Well labeled paths and the volume of a polytope

Philippe Nadeau
(Joint work with Olivier Bernardi and Bertrand Duplantier)

Fakultät für Mathematik
Universität Wien

SLC 62, Heilsbronn
February 24th, 2009
The polytope Π_n.

1. The polytope Π_n.
2. Paths, trees and matchings.
1. The polytope Π_n.
2. Paths, trees and matchings.
3. Refined enumeration ; application to permutations.
The polytope Π_n

In his study of a polypeptide model, Bertrand Duplantier discovered a certain polytope describing the configuration space of the model.

The polypeptide is composed of n line segments of unit length, and is attached to the ground.
In his study of a polypeptide model, Bertrand Duplantier discovered a certain polytope describing the configuration space of the model.

The polypeptide is composed of \(n \) line segments of unit length, and is attached to the ground. Now we consider the possible heights \(h_i \) of the extremities of the line segments.
The polytope Π_n

The polytope obtained is the following

Definition

We let Π_n be the set of points $x = (x_i)_i$ in \mathbb{R}^n such that for all i,

$$x_i \geq 0 \text{ and } |x_i - x_{i-1}| \leq 1$$

with the convention $x_0 = 0$.

The polytope Π_n

The polytope obtained is the following

Definition

We let Π_n be the set of points $x = (x_i)_i$ in \mathbb{R}^n such that for all i,

$$x_i \geq 0 \text{ and } |x_i - x_{i-1}| \leq 1$$

with the convention $x_0 = 0$.

This is a bounded region (note that $0 \leq x_i \leq i$ for all i), and is formed by an intersection of half spaces in \mathbb{R}^n.
The polytope Π_n

For $n = 2$ we have for instance:

\[x_2 - x_1 = 1 \]
\[x_2 - x_1 = -1 \]
\[x_1 = 1 \]

\[x_1 = 1 \]

\[x_1 = 1 \]

\[x_1 = 1 \]
Elementary polytopes

Let \(h \) be a point of \(\mathbb{Z}^n \), and let \(\sigma \) be a permutation of \([n] := \{1, \ldots, n\} \).

Definition

We define the elementary polytope \(E(h, \sigma) \) as the set of \(y = (y_i)_i \) in \(\mathbb{R}^n \) such that

- \(h_i \leq y_i \leq h_i + 1 \) and
- \(\epsilon(y_{\sigma^{-1}(1)}) \leq \epsilon(y_{\sigma^{-1}(2)}) \leq \ldots \leq \epsilon(y_{\sigma^{-1}(n)}) \)

where \(\epsilon(t) \in [0, 1[\) is the fractional part of \(t \) (i.e. \(t - \epsilon(t) \in \mathbb{Z} \)).
Elementary polytopes

Let h be a point of \mathbb{Z}^n, and let σ be a permutation of $[n] := \{1, \ldots, n\}$.

Definition

We define the *elementary polytope* $E(h, \sigma)$ as the set of $y = (y_i)_i$ in \mathbb{R}^n such that

- $h_i \leq y_i \leq h_i + 1$ and
- $\epsilon(y_{\sigma^{-1}(1)}) \leq \epsilon(y_{\sigma^{-1}(2)}) \leq \ldots \leq \epsilon(y_{\sigma^{-1}(n)})$

where $\epsilon(t) \in [0, 1]$ is the fractional part of t (i.e. $t - \epsilon(t) \in \mathbb{Z}$).

All elementary polytopes have the same volume $\frac{1}{n!}$.
Elementary polytopes

Let \(h \) be a point of \(\mathbb{Z}^n \), and let \(\sigma \) be a permutation of \([n] := \{1, \ldots, n\}\).

Definition

We define the *elementary polytope* \(E(h, \sigma) \) as the set of \(y = (y_i)_i \) in \(\mathbb{R}^n \) such that

- \(h_i \leq y_i \leq h_i + 1 \) and
- \(\epsilon(y_{\sigma^{-1}(1)}) \leq \epsilon(y_{\sigma^{-1}(2)}) \leq \ldots \leq \epsilon(y_{\sigma^{-1}(n)}) \)

where \(\epsilon(t) \in [0, 1[\) is the fractional part of \(t \) (i.e. \(t - \epsilon(t) \in \mathbb{Z} \)).

All elementary polytopes have the same volume \(\frac{1}{n!} \). Then we have the following proposition:

Proposition

The interior of a given elementary polytope \(E(h, \sigma) \) is either included in \(\Pi_n \) or disjoint from \(\Pi_n \).
Subpolytopes for $n = 2$

3 subpolytopes $E(h, \sigma)$

$h = (0, 0); \sigma = (0, 1)$

$h = (0, 1); \sigma = (2, 1)$

$h = (0, 0); \sigma = (1, 2)$

$h = (0, 0); \sigma = (2, 1)$
Well labeled paths

So, in order to compute the volume of Π_n, it suffices to count the number of elementary subpolytopes $E(h, \sigma)$ inside it, and divide by $n!$. For this, we will encode $(h_i, \sigma_i), i \in [n]$ as the point $(i - 1, h_i)$ labeled by the integer σ_i. Then the condition for a polytope $E(h, \sigma)$ to be included in Π_n is the following:

Definition

A **well-labelled positive path** of size n is a pair (h, σ) made of an integer vector $h = (h_1, h_2, \ldots, h_n) \in \mathbb{Z}^n$ and a permutation $\sigma = \sigma_1 \sigma_2 \ldots \sigma_n$ of $[n]$ such that:

1. $h_1 = 0$, $h_i \geq 0$, and $h_i - h_{i-1} \in \{-1, 0, 1\}$ for all i
2. $h_i > h_{i+1}$ implies $\sigma_i < \sigma_{i+1}$, while $h_{i+1} < h_i$ implies $\sigma_i > \sigma_{i+1}$.
Well labeled paths

Definition

A *well-labelled positive path* of size n is a pair (h, σ) made of an integer vector $h = (h_1, h_2, \ldots, h_n) \in \mathbb{Z}^n$ and a permutation $\sigma = \sigma_1 \sigma_2 \ldots \sigma_n$ of $[n]$ such that:

1. $h_1 = 0$, $h_i \geq 0$, and $h_i - h_{i-1} \in \{-1, 0, 1\}$ for all i
2. $h_i > h_{i+1}$ implies $\sigma_i < \sigma_{i+1}$, while $h_{i+1} < h_i$ implies $\sigma_i > \sigma_{i+1}$.

![Diagram of a well-labelled positive path](image-url)
Positive paths for $n = 1, 2, 3$

$P_1 = 1$

$P_2 = 3$

$P_3 = 15$
Definition

A well-labelled Motzkin path of size n is a pair (h, σ) made of an integer vector $h = (h_1, h_2, \ldots, h_n) \in \mathbb{Z}^n$ and a permutation $\sigma = \sigma_1\sigma_2\ldots\sigma_n$ of $[n]$ such that:

1. $h_1 = 0$, $h_i \geq 0$, $h_{i+1} - h_{i-1} \in \{-1, 0, 1\}$ for $i = 1 \ldots n - 1$, and...

2. $h_i > h_{i+1}$ implies $\sigma_i < \sigma_{i+1}$, while $h_{i+1} < h_i$ implies $\sigma_i > \sigma_{i+1}$.

A well-labelled Motzkin path of size n is a pair (h, σ) made of an integer vector $h = (h_1, h_2, \ldots, h_n) \in \mathbb{Z}^n$ and a permutation $\sigma = \sigma_1 \sigma_2 \ldots \sigma_n$ of $[n]$ such that:

1. $h_1 = 0$, $h_i \geq 0$, $h_{i+1} - h_{i-1} \in \{-1, 0, 1\}$ for $i = 1 \ldots n - 1$, and $h_n = -1$.
2. $h_i > h_{i+1}$ implies $\sigma_i < \sigma_{i+1}$, while $h_{i+1} < h_i$ implies $\sigma_i > \sigma_{i+1}$.
We defined the classes of well-labeled Motzkin paths and positive paths, which we will denote by M and P.

To compute the volume of Π_n, we need to enumerate P_n, the class of positive paths of size n. Still, we will focus on the class M_n, which is easier to enumerate and is an essential step in the enumeration of P_n.

A matching of size n is a partition of $[2n]$ with all blocks of size 2; equivalently, it is an involution on $[2n]$ without fixed points.
Main Results

Theorem

There are explicit bijections between the classes \(P_n \) and \(M_{n+1} \) and the matchings on \([2n]\).

We have as immediate corollaries:

Corollary

For all \(n \) we have

\[
|P_n| = |M_{n+1}| = (2n - 1)!! = (2n - 1) \cdot (2n - 3) \cdot \ldots \cdot 3 \cdot 1.
\]

The volume of the polytope \(\Pi_n \) is equal to

\[
(2n - 1)!! \cdot n!
\]

We will now exhibit the bijections announced in the main theorem above: in both cases, they will use a certain class of trees as an intermediate object.
Main Results

Theorem

There are explicit bijections between the classes \mathcal{P}_n and \mathcal{M}_{n+1} and the matchings on $[2n]$.

We have as immediate corollaries:

Corollary

1. For all n we have
 \[|\mathcal{P}_n| = |\mathcal{M}_{n+1}| = (2n - 1)!! := (2n - 1) \cdot (2n - 3) \cdots 3 \cdot 1. \]

2. The volume of the polytope Π_n is equal to $\frac{(2n-1)!!}{n!}$.
Main Results

Theorem

There are explicit bijections between the classes P_n and M_{n+1} and the matchings on $[2n]$.

We have as immediate corollaries:

Corollary

1. For all n we have $|P_n| = |M_{n+1}| = (2n - 1)!! := (2n - 1) \cdot (2n - 3) \cdots 3 \cdot 1$.

2. The volume of the polytope Π_n is equal to $\frac{(2n-1)!!}{n!}$

We will now exhibit the bijections announced in the main theorem above: in both cases, they will use a certain class of trees as an intermediate object.
Recursive decomposition of the class \mathcal{M}

Let us decompose the paths (p, σ) according to its second point h_1, which can be equal to $-1, 0$ or 1. Then we can write the following symbolic equation:

$$M(z) = z^2 + zM(z) + M(z)^2,$$

where $M(z) = \sum \frac{|M_n|}{n!} z^n$ is the exponential generating function of the class \mathcal{M}. From this we can already deduce the enumeration $|M_{n+1}| = (2^n - 1)!!$ by solving the equation, or by Lagrange inversion formula.
Recursive decomposition of the class \mathcal{M}

Let us decompose the paths (p, σ) according to its second point h_1, which can be equal to $-1, 0$ or 1. Then we can write the following symbolic equation:

$$M(z) = \frac{z^2}{2} + zM(z) + \frac{M(z)^2}{2},$$

where $M(z) = \sum_n |\mathcal{M}_n| \frac{z^n}{n!}$ is the exponential generating function of the class \mathcal{M}. From this we can already deduce the enumeration $|\mathcal{M}_{n+1}| = (2n - 1)!!$ by solving the equation, or by Lagrange inversion formula.
A **labelled binary tree** of size \(n \) is a rooted tree with \(n \) leaves having \(n \) different labels in \([n]\) and such that each (unlabelled) internal vertex has exactly two unordered children.

Proposition

There is a recursive bijection between \(\mathcal{M}_n \) and \(\mathcal{T}_n \).
Now remember the decomposition of M:

We will recursively attach to the three cases:

- The tree with one root, and two leaves labelled σ_1 and σ_2.
- The tree with one root, one leaf (labeled by σ_1) and one nontrivial subtree
- The tree with one root and two non trivial subtrees.
From paths to trees: example
This is a bijection due to Bill Chen.

First, number all internal non root vertices of the tree by \(m = n + 1, n + 2, \ldots, 2n - 2 \) in this order, as follows:

- Consider all unlabelled internal vertices that have both of their children labelled.
- Among these, choose the one which has the child with the smallest label.
- Label this vertex by \(m \).
From trees to matchings

This is a bijection due to Bill Chen.

First, number all internal non root vertices of the tree by \(m = n + 1, n + 2, \ldots, 2n - 2 \) in this order, as follows:

- Consider all unlabelled internal vertices that have both of their children labelled.
- Among these, choose the one which has the child with the smallest label.
- Label this vertex by \(m \).

Once the tree is fully labeled, define a matching \(M \) on \([2n - 2]\) by letting \(\{i, j\} \) be a block of \(M \) if \(i \) and \(j \) are the labels of siblings.
From trees to matchings

Well labeled paths and the volume of a polytope
From trees to matchings
What about positive paths?

They admit the following decomposition, based on \mathcal{M}.

$$
\begin{align*}
&= + + +
\end{align*}
$$

From this, one can define a bijection between \mathcal{P}_n and marked labeled binary trees. They are the same trees but with a distinguished vertex.
What about positive paths?

They admit the following decomposition, based on M.

From this, one can define a bijection between \mathcal{P}_n and marked labeled binary trees. They are the same trees but with a distinguished vertex.

Then it is easy to give a bijection between marked trees with n leaves and matchings on $[2n]$. It is a simple modification of Bill Chen´s bijection.
Summary of bijections
Refinement

A leaf in a binary tree is single if its sibling is an internal node.

Theorem

For all integers n, k, we have bijections between

1. well-labelled Motzkin paths of size n with k horizontal steps,
2. labelled binary trees with n leaves, k of which are single leaves, and
3. matchings on $[2n - 2]$ having k pairs $\{i, j\}$ such that $i \in \{1, \ldots, n\}$ and $j \in \{n+1, \ldots, 2n-2\}$.

Corollary

The number of well-labelled Motzkin paths of size n having k horizontal steps is 0 if $n-k$ is odd, and otherwise $\binom{n}{k} \binom{n-2}{k} k! \binom{n-k-1}{2} \binom{n-k-3}{2}!!.
A leaf in a binary tree is **single** if its sibling is an internal node.

Theorem

For all integers n, k, we have bijections between

1. well-labelled Motzkin paths of size n with k horizontal steps,
2. matchings on $[2n - 2]$ having k pairs $\{i, j\}$ such that $i \in \{1, \ldots, n\}$ and $j \in \{n+1, \ldots, 2n-2\}$.

Corollary

The number of well-labelled Motzkin paths of size n having k horizontal steps is 0 if $n - k$ is odd, and otherwise

$$\binom{n}{k} \binom{n-2}{k} k! (n - k - 1)!! (n - k - 3)!!$$
Refinement

We have a similar result for positive paths:

Theorem

For all integers n, k, we have a bijection between

1. well-labelled positive paths of size n with k horizontal steps, and
2. matchings on $[2n]$ having k pairs (i, j) with $i \in \{1, \ldots, n\}$ and $j \in \{n + 1, \ldots, 2n - 1\}$.

Corollary

The number of well-labelled positive paths of size n having k horizontal steps is

\[
\begin{cases}
(n \choose k)(n - k \choose k)k! \\ 2 & \text{if } n - k \text{ is even,} \\
(n \choose k + 1)(n - k \choose k)(k + 1)! \\ 2 & \text{otherwise.}
\end{cases}
\]
Refinement

We have a similar result for positive paths:

Theorem

For all integers \(n, k \), we have a bijection between

1. well-labelled positive paths of size \(n \) with \(k \) horizontal steps, and
2. matchings on \([2n]\) having \(k \) pairs \((i, j)\) with \(i \in \{1, \ldots, n\} \) and \(j \in \{n + 1, \ldots, 2n - 1\} \).

Corollary

The number of well-labelled positive paths of size \(n \) having \(k \) horizontal steps is

\[
\begin{cases}
\binom{n}{k} \binom{n-1}{k} k! \left[(n-k-1)!!\right]^2 & \text{if } n-k \text{ is even}, \\
\binom{n}{k+1} \binom{n-1}{k} (k+1)! \left[(n-k-2)!!\right]^2 & \text{otherwise}.
\end{cases}
\]
Application to permutation enumeration

Let \((p, \sigma)\) be a well-labelled path (in \(\mathcal{M}\) or \(\mathcal{P}\)). If it has no horizontal step, then the permutation \(\sigma\) determines \(p\).
Application to permutation enumeration

Let \((p, \sigma)\) be a well-labelled path (in \(M\) or \(P\)). If it has no horizontal step, then the permutation \(\sigma\) determines \(p\).

An ascent of a permutation \(\sigma = \sigma_1\sigma_2 \ldots \sigma_n\) is an index \(i < n\) such that \(\sigma_i < \sigma_{i+1}\); a descent is an index \(i < n\) such that \(\sigma_i > \sigma_{i+1}\). The up-down sequence of a permutation \(\sigma\) is given by \(p(\sigma) = p_1p_2 \ldots p_{n-1}\) where \(p_i = 1\) (respectively \(p_i = -1\)) if \(i\) is a descent (resp. an ascent). The up-down sequence is positive if it forms a positive path, and Dyck if it forms an extended Dyck path.

\[\left\lfloor \frac{(n-1)!!}{2} \right\rfloor \text{ if } n \text{ is even} \]
\[\left\lfloor \frac{(n-2)!!}{2} \right\rfloor \text{ otherwise.} \]

The number of permutations of size \(n\) having a Dyck up-down sequence is \(\frac{(n-1)!!(n-3)!!}{2}\) if \(n\) is even and 0 otherwise.
Let \((p, \sigma)\) be a well-labelled path (in \(M\) or \(P\)). If it has no horizontal step, then the permutation \(\sigma\) determines \(p\).

An ascent of a permutation \(\sigma = \sigma_1 \sigma_2 \ldots \sigma_n\) is an index \(i < n\) such that \(\sigma_i < \sigma_{i+1}\); a descent is an index \(i < n\) such that \(\sigma_i > \sigma_{i+1}\). The up-down sequence of a permutation \(\sigma\) is given by \(p(\sigma) = p_1 p_2 \ldots p_{n-1}\) where \(p_i = 1\) (respectively \(p_i = -1\)) if \(i\) is a descent (resp. an ascent).

The up-down sequence is positive if it forms a positive path, and Dyck if it forms an extended Dyck path.

Theorem

For any integer \(n\), the number of permutations of size \(n\) having a positive up-down sequence is \([((n - 1)!!]^2\) if \(n\) is even and \([((n - 2)!!]^2\) otherwise. The number of permutations of size \(n\) having a Dyck up-down sequence is \((n - 1)!! (n - 3)!!\) if \(n\) is even and 0 otherwise.