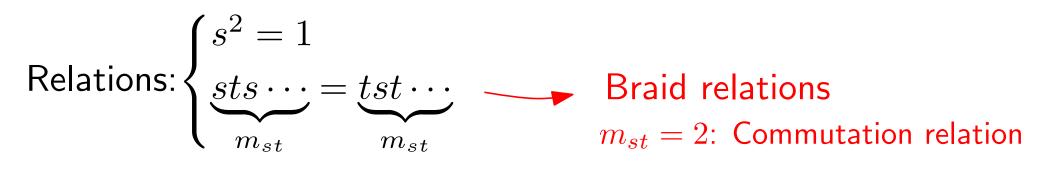
Éléments totalement commutatifs et chemins du plan

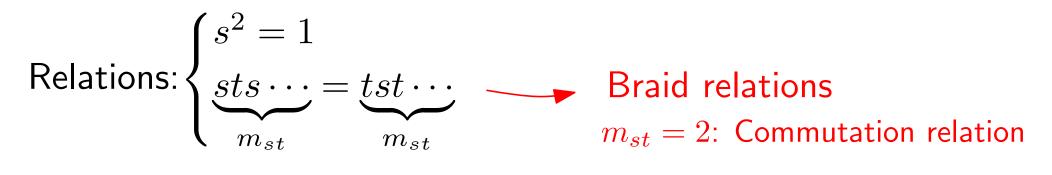
Philippe Nadeau (CNRS, Université Lyon 1) Collaboration avec Frédéric Jouhet et Riccardo Biagioli

GT Combi, LIX, 10 Décembre 2012

(W, S) Coxeter group W given by Coxeter matrix $(m_{st})_{s,t\in S}$.



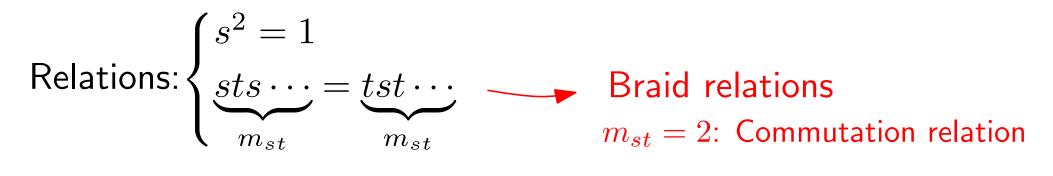
(W, S) Coxeter group W given by Coxeter matrix $(m_{st})_{s,t\in S}$.



Length $\ell(w)$ = minimal l such that $w = s_1 s_2 \dots s_l$ with $s_i \in S$

Such a minimal word is a reduced decomposition of w.

(W, S) Coxeter group W given by Coxeter matrix $(m_{st})_{s,t\in S}$.



Length $\ell(w)$ = minimal l such that $w = s_1 s_2 \dots s_l$ with $s_i \in S$

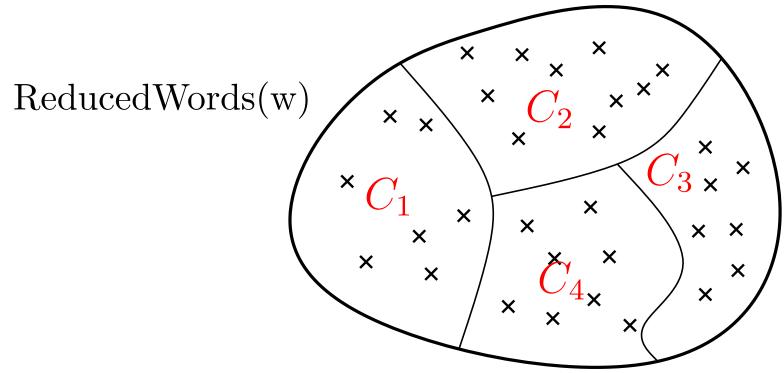
Such a minimal word is a reduced decomposition of w.

Matsumoto property : Given two reduced decompositions of w, there is a sequence of braid relations which can be applied to transform one into the other.

An element w is **fully commutative** if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

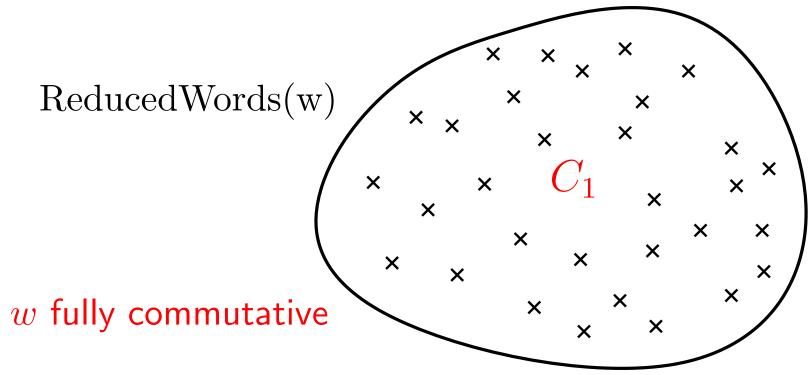
An element w is **fully commutative** if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

In general, the set of reduced decompositions splits into several commutation classes: w is fully commutative if there is only one such class.



An element w is **fully commutative** if given two reduced decompositions of w, there is a sequence of commutation relations which can be applied to transform one into the other.

In general, the set of reduced decompositions splits into several commutation classes: w is fully commutative if there is only one such class.



Type $A_{n-1} \rightarrow$ The symmetric group S_n

Consider $S = \{s_1, \ldots, s_{n-1}\}$, with relations $s_i^2 = 1$ and

 $\begin{cases} s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} & A_{n-1} \\ s_i s_j = s_j s_i, \quad |j-i| > 1 & s_1 & s_2 & s_{n-1} \end{cases}$

 $\vartheta: s_i \mapsto (i, i+1)$ is an isomorphism with S_n .

Type $A_{n-1} \rightarrow$ The symmetric group S_n

Consider $S = \{s_1, \ldots, s_{n-1}\}$, with relations $s_i^2 = 1$ and

 $\begin{cases} s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} & A_{n-1} \\ s_i s_j = s_j s_i, \quad |j-i| > 1 & s_1 & s_2 & s_{n-1} \end{cases}$

 $|\vartheta: s_i \mapsto (i, i+1)$ is an isomorphism with S_n .

Theorem [Billey, Jockush, Stanley '93] w is fully commutative $\Leftrightarrow \vartheta(w)$ is 321-avoiding.

One can use this to show that FC elements in type A_{n-1} are counted by Catalan numbers, i.e. $|S_n^{FC}| = \frac{1}{n+1} {2n \choose n}$.

Previous work

- The seminal papers are [Stembridge '96,'98]:
- 1. First properties;
- 2. Classification of W with a finite number of FC elements;
- 3. Enumeration of these elements in each of thesel cases.

Previous work

- The seminal papers are [Stembridge '96,'98]:
- 1. First properties;
- 2. Classification of W with a finite number of FC elements;
- 3. Enumeration of these elements in each of thesel cases.
- [Fan '95] studies FC elements in the special case where $m_{st} \leq 3$ (the simply laced case).

• [Graham '95] shows that FC elements in any Coxeter group W naturally index a basis of the (generalized) Temperley-Lieb algebra of W.

• Subsequent works [Greene,Shi,Cellini,Papi] relate FC elements (and some related elements) to Kazhdan-Lusztig polynomials.

Outline

Today, I will show explain how to enumerate FC elements for any finite or affine Coxeter group W.

There exists a complete classification. \rightarrow we proceed case by case.

Outline

Today, I will show explain how to enumerate FC elements for any finite or affine Coxeter group W.

There exists a complete classification. \rightarrow we proceed case by case.

Let $W^{FC}(q) = \sum_{w} q^{\ell(w)}$ (where w runs through FC elements of W.)

We can compute $W^{FC}(q)$ for any such W.

Outline

Today, I will show explain how to enumerate FC elements for any finite or affine Coxeter group W.

There exists a complete classification. \rightarrow we proceed case by case.

Let $W^{FC}(q) = \sum_{w} q^{\ell(w)}$ (where w runs through FC elements of W.)

We can compute $W^{FC}(q)$ for any such W.

Today I will focus on types A and \tilde{A} , corresponding to the finite and affine symmetric groups. The idea is to encode the FC elements in these cases by certain lattice paths.

1. FC ELEMENTS AND HEAPS

Characterization of FC elements

In general, how can one recognize a FC element ? The following is one step in this direction.

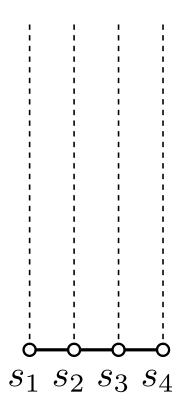
Theorem[Stembridge] A reduced word represents a FC element if and only no element of its commutation class contains a factor $\underline{sts\cdots}$ for a $m_{st} \ge 3$.

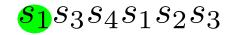
 m_{st}

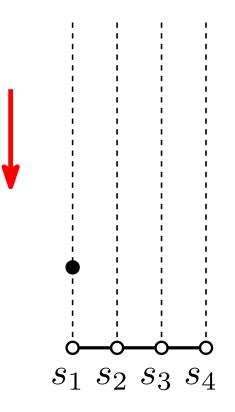
(Proof: when two words are related by a braid relation with $m_{st} \geq 3$, they do not belong to the same commutation class.)

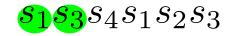
How to tell if a commutation class verifies the property above ? \Rightarrow Use theory of heaps, which are posets which encode commutation classes.

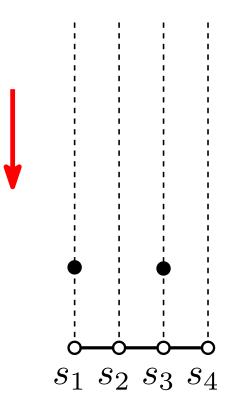
 $s_1 s_3 s_4 s_1 s_2 s_3$

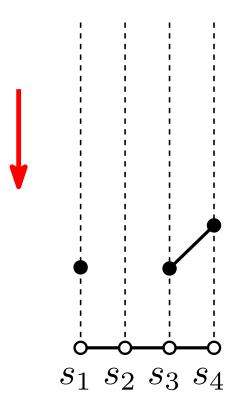




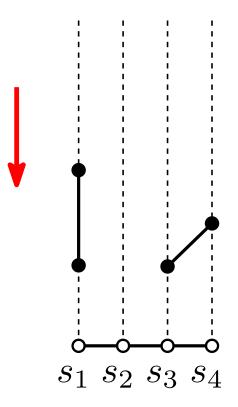


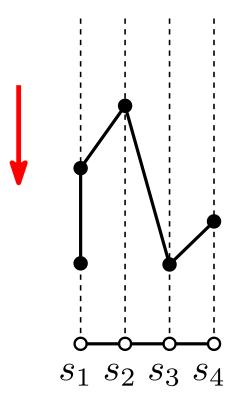


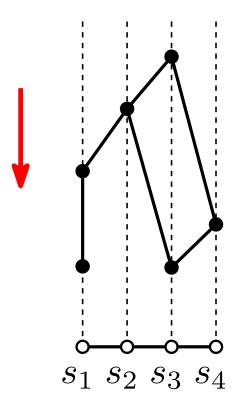




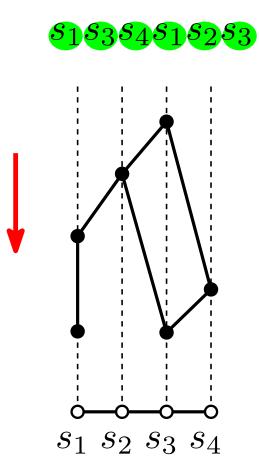
Vertex stays above if corresponding generators do not commute.



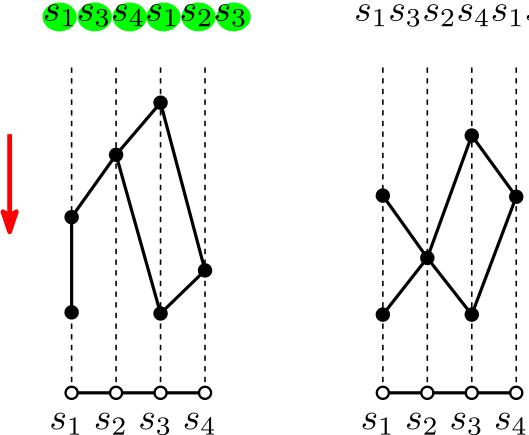




Heap of a word = poset H labeled by generators s_i of W. Linear extensions of $H \Leftrightarrow$ Words of the commutation class.

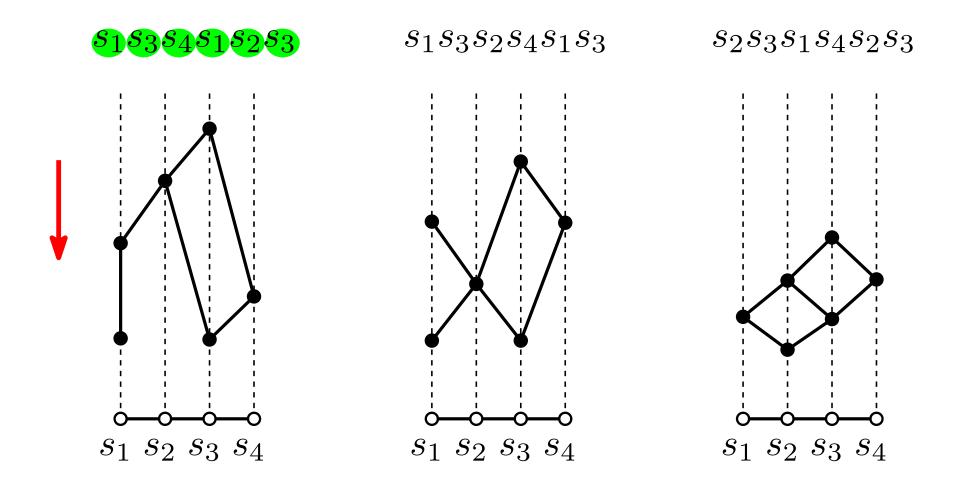


Heap of a word = poset H labeled by generators s_i of W. Linear extensions of $H \Leftrightarrow Words$ of the commutation class.

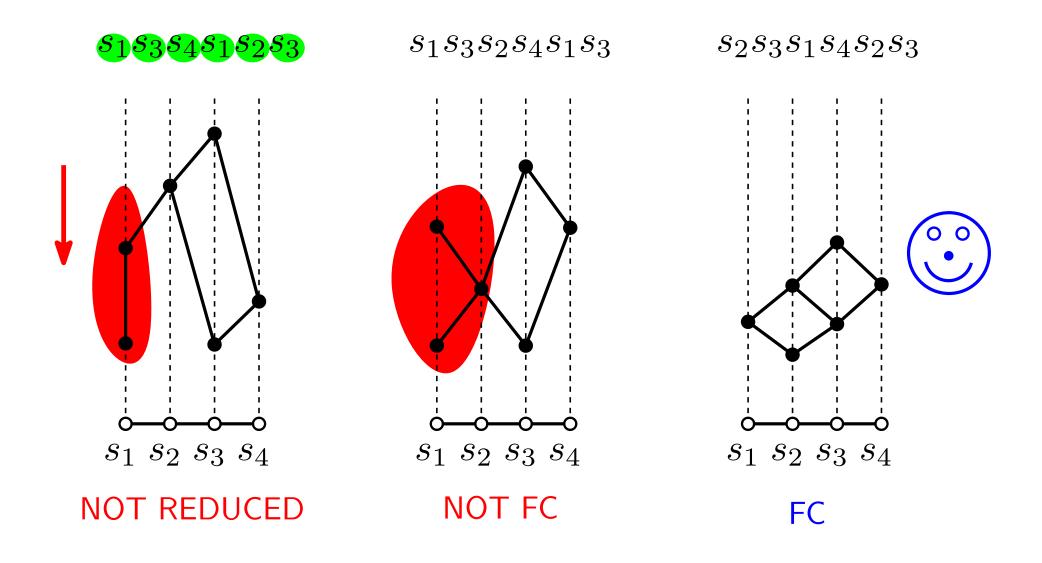


 $s_1 s_3 s_2 s_4 s_1 s_3$

Heap of a word = poset H labeled by generators s_i of W. Linear extensions of $H \Leftrightarrow$ Words of the commutation class.



Heap of a word = poset H labeled by generators s_i of W. Linear extensions of $H \Leftrightarrow$ Words of the commutation class.



Characterization of heaps

Proposition[Stembridge '95] Heaps H of FC reduced words are characterized by: (a) No covering relation $i \prec j$ in H such that $s_i = s_j$. (b) No convex chain $i_1 \prec \cdots \prec i_{m_{st}}$ in H such that $s_{i_1} = s_{i_3} = \cdots = s$ and $s_{i_2} = s_{i_4} = \cdots = t$ where $3 \leq m_{st} < \infty$.

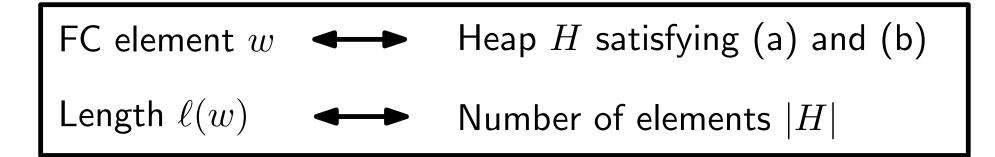
Characterization of heaps

Proposition[Stembridge '95] Heaps H of FC reduced words are characterized by: (a) No covering relation $i \prec j$ in H such that $s_i = s_j$. (b) No convex chain $i_1 \prec \cdots \prec i_{m_{st}}$ in H such that $s_{i_1} = s_{i_3} = \cdots = s$ and $s_{i_2} = s_{i_4} = \cdots = t$ where $3 \leq m_{st} < \infty$.

(the only elements x satisfying $i_1 \le x \le i_{m_{st}}$ are the elements i_j of the chain.)

Characterization of heaps

Proposition[Stembridge '95] Heaps H of FC reduced words are characterized by: (a) No covering relation $i \prec j$ in H such that $s_i = s_j$. (b) No convex chain $i_1 \prec \cdots \prec i_{m_{st}}$ in H such that $s_{i_1} = s_{i_3} = \cdots = s$ and $s_{i_2} = s_{i_4} = \cdots = t$ where $3 \leq m_{st} < \infty$.

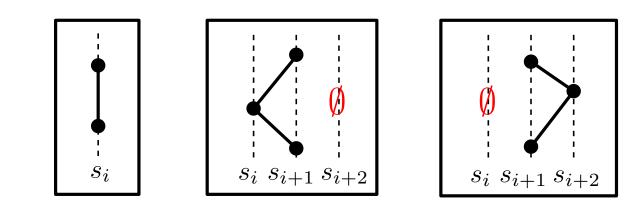


In type A and \widetilde{A} , we will see that the FC heaps above are particularly nice.

1. Type A

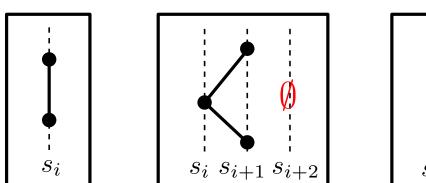
Type A

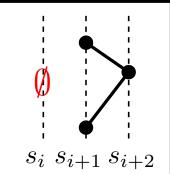
FC heaps avoid precisely



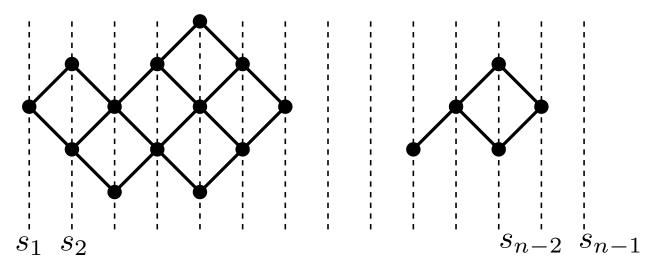
Type A

FC heaps avoid precisely



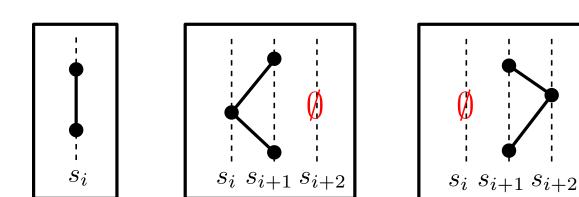


So they look like this

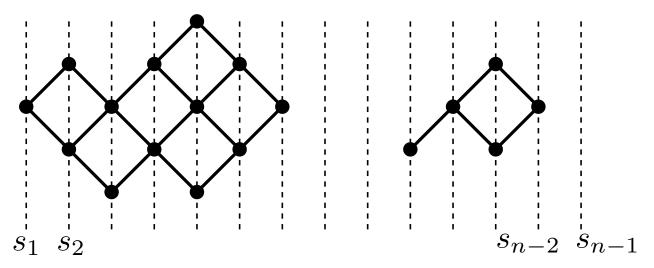


Type A

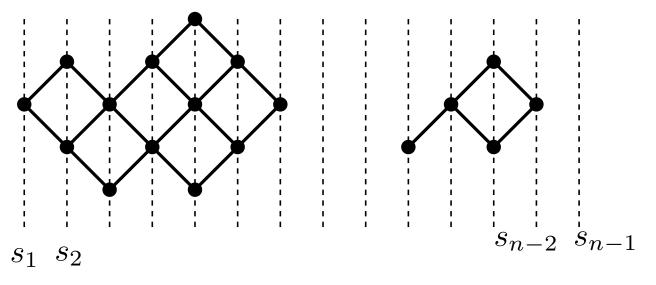
FC heaps avoid precisely



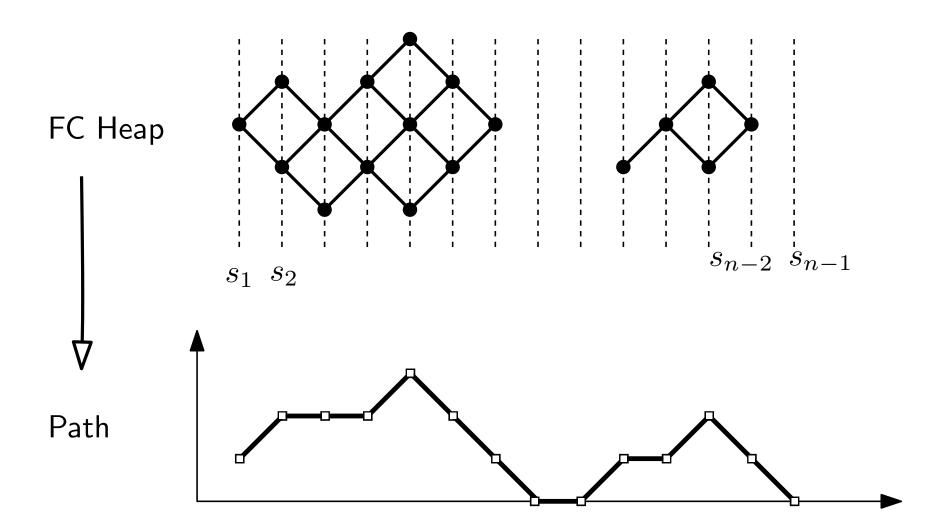
So they look like this

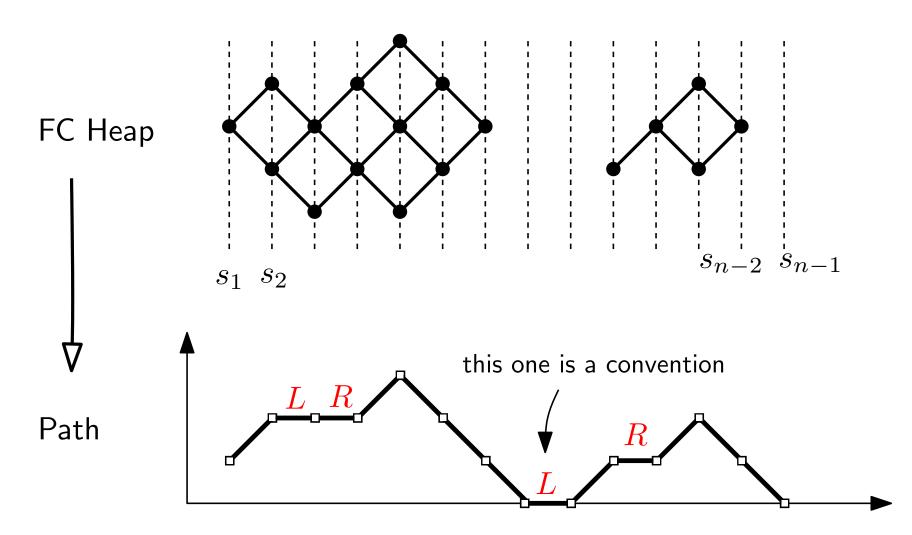


Proposition Heaps of type A are characterized by: (i) At most one occurrence of s_1 (*resp.* s_{n-1}). (ii) Elements with labels s_i, s_{i+1} form an alternating chain. Type A: Bijection

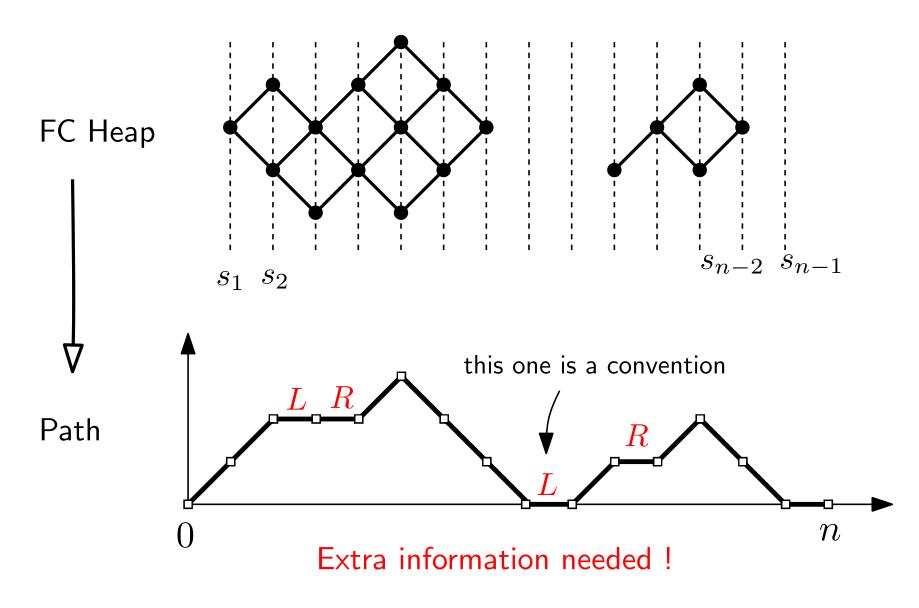


Type A: Bijection





Extra information needed !



To finish, add initial and final steps to the path.

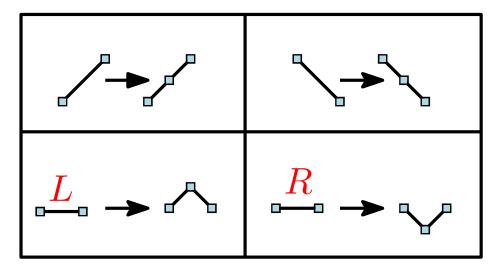
Theorem [BJN '12, known before?] This is a bijection between FC heaps of type A_{n-1} and Motzkin paths of length n with horizontal steps at height h > 0 (*resp.* h = 0) labeled L or R (*resp.* labeled L).

> Size of the heap ⇔ Area of the path (Sum of the heights of all vertices)

Theorem [BJN '12, known before?] This is a bijection between FC heaps of type A_{n-1} and Motzkin paths of length n with horizontal steps at height h > 0 (resp. h = 0) labeled L or R (resp. labeled L).

Size of the heap ⇔ Area of the path (Sum of the heights of all vertices)

Remark



transforms these paths into Dyck paths \Rightarrow Catalan numbers!

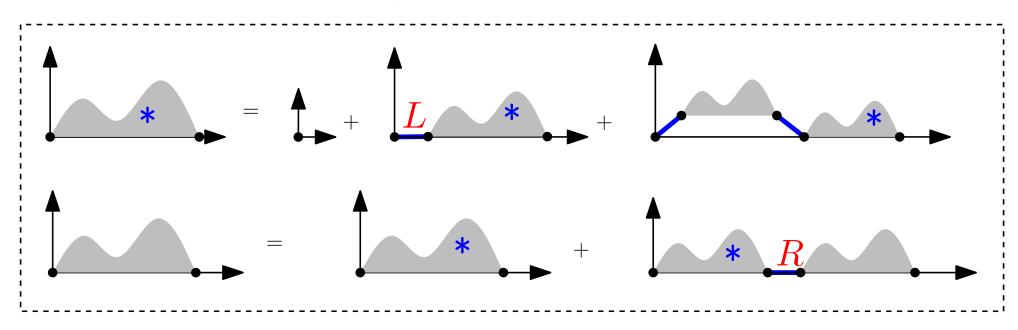
The generating polynomial

We have to count our labeled Motzkin paths with respect to their area.

The generating polynomial

We have to count our labeled Motzkin paths with respect to their area.

 \rightarrow Use recursive decompositions

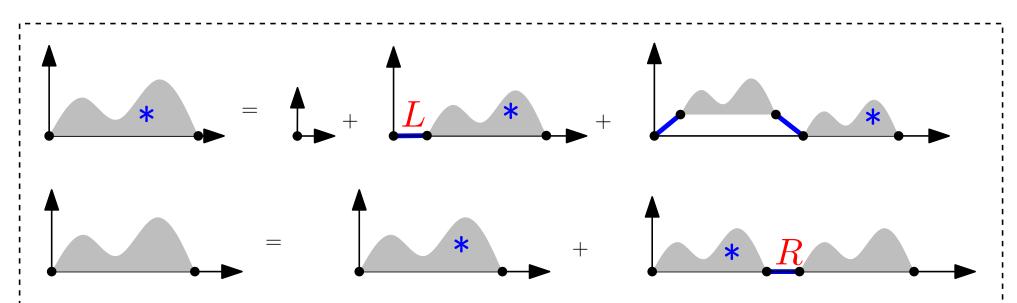


* indicates that horizontal steps at height h = 0 must have label L)

The generating polynomial

We have to count our labeled Motzkin paths with respect to their area.

 \rightarrow Use recursive decompositions

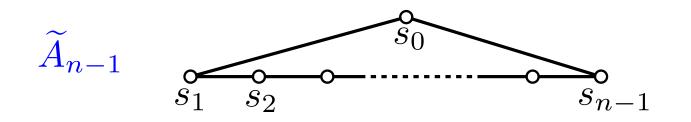


Write the functional equations, and eliminate to get

Theorem Define $A^{FC}(x) = \sum_{n \ge 1} A^{FC}_{n-1}(q) x^n$. Then $A^{FC}(x) = x + x A^{FC}(x) + q x A^{FC}(x) (A^{FC}(qx) + 1).$

2. Type \widetilde{A}

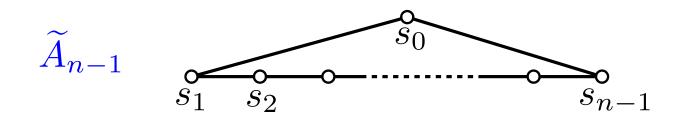
Affine permutations



One can represent this group as the set of permutations σ of \mathbb{Z} satisfying $\sigma(i+n) = \sigma(i) + n$, and $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

..., 17, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, ...
$$\sigma(1)\sigma(2)\sigma(3)\sigma(4)$$

Affine permutations



One can represent this group as the set of permutations σ of \mathbb{Z} satisfying $\sigma(i+n) = \sigma(i) + n$, and $\sum_{i=1}^{n} \sigma(i) = \sum_{i=1}^{n} i$.

$$\dots, 17, -12, -14, -1, 17, -8, -10, 3, 21, -4, -6, 7, 25, 0, -2, 11, 29, 4, \dots$$

 $\sigma(1) \sigma(2) \sigma(3) \sigma(4)$

Theorem [Green '01] Fully commutative elements of type \widetilde{A}_{n-1} correspond to 321-avoiding permutations.

For instance the permutation above is not FC.

Hanusa and Jones used this representation to enumerate FC elements in type \widetilde{A} .

Generating functions

They computed the generating functions $f_n(q) = \widetilde{A}_{n-1}^{FC}(q)$; here are the first ones

$$\begin{split} f_3(q) &= 1 + 3q + \mathbf{6q^2} + \mathbf{6q^3} + \mathbf{6q^4} + \cdots \\ f_4(q) &= 1 + 4q + 10q^2 + \mathbf{16q^3} + \mathbf{18q^4} + \mathbf{16q^5} + \mathbf{18q^6} + \cdots \\ f_5(q) &= 1 + 5q + 15q^2 + 30q^3 + 45q^4 \\ &+ \mathbf{50q^5} + \mathbf{50q^6} + \mathbf{50q^7} + \mathbf{50q^8} + \mathbf{50q^9} + \cdots \\ f_6(q) &= 1 + 6q + 21q^2 + 50q^3 + 90q^4 + 126q^5 + 146q^6 \\ &+ \mathbf{150q^7} + \mathbf{156q^8} + \mathbf{152q^9} + \mathbf{156q^{10}} + \mathbf{150q^{11}} + \mathbf{158q^{12}} \\ &+ \mathbf{150q^{13}} + \mathbf{156q^{14}} + \mathbf{152q^{15}} + \mathbf{156q^{16}} + \mathbf{150q^{17}} + \mathbf{158q^{18}} \\ &+ \cdots \end{split}$$

Periodicity n in the coefficients ?

Periodicity

Theorem [Hanusa-Jones '09] The coefficients of $\widetilde{A}_{n-1}^{FC}(q)$ are ultimately periodic of period n.

Periodicity

Theorem [Hanusa-Jones '09] The coefficients of $\widetilde{A}_{n-1}^{FC}(q)$ are ultimately periodic of period n.

 \bullet In the same article, they also derive a complicated expression for $\widetilde{A}_{n-1}^{FC}(q).$

Moreover they can prove that one has periodicity starting from the length(degree) $2\lceil n/2\rceil \lfloor n/2 \rfloor$ but conjecture that $1 + \lceil (n-1)/2\rceil \lfloor (n+1)/2 \rfloor$ is enough.

Periodicity

Theorem [Hanusa-Jones '09] The coefficients of $\widetilde{A}_{n-1}^{FC}(q)$ are ultimately periodic of period n.

 \bullet In the same article, they also derive a complicated expression for $\widetilde{A}_{n-1}^{FC}(q).$

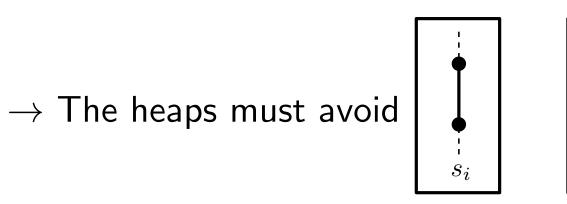
Moreover they can prove that one has periodicity starting from the length(degree) $2\lceil n/2\rceil \lfloor n/2 \rfloor$ but conjecture that $1 + \lceil (n-1)/2\rceil \lfloor (n+1)/2 \rfloor$ is enough.

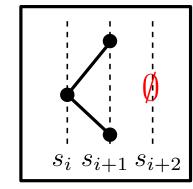
• We will prove this conjecture using heaps/paths.

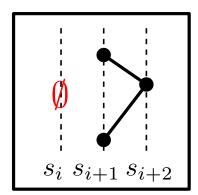
In the process, we will get much simpler rules to compute the generating functions $\widetilde{A}_{n-1}^{FC}(q)$.

FC elements in type A

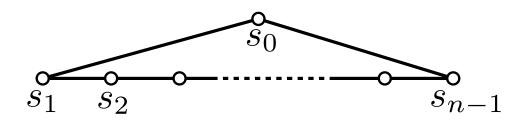
FC heap satisfy the same local conditions as in finite type A.







Difference: the cyclic shape of the Coxeter diagram



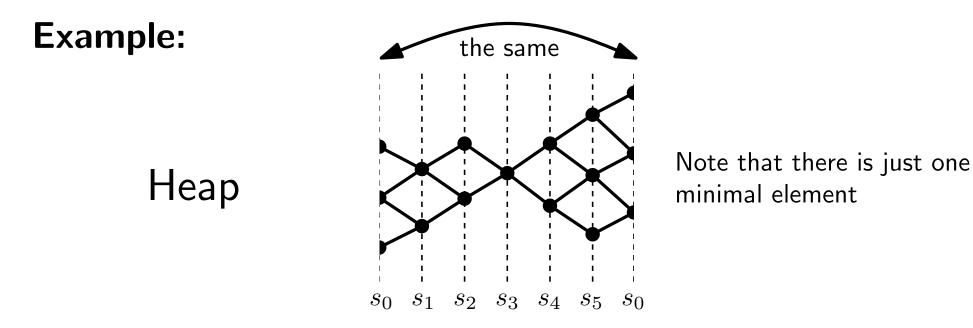
 \rightarrow The labels above must be taken with index modulo n; the heaps must be thought of as "drawn on a cylinder".

Heaps become Paths

We can form a path as before from a heap: because of the cyclic diagram, our paths will start and end at the same height.

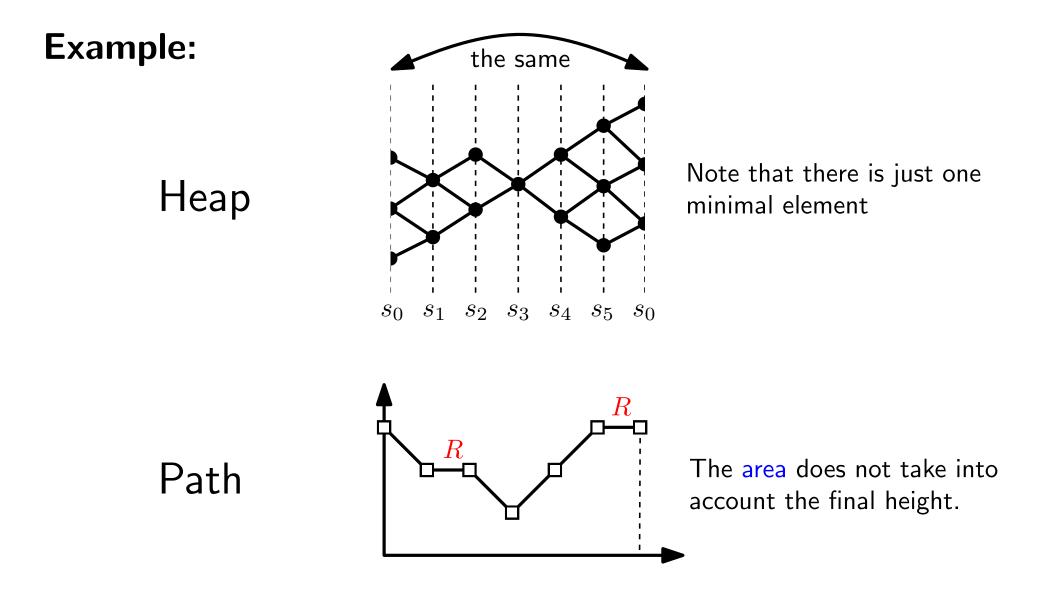
Heaps become Paths

We can form a path as before from a heap: because of the cyclic diagram, our paths will start and end at the same height.



Heaps become Paths

We can form a path as before from a heap: because of the cyclic diagram, our paths will start and end at the same height.



Starting from an FC element in \widetilde{A}_{n-1} , we thus obtain a path in \mathcal{O}_n^* , the set of length n paths with starting and ending point at the same height.

Starting from an FC element in A_{n-1} , we thus obtain a path in \mathcal{O}_n^* , the set of length n paths with starting and ending point at the same height.

Theorem[BJN '12] This is a bijection between 1. FC elements of \widetilde{A}_{n-1} and 2. \mathcal{O}_n^*

Starting from an FC element in A_{n-1} , we thus obtain a path in \mathcal{O}_n^* , the set of length n paths with starting and ending point at the same height.

Theorem[BJN '12] This is a bijection between

- 1. FC elements of A_{n-1} and
- 2. $\mathcal{O}_n^* \setminus \{ \text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R \}.$

Indeed such paths clearly cannot correspond to FC elements.

Starting from an FC element in A_{n-1} , we thus obtain a path in \mathcal{O}_n^* , the set of length n paths with starting and ending point at the same height.

Theorem[BJN '12] This is a bijection between

- 1. FC elements of A_{n-1} and
- 2. $\mathcal{O}_n^* \setminus \{ \text{paths at constant height } h > 0 \text{ with all steps having the same label } L \text{ or } R \}.$

Indeed such paths clearly cannot correspond to FC elements.

Corollary
$$\widetilde{A}_{n-1}^{FC}(q) = \mathcal{O}_n^*(q) - \frac{2q^n}{1-q^n}$$

Periodicity revisited

• For a large enough degree, the series $\mathcal{O}_n^*(q)$ has periodic coefficients with period n: just shift the path up by 1 unit.

Periodicity revisited

• For a large enough degree, the series $\mathcal{O}_n^*(q)$ has periodic coefficients with period n: just shift the path up by 1 unit.

"Large enough" ? As soon as the degree k is such that no path with area k can have a horizontal step at height h = 0 $\rightarrow k = 1 + \lceil (n-1)/2 \rceil \lfloor (n+1)/2 \rfloor$ is optimal.

This proves the conjecture of Hanusa and Jones.

Periodicity revisited

• For a large enough degree, the series $\mathcal{O}_n^*(q)$ has periodic coefficients with period n: just shift the path up by 1 unit.

"Large enough" ? As soon as the degree k is such that no path with area k can have a horizontal step at height h=0 $\rightarrow k=1+\lceil (n-1)/2\rceil\lfloor (n+1)/2\rfloor$ is optimal.

This proves the conjecture of Hanusa and Jones.

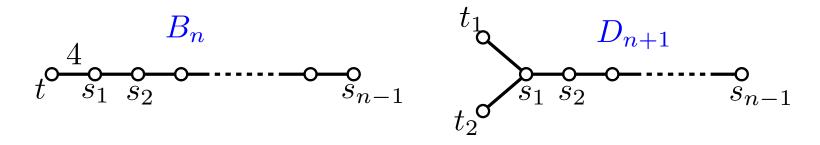
• We still have to compute the generating function $\mathcal{O}_n^*(q)$.

I will leave it to you as an (interesting) exercise in generating functions (maybe you have a better solution than ours).

3. Other finite and affine Coxeter groups

Other finite types

• The remaining "classical types"

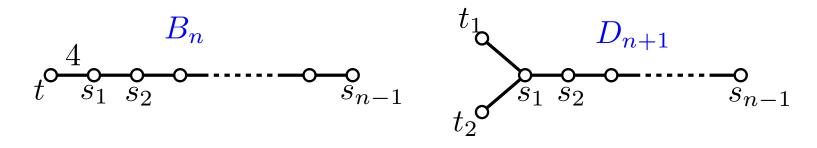


were also enumerated by Stembridge

 \rightarrow we can reinterpret his proof in terms of paths and give the length generating polynomials in these cases also.

Other finite types

• The remaining "classical types"



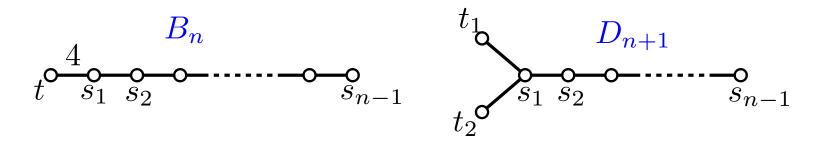
were also enumerated by Stembridge

 \rightarrow we can reinterpret his proof in terms of paths and give the length generating polynomials in these cases also.

• Exceptional types $I_2(m), H_3, H_4, F_4, E_6, E_7$, and $E_8 \rightarrow$ Computer assisted (a proof by hand is also possible).

Other finite types

• The remaining "classical types"



were also enumerated by Stembridge

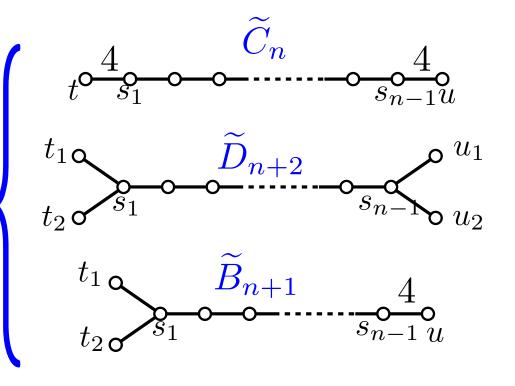
 \rightarrow we can reinterpret his proof in terms of paths and give the length generating polynomials in these cases also.

• Exceptional types $I_2(m), H_3, H_4, F_4, E_6, E_7$, and $E_8 \rightarrow$ Computer assisted (a proof by hand is also possible).

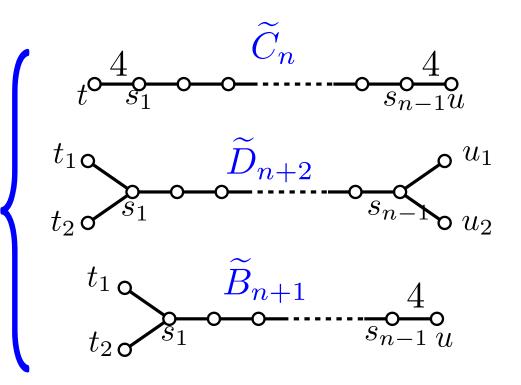
$$\begin{split} E_8^{FC}(q) &= 15q^{29} + 30q^{28} + 43q^{27} + 56q^{26} + 69q^{25} + 83q^{24} + 113q^{23} + 143q^{22} + 171q^{21} + 205q^{20} \\ &+ 259q^{19} + 319q^{18} + 387q^{17} + 457q^{16} + 527q^{15} + 609q^{14} + 701q^{13} + 794q^{12} + 867q^{11} \\ &+ 924q^{10} + 936q^9 + 897q^8 + 796q^7 + 631q^6 + 427q^5 + 238q^4 + 105q^3 + 35q^2 + 8q + 1. \end{split}$$

Other affine types

There are 3 classical types



Other affine types

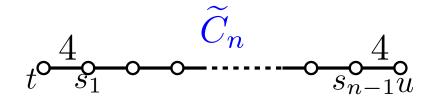


Theorem [BJN '12]

For each irreducible affine group W, the sequence of coefficients of $W^{FC}(q)$ is ultimately periodic, with period recorded in the following table.

AFFINE TYPE
$$\widetilde{A}_{n-1}$$
 \widetilde{C}_n \widetilde{B}_{n+1} \widetilde{D}_{n+2} \widetilde{E}_6 \widetilde{E}_7 \widetilde{G}_2 $\widetilde{F}_4, \widetilde{E}_8$ PERIODICITY n $n+1$ $(n+1)(2n+1)$ $n+1$ 4 9 5 1

Type C

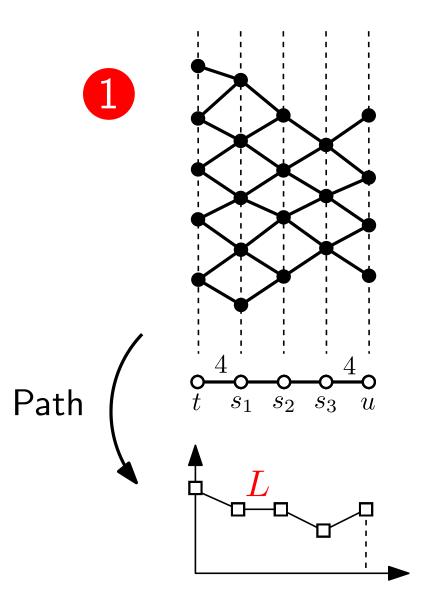


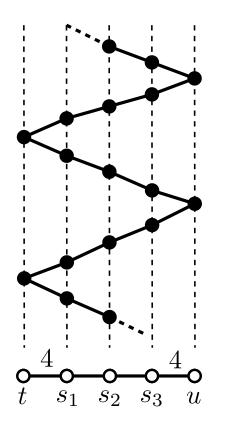
$$\begin{split} \widetilde{C}_4^{FC}(q) = & 1 + 5q + 14q^2 + 29q^3 + 47q^4 + 64q^5 + 76q^6 + 81q^7 \\ & + 80q^8 + 75q^9 + 68q^{10} + 63q^{11} + 61q^{12} \\ & + 59q^{13} + 59q^{14} + 60q^{15} + 59q^{16} + 59q^{17} \\ & + 59q^{18} + 59q^{19} + 60q^{20} + 59q^{21} + 59q^{22} \\ & + 59q^{23} + 59q^{24} + 60q^{25} + 59q^{26} + 59q^{27} \\ & + \cdots \end{split}$$

We obtain here also certain heaps corresponding to paths, but there are in addition infinitely many exceptional FC heaps, certain "zigzag heaps".

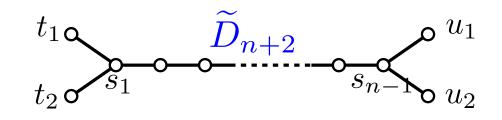
Type \widetilde{C}

Two families of paths survive for large enough length:





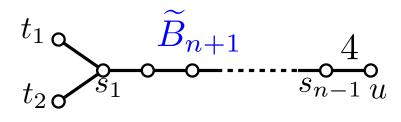
Type \widetilde{D}



$$\begin{split} D_4(q) &= 1 + 5q + 14q^2 + 28q^3 + 39q^4 + 44q^5 + 45q^6 + 34q^7 + \\ 30q^8 + 36q^9 + 30q^{10} + 30q^{11} + 36q^{12} + 30q^{13} + 30q^{14} + 36q^{15} + \\ 30q^{16} + 30q^{17} + 36q^{18} + 30q^{19} + 30q^{20} + 36q^{21} + 30q^{22} + 30q^{23} + \\ 36q^{24} + 30q^{25} + 30q^{26} + 36q^{27} + 30q^{28} + 30q^{29} + 36q^{30} + 30q^{31} + \\ 30q^{32} + 36q^{33} + 30q^{34} + 30q^{35} + 36q^{36} + 30q^{37} + 30q^{38} + \cdots \end{split}$$

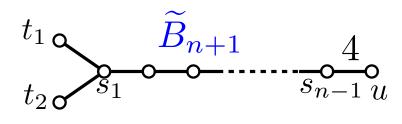
Here the minimal period is 3, while the period predicted by the theorem is 6.

Type \widetilde{B}



 $\tilde{B}_{3}^{FC}(q) = 1 + 4q + 9q^2 + 15q^3 + 19q^4 + 21q^5 + 21q^6 + 18q^7 + 1$ $17q^{8} + 19q^{9} + 18q^{10} + 17q^{11} + 19q^{12} + 17q^{13} + 17q^{14} + 20q^{15} +$ $17q^{16} + 17q^{17} + 19q^{18} + 17q^{19} + 18q^{20} + 19q^{21} + 17q^{22} + 17q^{22}$ $17q^{23} + 19q^{24} + 18q^{25} + 17q^{26} + 19q^{27} + 17q^{28} + 17q^{29} +$ $20q^{30} + 17q^{31} + 17q^{32} + 19q^{33} + 17q^{34} + 18q^{35} + 19q^{36} + 17q^{37} +$ $17q^{38} + 19q^{39} + 18q^{40} + 17q^{41} + 19q^{42} + 17q^{43} + 17q^{44} + 20q^{45} +$ $17q^{46} + 17q^{47} + 19q^{48} + 17q^{49} + 18q^{50} + 19q^{51} + 17q^{52} + 17q^{53} + 17q^{53}$ $19q^{54} + 18q^{55} + 17q^{56} + 19q^{57} + 17q^{58} + 17q^{59} + 20q^{60} + 17q^{61} + 19q^{57} + 17q^{58} + 17q^{59} + 20q^{60} + 17q^{61} + 19q^{61} + 19q^{61}$ $17q^{62} + 19q^{63} + 17q^{64} + 18q^{65} + 19q^{66} + 17q^{67} + 17q^{68} + 19q^{69} + 19q^{69}$ $18q^{70} + 17q^{71} + 19q^{72} + 17q^{73} + 17q^{74} + 20q^{75} + 17q^{76} + \cdots$

Type \widetilde{B}



 $\hat{B}_{3}^{FC}(q) = 1 + 4q + 9q^2 + 15q^3 + 19q^4 + 21q^5 + 21q^6 + 18q^7 + 19q^6 + 18q^7 + 19q^7 + 19q^6 + 19q^6 + 19q^6 + 18q^7 + 19q^6 + 19q^7 + 19q^6 + 1$ $17q^8 + 19q^9 + 18q^{10} + 17q^{11} + 19q^{12} + 17q^{13} + 17q^{14} + 20q^{15} + 17q^{14} + 20q^{15} + 17q^{14} + 20q^{15} + 17q^{14} + 17q^$ $17q^{16} + 17q^{17} + 19q^{18} + 17q^{19} + 18q^{20} + 19q^{21} + 17q^{22} + 17q^{22} + 17q^{21} + 17q^{22} + 17q^{22}$ $17q^{23} + 19q^{24} + 18q^{25} + 17q^{26} + 19q^{27} + 17q^{28} + 17q^{29} + 17q^{29}$ $20q^{30} + 17q^{31} + 17q^{32} + 19q^{33} + 17q^{34} + 18q^{35} + 19q^{36} + 17q^{37} + 19q^{37} + 19q^{37}$ $17q^{38} + 19q^{39} + 18q^{40} + 17q^{41} + 19q^{42} + 17q^{43} + 17q^{44} + 20q^{45} + 17q^{44} + 17q^{44}$ $17q^{46} + 17q^{47} + 19q^{48} + 17q^{49} + 18q^{50} + 19q^{51} + 17q^{52} + 17q^{53} + 17q^{53}$ $19q^{54} + 18q^{55} + 17q^{56} + 19q^{57} + 17q^{58} + 17q^{59} + 20q^{60} + 17q^{61} + 19q^{57} + 17q^{58} + 17q^{59} + 20q^{60} + 17q^{61} + 19q^{61} + 19q^{61}$ $17q^{62} + 19q^{63} + 17q^{64} + 18q^{65} + 19q^{66} + 17q^{67} + 17q^{68} + 19q^{69} + 19q^{69}$ $18q^{70} + 17q^{71} + 19q^{72} + 17q^{73} + 17q^{74} + 20q^{75} + 17q^{76} + \cdots$

The period is 15 in this case, corresponding to (n+1)(2n+1) for n = 2.

Further questions

- All of this work can be easily restricted to deal with FC involutions.
- Other statistics to consider, e.g. descent numbers.
- Formulas for our generating functions ? (and not just functional equations/recurrences).
- (Affine case) Repartition of the alcoves corresponding to FC elements.
- Classification: for which Coxeter groups W is it true that $W^{FC}(q)$ has periodic coefficients ?

Further questions

- All of this work can be easily restricted to deal with FC involutions.
- Other statistics to consider, e.g. descent numbers.
- Formulas for our generating functions ? (and not just functional equations/recurrences).
- (Affine case) Repartition of the alcoves corresponding to FC elements.
- Classification: for which Coxeter groups W is it true that $W^{FC}(q)$ has periodic coefficients ?

THANK YOU

