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Topology of a submanifold and external
curvatures

by JEAN-MARIE MORVAN (Limoges)

RiAssuNTO - Sono date proprieta topologiche dello « spazio normale prin-
cipale » definito su una sottovarietd di una varieta Riemanniana. Si mostra che
le curvature esterne definite in [1], hanno significato topologico.

. Introduction.

In [1], J. GriFoNE and the Author defined « external curvatures »
of a Riemannian submanifold. Geometrical results were proved about
the submanifold, in terms of « external curvatures ». The main purpose
of the present paper is to give a topological interpretation of these
« external curvatures ». More precisely, if i: M"—> E"** is an isometric
immersion of a Riemannian Manifold M” in the Euclidean space E"*?,
we study the characteristic classes of the normal bundle, and of the sub-
bundles complementary to the principal normal spaces (cf. [11, [2], [3]).

We prove that the integral of certain external curvatures, on M",
gives a majoration of these characteristic classes. Then, using J. H.
WaiITE’s work ([4]), we deduce immediately a majoration of the self-
intersection number of M", of the sum of the indices of the intersections
of M" with its principal normal spaces and of M" and its boundary.

Finally, we give a relation between the CHERN-LASHOF curvature
and the external curvatures.

The author owes thanks to Professor J. GRIFONE for many
interesting discussions on this subject.
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1. Notations and Definitions.

Let M" be a n-dimensional Riemannian Manifold. We denote by
T M" the tangent bundle of M", and (,) the scalar product on M".
V is the connexion of Levi-Civita associated to ( , ). Let i: M"—> Entk
be an isometric immersion of M" into the Euclidian space E"*%, ( ,)
denotes also the scalar product of E"**, and V’ the trivial connexion
on E"** T* M" designs the normal bundle on M", and V* the normal i
connexion on T* M". H designs the second fondamental form. It is
well known that:

VxY=VxY+H(X,Y) MX,YeTM"

Let R be the curvature tensor on M", and R* the curvature tensor
on T+ M". If (a, ..., @nit) is a local frame on M", such that (ay,...,.a,) e TM"
and (@ny1, ..., @ns) €T M", we note £24* the curvature-forms defined by

R*X,Ya.= Z QF (X, Y)as ¥ au, seT* M".
=1
The Gauss-Codazzi equations give

2=

I Ms

'\ af, where o=(V’a,, a).

i=1

a. External curvatures of a Riemannian submanifold.

Let i: M— M’ an isometric immersion.

LEMMA 1. Let D be a distribution on T M*, if £E€D and XeT, M,
pro, Vx* & depends only on &,.

The proof of lemma 1 is obvious.

DEeFINITION 1. Let meM.
Let E,,, be the subspace of T,,* M defined by Ei,, = [Im o] (i. e.:
the space spanned by Im o).

Ey is called «the first principal normal space ».

If dim E is constant on a neighborhood of m, the second principal
normal space is the subspace of Tw* M" defined by:
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E:, =[E2lm,

where Em ={neT.* M/AXeT,. M, d(€E,, such that 75 =
:prElL Vx* Em}.

By induction, we define the i" principal normal space in the
following way:

If dim E;_y is constant on a neighborhood of m, E;,, = [Em] , Where

Ei,={n€Tw" M/3IXeTnM, 3 §€Ei_1, such that 7= (pr g Ej)l(VXl Embe
i<t

DEFINITION 2. A submanifold M of M’ is said to be E;-niced curved
if E; is a vector subbundle of T* M", Mi<j.

DEFINITION 3. Let meM.
If Ei,,E;,, .., E; are defined, we call «j" external curvature »

(j=1,...,10) at meM, or «j"-Frenet curvature» at m, the scalars (k;)m™
defined by:

m’

fe=1a *k:i")m= Sup ||lo (X, V)|
X, YeTM™
1 X [l=l] ¥ [|=1

j=2: we define first the maps:
| (k2)m: (E1)m —>R*

ne> Sup ||prugp Vit 1|
i hiy

(ki)m: (Ei—l)m — R*

n<> Sup le‘( @ 7yt Vx* 1]l
=

and
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/

(kZ(M))m = Sup kZ (ﬂ)m
7€),

[I9]l=1

k)= Sup kj ()m .
nE (Ej——l)m
[I7]l=1

b. Characteristic classes.

Let {=(E—>M") be a vector bundle on M". We denote by
H' (£, G) the j™ singular cohomology groupe of &, with coefficient in the
group G, and H' (M", G) the j™ singular cohomology group of M", with
coefficient in G.

w; (§)eH (M",Z/2) (j=0, 1, ...) design the STIEFEL-WHITNEY classes
of §. If w (&)=14wi (§)+ ... +wn, (§) is the total Stiefel-Whitney class
of & we denote by @ (£)=1+4w; (§)+ ... +w. (£) the inverse of w (£).
If £ is oriented, with 2k-dimensional fibers, e (§)e H* (H", Z) designs
the Euler class of &. Finally, if n is a subbundle of &, y () designs the
Euler characteristic of 7.

2. Euler characteristic of the normal bundle of a submanifold M", and
of the subbundles complementary to the principal normal spaces.

In this paragraph, we shall prove the three following theorems.

THEOREM 1. Let i: M"— E" be an isometric immersion of a
compact oriented Riemannian manifold M" of even dimension n, in the
Euclidean space E*. Then, the Euler characteristic of the normal
bundle (i. e. the normal characteristic of i), y (T*+ M"), satisfies:

n/2 41 roo
Ix T+ M7 <27 /klmn .

n .n/2 ﬁl_,
2w (3)

Moreover, if E1s=T* M" at every point (particularly if k,® is defined
and 0 at every point), x (T* M")=0.
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THEOREM 2. Let i: M"— E*+™ be an isometric immersion of a
compact oriented n-dimensional Riemannian manifold M in the Euclidean
space E¥m,

Let E; be the j™ principal normal space. We suppose that M" is
E;-niced-curved, dim Ej=m;, and E; oriented. Then:

a, If =1,

n/2 4\ v SR
x @y < P / kO™ d.
non/2 7\
2t (2) o

The equality holds if and only if k,?=0 at every point, i. e. if the
substantial codimension of M" is ni. In this case y (E:*)=0. Moreover
if E1@ Ex£T*M" at every point (in particular if ks is defined and
+0 at every point), y (Ei*)=0.

b. If j=2,

B i ' . s .
IX (E21)| < Mﬂ_ [Sup [kl(:) kz(:) k3(1)]n dv.

n n/2 ﬁy
2"« <2> =

Moreover, if E1@ E; @ Es£T* M" at every point (in particular if
k@ is defined and 0 at every point), y (E2*)=0.

c. If j=3,

n/2 41 .
[x (B3)] < (ntma)” nl [Sup @ Ies® k17 d.

nnIZ_E.' i
2" (2).Mn

4 o
Moreover, if @ E;j=T* M" at every point (in particular if ks is defined
1

and 0 at every point), y (E3*)=0.
d. If j=4,
x (Ej*)=0.

TuEOREM 3. Let g: N**'—E™*' gn isometric immersion of an
oriented odd dimensional Riemannian manifold with boundary N"*!
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into the Euclidean space. Let M" be the boundary of N"*'. We suppose
that M" is compact, oriented. We note g =1.

Then, if x (v') designs the Euler characteristic of the subbundle
of the normal bundle, complementary to the bundle spanned by the
vector field v, normal to M and tangent to N, we have:

n/2 4,
,X (/D.L)’ Sm_ni /kl(g)n dv.
e (7)’ s

The equality holds if and only if k'ﬁ;{n =0. In this case y (v+)=0.

Moreover, if E\®, the first principal normal space of N satisfies
E\®=T* N**' at every point, (in particular, if k,® is defined and +0
at every point), y (v*)=0.

Before the proof of the three theorems, we will give three corollaries
of these theorems.

a)  Self-Intersection number of a submanifold.

Let us consider i: M"—s E** an isometric immersion of a n-dimen-
sional manifold M" into E*. We suppose that M" is compact, oriented,
and of even dimension n.

Let I(, ))={(m, m'), m¥=m’eM"XM", such that i(m)y=i@m")},
be the set of non trivial intersection points of i (M") with i (M"). Using
the THoM Transversality Theorem, we can see that, under a « small
deformation of i», these intersections may be made transverse. Then,
I'(i, 1) is finite, since M" is compact. In this case, WHITNEY, LASHOF and
SMALE [5,6] proved that:

21, i))=x(T* M"). Then, using theorem 1,

.. n"2 p) i
I @, ] <2”T7TT/2—/ k" do.

M"
We have proved the

COROLLARY 1. Let i: M"—> E™ be an isometric immersion of a
n-dimensional manifold M" into E*. We suppose that M" is compact,
oriented, of even dimension n. We also suppose that the self intersections
of M" are transverse. Then,
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.. nnl [
G D < i / k" dv.

Mﬂ

Moreover, if Ei&=T M" at every point, (in particular if k.? is
defined and =0 at every point), I (i, i)=0.

b) Intersection number of a submanifold with its principal normal
spaces.

Let us consider i: M"—> E*** an isometric immersion of a compact,
oriented Riemannian manifold M" of even dimension into the Euclidean
space E**k,

Let N be an oriented k-subbundle of the normal bundle.

We can consider the set I (M", N)={(m, (p,e))eM"XN such
that i (m)=(p, e) }.

Using the Tuom Transversality Theorem, we can suppose that
the intersections of M" with N are transverse. Then, in this case
I (M", N) is finite, for M" is compact. J. H. WHITE proved that

I(M", N)=x (N*), (cf. [4]).
Applying this result, we deduce from theorem 2, the

COROLLARY 2. Let i: M"— E*™ be an isometric immersion of
a compact oriented, n-dimensional manifold M" in the Euclidean space
E*+™m), Let Ej be the j™ principal normal space. We suppose that M" is
Ej-niced curved, dim Ej=mj, Ej is oriented, and M" and E; are
transverse.

Then

a. Ifj=1,

n/2 41
II (M*, El)l < uﬁ /kz(i)" dv.
on 7.1(.14/2 (i)l
2 M"

The equality holds if and only if k;?=0 at every point, i. e. if the
substantial codimension of M" is n. In this case y (Ei*)=0. Moreover
if Ex@ E2T* M" at every point (in particular if ks? is defined and
+0 at every point), I (M", E;)=0.

b. 1f 1=2,
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n/2 4,1
I (M7, Ep)| < (n+my)"" nl /Sup [k ko kD" do.

n n/2 iy
2"r <2)'Mn

Moreover, if E1 @ E; @ Es+=T* M" at every point (in particular if ki?
is defined and 20 at every point), I (M", E;)=0.

c. If j=3,

n/2 4\
Il (M", E3)| <(n+m3) n! /Sup [k ks® k@17 do.

n n/2£!
2"r (2) "

4
Moreover, if @ E;=T*M" at every point (in particular of ks® is
1

defined and =0 at every point), 1 (M", E3)=0.
d. If j=4, 1 (M", E;)=0.
Intersection number of a submanifold with its boundary.

Let g: N"*'— E?*! an isometric immersion of a oriented-odd
dimensional manifold N"*! with oriented compact boundary. We denote
M" the boundary of N**! and g=/fu .

If N*+! and M" are transverse, that is, the number of non trivial
intersections of N"*! and M" is finite, then, applying a result of J. H.
WHITE [4], we obtain

I(g f)=%x (vY),

where x (v*) is the Euler characteristic of the normal bundle comple-
mentary to the bundle spanned by the vector », which is normal to M
and tangent to N, and where I (g, f) is the sum of the indices of the
non trivial intersections of g(N) with f(M). Using Theorem 3, we
obtain the

COROLLARY 3. Let g: N™!'— E¥*1 be gn isometric immersion of an
oriented odd-dimensional Riemannian manifold N"*' with boundary, into
the Euclidean space. Let M" be the boundary of N"*'. We suppose that
M" is compact, oriented. We note g ,n=f and we suppose that f and
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g are transverse. Then

n/2 451
(g Pl < (1" nl /kl(g)n dv.
2n+1 nnlz(_n_ ] «
2/) u»
The equality holds if and only if k§9)Mn =0 every point peM", in

E*™' In this case, I (g, {)=0.
Moreover, if E\®, the first principal normal space of N, satisfies

Eﬁ"g =T,* N**' \tpeM", (in particular, if k(z.;)

is defined and =0 at every point), I (g, {)=0.

PrOOF OF THEOREM 1. Let (ai, ..., d2,), be a local frame over M",
such that (a, ..., @,) is tangent to M", and (dus+1, ... , G2s) is normal to M".
We have

L Agny — (_1);1/2 5 311 1
¥ MY)= s s 2o N A2
on nn/z (ﬂ)! &,
2 mn

where .Qf = 2 a; /\aqk, and af =(V’ a;, ds; ), with s;e{n+1,..,2n}.

i=1
Since a@; € TM", a ) (X)=(V'xa;, a; )=(H (X, @), as; ). “a,;€T* M",
VajeT M". Consequently, ||a,7 || <k®.
Then, [|27 || <n k@, and || A ... A2, || < [nk“]"". Finally,

n/Z
(1) T M) = [ ™ d.

on n/Z
2 M”

Now, we shall prove that the inequality is strict.

If x (T* M") is null, (1) is an equality, if and only if k&1 =0. This
is impossible, since M" is compact.

If x (T* M"™ is not null, the equality holds if and only if every
term 25 A...A Q;;"—l has a maximal norm, for every local frame over

p€eH, (ai, ..., an). In particular, we can choose a frame (@ni1, ..., a2)
on the normal bundle and (a, ... ,a,) on the tangent bundle, such that
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the matrix (H (,), du), is diagonal in the frame (a, ... ,ay). If (1) is
an equality, 25 A ... A .Q::—‘ (written in this frame), has a maximal norm.

This implies: ||a || =k Mie{1,...,n}, se{n+1,...,2n}, and every

sequence {a:, as, ... ,af”—l‘, a,"~'} is composed by orthogonal forms,
n— i

for every ie{l,..,n} and ste{n+1,..,2n}. We have
(H (@, ax), am) =0 (@)=0 if j+k. Then a (a)=+k®
H (), a)) = ;""" (@)) Guns1+ ... + " (a5) .

Since k1= Sup |[H (X,Y)||, and a?" (¢)=+k?, we obtain imme-
[|1X|=1
| ¥]{=1
diately a’nit (@)=0 if ke{l,..,n—1}.
If & designs the mean curvature vector field, = S H (aj, aj)p=
j==1

J=

n 7

=X Z (H(a, @), Gnsk) Ayun =4 k‘}z @, where geZ. Since ay, is
j=1 k=1

arbitrary and /4 is global, ¢=0 and A=0 everywhere, which is impossi-
ble for M" is compact. Then, in every case, (x) is a strict inequality.
Finally, if E;&T* M", at every point, we can choose a frame
(@, ... , @) such that a;,€E;*. In this case, b, (X)=(H (X, ), am)=0
and 2%, =0 ¥Vse{n+1,..,2n— 1}, and .Qf;/\.../\Q;:'—l =0
M sty o, su€{n+1,...,2n}. Then y (T*+ M")=0.
Theorem 1 is completely proved.

PROOF OF THEOREM 2.

a. A majoration of y (Ei*).
Let us consider a local frame (ai, ... , Gansm) such that

(@15 oo s @) ET M®, (Gnis, oo , Gusmy)EEL, (Guimsts oo s Qonim,) EELL.

we hawe:
: (— l)n/Z 5 8—1
xE)=———7r——— €oysy, 25y Nl A Q,s.n s
211 n.n/Z (_”l__)!
2 M
where
n+ni;

2= 3 afAal, alb=(V'a; ay),s,t,sse{n+m+1,..,2n}.
j=1
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We remark that a%=(V’aj,a;)=0 if a;eT M", a,€E,* and
llofl| = (V" @, a)|| <k if a;€En.

Since dim Ei=my, ||2/]] <mi kx?? and

n/2 41 n
@) P | . — / ™ dy,
on n.n/z (ﬁ) [
2 Mn
Now, we shall prove that (2) is a strict inequality if x (Ei*)=0.
First step. We suppose n>2.

(2) is an equality if and only if every 25A...A Qs":—l has a
maximal norm. We have

Vi @nia :a:i;"r}_l X) @psmsr+ .o + a?,'ﬂ;m] (X) a2u4m,
Vx* an+i=a;¢}n1+l (X) animy114 .. + ai’:{ym‘ (X) aznim,

Vxt An+my :a::_t::f‘l_‘—] X) Qi +1F . +a.3¢';,:?1 X Dontmy
with [laztm+® || =k®, ke{1,..,n}, and where ayttlis orthogonal

to a:_t;"l“, —_ ai’_‘,j;’"l, a,';i;"l'*'? R ai’f;’"l , and aﬁj;;"ﬂ"l is orthogonal
to a;;i;’”“, iy a;'j_'f“1+2, vuet o QAR

n—+1
Consequently a¥+ = +q )+, This is impossible: for in this
Gni1Edn 2k, . - g
case, [[(V* —t;_z.‘”, e )| = Viz > k,”, which is excluded. Finally,

if n>2, (2) is a strict inequality when y (Ei*)==0.
Second step. We suppose n=2.
We consider a local frame (a1, as, a3, ... , Qain, s Q34n,, Aarn) such that

(a1, @)€T M", (as, ... , @2 ) EEL, (@34nyy@s1n )EES (2) is an equality if
and only if i1, has a maximal norm. We have
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Vit as=ait™ (X) asimy +ast™ (X) oin,

34n 4+
Vx* az+i=a2+11 (X) asin, +a2+}l(X) A41n,y

LE T 44n
VXJ' in, = a2+nl(X) 340, + aH—ni (X) Aiyn,

If m>2, since ||at™ || = [laft™|| = ... =|latf || =k, and
I(V* @24j, Greme1)|| S, [V Gaisy Gremy+2)|| <Ko, it is easy to remark
that these conditions implies: of*™ Lajti" ¥ ji€e{2,...,2+m}. This
is excluded, since dim M=2.

If n1=2, we can write, on a neighborhood of a point pe M":

Vxt a3:kz(i) [=(X,T) as-_l-(X, T as]

()
V' as=I® [£(X,T") as=(X, T) ae],
0535 0546
where T and T’ are orthogonal vectors, dual of W and W and
3 4

where (a1, @, as, as, as, ds) is an arbitrary frame.

Conversely, it is easy to prove from (+=) that if we take two ortho-
normal vectors (U, U')eT M", we can find, for every choice of (as, as),
two vectors (as, as) €E1* such that

Vxl ds:kz(i) [i.‘(X, U) asi(X, U’) 616]
Vit ay=k? [+=(X,U Y as=(X,U) as].
Since the choice of (U, U’) is free, we can take U, U’ such that the
matrix (H (-,-), as), is diagonal.
Thus, in the following, we consider a local frame (T, T", as, a4, as, as)
such that:
(T, T") diagonalize (H (-,-), a3)p

(as, as) satisfy equations (xx).

Now, we shall use the Gauss Codazzi equation:

(Vx H) (Y, Z)=(Vy H) (X, Z),
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(where (’ﬁx H)(Y,Z)=Vy' [H(Y,Z)]-H (VxY,Z)—[H (Y, Vx Z)]).
We set H(X,Y)=h(X,Y)a;-+k (X,Y) a..
We obtain:
+h (Y, Z) (X, T)ptk (Y, Z) (X, T')p=
+h (X, Z2)(Y,T))pxk (X, Z2)(Y, T},
+h (Y, Z2) (X, T"),xk (Y,Z){X,T,)=

=xh X, Z2)(Y, T’ )k (X,Z) (Y, T),.

This implies & (T, T),=k (T’, T"),=0, and the mean curvature vector is
H(T,T)+H T, T)=[h T, T)+h (T, T)], s+
+ [k (T, T)+k T, T)pa=[h (T, T)+h (T, T)], a3,

which is impossible, for the mean curvature vector is global, a3 is
arbitrary, and M" is not minimal.

b. A majoration of y (E:').

Let us consider, in this case, a local frame (ai, ... , @usm, ) such that
(ah eee o an)eT M", (anJ,-l’ vee o an+n1g)eE2, (an+mg 1y eee a2n+m2)€(E2 @ T M)'L.
We have

__1\n/2
plE=—— 0 L / £y F A A DD,

n
noan/2( 7\,
2 ( 2 ) M
8. ntmy 8; T 8;
where RJ=" 2 aJA ay, with ¢/ =(V"a;, as), s, ... , Sn€{n+my+

1=l
+1,...,2.}
We remark that:

llo’ll = I(V* @ a)|| <ka® if €z, aceE
lley’ll = KH (@), +), a)|| =k if a;€T M*, a;€E;

llal] = IKV* aj, a5)|| <ks® if a;€Ey, as€Es
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a;’=0 if a;eT M", a;€E,, p>2
o =0 if g€k, a€E,, p=4.

Thus, we obtain:

n/2 151
) 'X (Ezl)i = %n-‘ f Sup (k¢ ko kD) dw.
on ﬂn/z (7)' :

Now, we shall prove that (3) is a strict inequality:

If x (E2*) is null, (2) is an equality if and only if Sup (ki® ko® ks®)"
is null everywhere. This implies that k=0 which is impossible for
M™ is compact.

If x (E2*) is not null, the equality holds if and only if every term
QN . AR z:—‘ has a maximal norm, for every local frame (a, ... , dan).

In particular, we can choose a frame (au, ..., am)€(T M" @ E2)* such
that au€E:, (a, ...,a,) a local frame of T M", which diagonalize the
bilinear form (H (,), @2x) and (@u41, ... , Guim, ) a local frame of E,. If (3)

is an equality, 2uA...A 27! (written in this frame), has a maximal
n
norm. This implies: [|a|| =ki® if i€{1,...,n} and a;€F;, and every
sequence {ai, as, ... , oc::“ll, @, "1} is composed by orthogonal forms,
e n

for every ire{l, ..., n+m}, site{n+m+1,..,2,}

As in a., we deduce that o/ (¢))==xk?, and ouim,er (@) =0 if
@G €T M", Gpym s €E1. If h designs the mean curvature vector field,
h=q ki az,, where geZ. We remark that dim E;>1 (for if dim E1=1,
dim E;<1 ([1]), which is excluded.

Since @, is arbitrary in Ei, we conclude that ¢=0, and A=0
which is excluded, for M" is compact.

Finally, if E1 @ E23=T* M" at every point (in particular, if ks?=<0
at every point), we can choose a local frame (ai, ... , Gu, @ity ooe > Ansm, »
Gnimy +15 o , G2n) Such that (ay, ..., a,) €T M, (Gnit, .o ) Gnim )EE2, @€
€(E1 @ E: @ Es). With such a frame, a'2,=0 Vie{l,...,n+m,}. This
implies £2%,=0, and x (E,*)=0.

c. A majoration of y (Es‘).
The proof is exactly similar to b.

d. If j=4, y (E;/)=0.
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Let us consider a local frame (ay, ..., Gu, Gnst, ... , Animys e s Qanim;)
such that (ay, ..., a,) €T M, (@n41, ... , an+mj)eE,-, (@nsmitis ooe s Qonim YEE;*.
Obviously, there exists p such that @,€ E;. Then, a,’(X)=(H(X,a:),a,)=0
if ;€T M", and a,' (X)=(Vx* a;, a,)=0 if a;€Es. Consequently, a,/=0
Vie{l,..,n+m;}. This implies 2°=0,2:A...A .Q;“”:O M sty oo
o s Sn€{N+Mjs1, oo, 204m; } and x (E;*)=0.

ProoF oF THEOREM 3. Let us consider a local frame (ay, ..., an,
Anity oo, Qnp1) over M", such that (ai,..,a.,) € TM", a,.1€ TN,
(@ns2, oo @2ns1)ET N*, a,41 is in the direction of the vector v, which is
normal to M" and tangent to N. We have

s (_l)n/z 5 e
X('v ): Esy... 8, sy /\/\ ‘an L
2" 77:"/2<—n>1 e .
2 113

S .

where sje{n+2,...,2n+1}, .Q:If;: Z aJ A a, and o =(V'a,a,).
1=l

In an other hand, (V'xa, asj):(Hg (a;, X),a,j), where HE¢ denotes

the second fondamental form associated to g. Then, [|a7| <k,
Vie{l,..,n+1}, Msje{n+2,..,2n+1}. Then

) lX (vi)l - (n+1)"

2 1
___:_'fkl(g)" ik
o n'”/z(?)-' u

Now, we shall prove that (5) is an equality if and only if kl(g’l yn=0¢
In fact, let peM", (Gui2, ... , G2ns1) be a local frame, in a neighborhood
of p, of the normal bundle T* N, and (ai, ..., a+1) be a local frame,
in a neighborhood of p, of the tangent bundle T N, such that the
bilinear form (H® (-,-), @+1), is diagonal.

(5) is an equality if and only if every term 2, A...A .Qs':“l has a

maximal norm. In particular, this implies:
Ol (@)= =@, and o/nyi (@)=0, Mje{l,..,n+1}.

The mean curvature vector field & associated to g is h=q k1® azns1,
where g€Z is not null, since dim N is odd. But 4 is an intrinsec vector
field, and az..1 is arbitrary. Then k;i’ =0 MpeM", (i. e. H® (X,Y)=0
VX, YETN).
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Finally, if Eiv;, +T,* N**' \{peM", we can choose a1 in EN'

(where Ei¥ designs the first principal normal space of N). In this case
uitl : .
Pun= Z o \ 0 =0 since o (X)=(V'x @i a41)=0 (H (X, @),

a2n+1>=0-
Then, 25 A..A .Q::—l =0 and x (»*)=0.

3. Self - Linking of a Riemannian submanifold.

In [4], J. H. WHITE defined the notion of Self-Linking SL of a
submanifold in Euclidean space. We shall prove the

THEOREM 4. Let i: M"—> E**! gn isometric immersion of a compact
oriented even dimensional Riemannian manifold into the Euclidean
spece E™*'. We suppose that i is everywhere not minimal. Then, if
(E: @ E2)p*+T,* M, at every point peM", (in particular if ks is defined
and =0 at every point), the self linking SL of M" is null.

PROOF OF THEOREM 4. Let i be the mean curvature vector field.
Since i is everywhere not minimal, % is not null everywhere. Using
the definition of J. H. WHITE, the Self Linking SL of M" satisfies:

1 . -

SL:; x (A*), where x (h') is the Euler characteristic of the
complementary (to #) subbundle of the normal bundle. In order to
evaluate y (h'), we consider a local frame (ai, ..., @2s1) Over M", such
that (ai, ..., a,) is tangent to M",a,.; is in the direction A, dany1 is in
(E1 @ Ex)".

Then,

__1\n/2
xy=—"00 [ L 2iALA 8,

n
2" /2 (——2 ) ! an
n+1

where 2= X a’ A a/. But every 2, A..A2;"! is a sum of terms

=1
which are multiple of a®*!, i=1,...,n. Since a?"*'=(V’a;, am1)=0,
because ai1€(Er @ E2)*, x (h*)=0.
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4. Euler-class of a Riemannian submanifold.

THEOREM 5. Let i: M"— E"** be an isometric immersion of an
oriented Riemannian manifold M" in Euclidean space E™**, such that:

VY peM”, E,p +=T+ My"

(In particular, this is satisfied if k. is defined and 0 at every point).
Then, wsy (T M")=0.
Before the proof of the theorem, we shall give an application.
Let P* the oriented real projective space, of dimension 2p, and
S%+1 the sphere of dimension 2g+ 1. Since w (§**)=1, w (P? X §¥*+1) =
=w (P?). Then, if wx (P¥)=0, every immersion of P?XxS%*! into
EXrra+b+l i such that E;=T* (P X $?*!) on an open set.

PROOF OF THEOREM 5. Let w: T+ M" —> M" be the projection of T+ M"
on M", and =: H* (M",Z) — H* (T* M", Z) the canonical isomorphism
induced by =, on the 2k™ cohomology groups.

Let (ay, ... , @u.2r) be a local frame over M", such that (ay, ..., a,) e TM",
(@ns1, or s Anp2r) €T M™. We denote o =(V’ as, a;). With these notations,
the Euler-class of the normal bundle e (T* M™), is represented by the
closed 2k-form y, defined by

(_l)k S S2k—
w(y)= 2k n’;ﬁz‘ssxmszk 2y N\ ﬂ’;"k i

where

Q°= X a’ A\ o, ie{l,..,n}, s, te{n+1,..,n+2k}

i=1

o’ (X)=(H (X, a), aa).

If E;(=[ImH])%T* M" at every point, (in particular if k®=0
at every point), we can choose @n..x€E:. In this case, a"**=0, and

Sok—1

every term 2 A ... A 2.,  is null (since it is a multiple of &;***).

Consequently, 7 (y)=0. Since = is an isomorphism, y=0, and
e (T* M™=0.
Now, let us consider the canonical homomorphism

h: H* (M") — H* (M", Z/2).
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It is well known ([7]) that A[e(T*M"] = wx (T* M"), where
wa (T M) is the 2k™ Stiefel-Whitney class of T* M™. Consequently,
wa (T+ M™)=0.

Using Whiteny duality theorem, we obtain:

wa (T M™) =y, (T M")=0.

5. Chern-Lashof curvature and External curvatures.
We will prove the following

THEOREM. Let i: M"—> E"™™N be an isometric immersion of an
oriented compact manifold M" into E**N. Then, if K (M") is the Chern-
Lashof curvature,

K (M™) =n" Vol (SN‘I)/ k1" dv.
MTL

PROOF OF THE THEOREM. Let enn: S (Tt M") — S"*N-1 where

(@, t)~> ¢
S (T+ M") is the bundle of unit normal vectors of M", and where S*+N-1
is the n+N—1 sphere of E™N, an let (e, ..., €n, €ni1, .. , €nsn) be a
local frame, such that ey, ..., e,€T M", and e, ..., epn€T* M™
It is well known ([8]) that the volume element of S (T* M") has
the following local expression

Wi A A @i A 07 A A P

where w'n={(V’ esn, €:).
Now, we consider a local frame (ay, ..., @un) such that

A, ., An=04, ... , €,
ity oo s QuNE€ET M™.

We set a/=(V’a;, a;), and
€n+N=YZ:1—11Van+1+ +YZ¢]NV aniN.

It is easy to observe that
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n+N

) ) ;
Whin N\ Wan= X . '}’;;l—i-N, 00 g Y?:i.N Qi N\ o A\ OC::H” :
i =n+1

On an other hand, dS¥-, the volume eiement of the unit normai sphere is

Nel_, ntN ntN—1
ds =W, ¥ "'/\‘wn+N 2

Consequently,

KO09= [ wun A 032437 = [eris .rith o

S (Tl M™) S (Tl M7y

Aol Tiiis) =f2 YrbNs oo s Yo g@nsin Ao A ann+indeN_1

M" TYiber

where (i1, ..., in)€{1,...,N}.
Obviously, @¥ssi ,(X) =(H (ak, X), @nyi,). Thus, [|@*ss; [| <k?. Since
[y;’erl <1, we obtain |[K (M")| <n"(Vol SN‘I)-fkl" dv.

Mn.
(Compare with [9] p. 220).
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