1(ξ(m)) = −λ2(ξ(m))), then we have the equalities

|Dξ(m)|∞ = 1

1 − ‖ξ(m)− m‖ρξ(m)
and

‖Dξ(m)X‖ = 1

1 + ‖ξ(m)− m‖ρξ(m) ‖pr|Tξ(m)M(X)‖.

The proof of Proposition 3 follows directly from (1) and the following lemma:

Lemma 1. For almost every t , we have

cos(α)

1 + ωS(T )
≤ ‖Dξ(γ (t)) ◦ γ ′(t)‖ ≤ 1

1 − ωS(T )
.

Proof of Lemma 1. We put m = γ (t) and X = γ ′(t). Thanks to Proposition 4, we get

‖Dξ(m)X‖ ≤ 1

1 − ωS(T )
,

and

‖Dξ(m)X‖ ≥ ‖pr|Tξ(m)S(X)‖
1 + ωS(T )

.
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For almost every t , X = γ ′(t) belongs to a triangle � of T . Let αm denote the angle
between a normal to the triangle � and the normal of S at the point ξ(m). We have

‖pr|Tξ(m)S(X)‖
‖X‖ ≥ cos(αm) ≥ cos(α).

Thus

‖Dξ(m)X‖ ≥ cos(α)

1 + ωS(T )
.

6.2. Proof of Corollaries 2 and 3

Proof of Corollary 2. By using Proposition 3 with the curve C = CT (a, b), we have

dS(ξ(a), ξ(b)) ≤ L(ξ(CT (a, b))) ≤ 1

1 − ωS(T )
L(CT (a, b))

= 1

1 − ωS(T )
dT (a, b).

By using Proposition 3 with the curve C = ξ−1(CS(a, b)), we have

cos(α)

1 + ωS(T )
dT (a, b) ≤ cos(α)

1 + ωS(T )
L(C) ≤ L(ξ(C)) = dS(ξ(a), ξ(b)).

Proof of Corollary 3. Let gT denote an isometry between T and u(T ) and let gS denote
an isometry between S and u(S). We define the application f = gT oξ

−1
|T og−1

S . Since gT

and gS are two isometries, the result follows directly from Corollary 2.

7. ε-Isometry of the Plane

The main result of this section is Proposition 5 which is a statement about plane geometry.
It states that two compact domains that are “almost isometric” have “almost the same
shape”. This proposition is then directly used to prove the main result of this paper (i.e.
Theorem 1).

Proposition 5. Let U, Vi ⊂ E2 be compact connected domains and let fi : U → Vi be
a sequence of maps, where fi is an εi -isometry and εi → 0 (when i → ∞). Then there
exist motions di such that di (Vi ) tend to U in the Hausdorff sense (when i → ∞).

Proof of Proposition 5. We will show that there exist motions di such that di ◦ fi

converge uniformly to the identity.
Fix a point o ∈ U and let r > 0 be smaller than the distance from o to the boundary

of U . Translating if necessary, we may assume that o ∈ Vi and that o is a fixed point
of all the fi . Then o lies at a distance of at least (1 − εi )r > r/2 from the boundary
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of Vi . Let p ∈ B(o, r/4). Rotating if necessary, we may assume that the point fi (p)
belongs to the half-line-segment [o, p). Then ‖o − fi (p)‖ ≤ (1 + εi )‖o − p‖ < r/2
and fi (p) ⊂ U ∩Vi . Let us consider another point q ∈ B(o, r/4) such that the two lines
(op) and (oq) are orthogonal. Up to a symmetry if necessary, we may assume that q and
fi (q) are located on the same side of the line (op).

Since fi is an εi -isometry, we have for every point x and y of U ,

‖ fi (x)− fi (y)‖ ≤ dVi ( fi (x), fi (y)) ≤ (1 + εi )dU (x, y).

The set { fi : (U, dU ) → (E2, ‖ · ‖)} is therefore equicontinuous. Furthermore, since⋃
i V i is bounded, the Arzela–Ascoli theorem implies that there exists a subsequence

( f ′i ) converging uniformly to some map g: U → E2. (We now denote the uniform norm
by ‖ · ‖∞.)

We show that the restriction of g to B(o, r/4) is the identity. The fact that B(o, r/2) ⊂
U ∩ Vi implies that dU and dVi are the Euclidean distance on B(o, r/2). Then we have
for every i ,

‖g(p)− p‖ ≤ ‖g(p)− f ′i (p)‖ + ‖ f ′i (p)− p‖ ≤ ‖g − f ′i ‖∞ + εi
r

4
.

The convergence of ( f ′i ) to g implies that g(p) = p. Furthermore, for every point x and
y of B(o, r/4),

‖g(x)− g(y)‖ ≤ ‖g(x)− f ′i (x)‖ + ‖ f ′i (x)− f ′i (y)‖ + ‖ f ′i (y)− g(y)‖
≤ 2‖g − f ′i ‖∞ + (1 + ε′i )‖x − y‖.

Then ‖g(x)− g(y)‖ ≤ ‖x − y‖. Similarly we have ‖g(x)− g(y)‖ ≥ ‖x − y‖. The map
g is therefore an isometry on B(o, r/4). Since that isometry is fixing the two points o
and p, it is either the identity or the symmetry of axis (op). The convergence of f ′i (q) to
g(q) implies that g(q) and q lie on the same half-plane limited by the line (op), thus the
restriction of g to B(o, r/4) cannot be the symmetry of axis (op). As a consequence, it
is the identity.

We show that g is the identity on U . Similarly as above, we can prove that for every
interior point x of U , there exists rx > 0 such that the restriction of g to Vx = B(x, rx ) ⊂
U is an isometry. Let x0 be an interior point of U . Since the interior of U is connected,
there exists a compact curve C included in the interior of U that joins o and x0. By
compactness, there exist open sets V1, . . . ,Vn of U such that g is an isometry on each Vi

and C ⊂ V1 ∪ · · · ∪ Vn . This sequence V1, . . . ,Vn can be ordered such that o ∈ V1 and
Vi ∩ Vi+1 �= ∅. We then prove by induction that the restriction of g to C is the identity
and that g(x0) = x0.

The map g is then the identity on the interior of U . The uniform convergence of the
sequence ( f ′i ) to g implies that the map g is continuous and then g is the identity on U .

Since the limit g is the same regardless of the chosen subsequence of ( fi ), it follows
that the entire sequence ( fi ) converges to the identity.
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Combined with Corollary 3, this proposition implies Theorem 1 as follows:

Proof of Theorem 1. Let n > 0. Let εn = (1 + ωS(Tn))/cos(αn) − 1, where αn is the
maximal angle between the normals of S and Tn . The assumptions of Theorem 1 imply
that εn tends to zero when n tends to infinity. Using Corollary 3, we know that there
exists an εn-isometry fn between two unfoldings u(S) and u(Tn). We conclude by using
Proposition 5.

8. Proof of Theorem 2

Let α ∈ ]0, 1]. We denote by z0 the point of S2 of coordinates (0, 0, 1). We define points
zα1 , . . . , zαn on sphere S2 by

∀i ∈ {1, . . . , n + 1}, zαi =
(
α cos

π(2i − 3)

n
, α sin

π(2i − 3)

n
,
√

1 − α2

)
.

Note that zαn+1 = zα1 .

Step 1. We are going to build points wα1 , . . . , w
α
n on S2 so as to get

∀i ∈ {1, . . . , n}, ẑαi z0w
α
i = π

n
and ̂wαi z0zαi+1 = π

n
.

Thus, if we define T α
n as being the triangulation

whose vertices are

{
zαi for 0 ≤ i ≤ n,

wαi for 1 ≤ i ≤ n,

and whose faces are

{
zαi z0w

α
i for 1 ≤ i ≤ n,

wαi z0zαi+1 for 1 ≤ i ≤ n,

we get the following property:

αT α
n
(z0) =

n∑
i=1

(ẑαi z0w
α
i + ̂wαi z0zαi+1) = 2n

π

n
= 2π.

Let us build the point wα1 . Let (x, 0, z) be the coordinates of wα1 . We have to solve the
following equation:

(E) =


wα1 ∈ S2,

x ≥ 0,

ŵα1 z0zα2 = π

n
.

Let

a = α cos
π

n
, b = 1 −

√
1 − α2, c = 2 cos

π

n

√
1 −

√
1 − α2
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and 
z1 = (a2 − b2)(c2 − a2 − b2)+ 2abc

√
2a2 + 2b2 − c2

(a2 + b2)2
,

z2 = (a2 − b2)(c2 − a2 − b2)− 2abc
√

2a2 + 2b2 − c2

(a2 + b2)2
.

A simple calculation leads to

wα1 solution of (E) ⇔
{

x = √
1 − z2,

z = z1 or z = z2.

There are two solutions. We take z = z2, which is linked to the farthest point from z0.
Let us construct points wα2 , . . . , w

α
n . For every i ∈ {2, . . . , n} let wαi be the point of

coordinates (
xαw1

cos
2π(i − 1)

n
, xαw1

sin
2π(i − 1)

n
, zwα1

)
.

Note that if r is the rotation of angle 2π/n and of axis (Oz0), we get

∀i ∈ {1, . . . , n − 1}, r i (zα1 z0w
α
1 ) = zαi+1z0w

α
i+1,

r i (wα1 z0zα2 ) = wαi+1z0zαi+2.

Step 2. We are going to build new points uα1 , . . . , uαn on sphere S2 satisfying

∀i ∈ {1, . . . , n}, ̂wαi zαi+1uαi = π− ̂wαi zαi+1z0 and ̂uαi zαi+1w
α
i+1 = π− ̂wαi+1=zαi+1z0.

Thus, by adding to the triangulation T α
n ,

the points ui for 1 ≤ i ≤ n,

and the faces

{
wαi zαi+1uαi for 1 ≤ i ≤ n,

uαi zαi+1w
α
i+1 for 1 ≤ i ≤ n (with zαn+1 = zα1 ),

we obtain

∀i ∈ {1, . . . , n}, αT n
α
(zαi ) = 2π.

Let us construct the point uα1 . Let P denote the plane determined by the points O , z0 and
z2. We want to show that

∃uα1 ∈ P ∩ S2, ŵα1 zα2 uα1 = π − ẑ0zα2w
α
1 .

We define the application β by

β: S2 ∩ P → E

z  → ŵα1 zα2 z.

There exists z̃ ∈ P ∩ S2 close to zα2 , such that the triangulation K whose vertices are z0,
zα2 , wα1 , wα2 and z̃ and whose faces are z0zα2w

α
1 , z0zα2w

α
2 , wα1 zα2 z and wα2 zα2 z is a subset of

the boundary of a strictly convex set of E3. Thus

αK (z2) < 2π.
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Since

αK (z2) = 2β(z̃)+ 2ẑ0zα2w
α
1 ,

we get

β(z̃) < π − ŵα1 zα2 z0.

Let ˜̃z denote the point of coordinates (0, 0,−1).

β( ˜̃z) > π − ŵα1 zα2 z0

⇔ cos(̂wα1 zα2 ˜̃z) < − cos(ŵα1 zα2 z0)

⇔ − cos(̂wα1 zα2 ˜̃z)
cos(ŵα1 zα2 z0)

< 1.

Since

lim
α→0

− cos(̂wα1 zα2 ˜̃z)
cos(ŵα1 zα2 z0)

= 0,

we have

∃α0 ∈ ]0, 1], ∀α ∈ ]0, α0], β( ˜̃z) > π − ŵα1 zα2 z0.

Since β is continuous, we get

∃uα1 ∈ D ∩ S2, ŵα1 zα2 uα1 = β(uα1 ) = π − ẑ0zα2w
α
1 .

Furthermore, we know that the abscissa and the ordinate of uα1 are positive. Thanks to
the symmetry with respect to plane P , we get

̂uα1 zα2w
α
2 = π − ŵα2 zα2 zα0 .

We know that for α ∈ ]0, α0], uα1 is well defined. We construct the points uα2 , . . . , uαn : if
r always denotes the rotation of angle 2π/n and of axis (Oz0), we define those points
by

∀i ∈ {1, . . . , n}, r i (uα1 ) = uαi+1.

We clearly have

∀i ∈ {1, . . . , n}, r i (wα1 uα1 zα2 ) = wαi+1uαi+1zαi+2 with zi+2α = zα2 ,

r i (uα1 zα2w
α
2 ) = uαi+1zαi+2w

α
i+2 with wαi+2 = wα2 .

The triangulation T α
n satisfies the conditions of Theorem 2.
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9. Conclusion and Perspective

The fact that two surfaces are close to each other in the Hausdorff sense does not imply
that we can compare their Gauss curvature. In particular, the fact of having a globally
developable triangulation closely inscribed in a smooth surface does not allow us to
conclude on the “unfoldness” of the smooth surface.

However, in the case in which both surfaces are globally developable, the unfolding
of the triangulation gives a “good approximation” of the unfolding of the smooth surface
if the normals of both surfaces are quite close and if both surfaces are quite close in the
Hausdorff sense.

We present several examples of globally developable triangulations. However, the
construction of a globally developable triangulation “close” to a set of points is still an
open and difficult problem (although some results exist in particular cases).
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