TD 1: CHAÎNES DE MARKOV

Modèles Aléatoires Discrets M1 – 2023-2024

1. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov sur $\{1,2,3\}$ de matrice de transition $(p\in[0,1])$:

$$Q = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 2/3 & 1/3 \\ p & 1-p & 0 \end{pmatrix}$$

- (a) Dessiner le graphe de cette chaîne de Markov.
- (b) Calculer $\mathbb{P}(X_1 = 1 | X_0 = 1)$, $\mathbb{P}(X_2 = 1 | X_0 = 1)$, $\mathbb{P}(X_3 = 1 | X_0 = 1)$, $\mathbb{P}(X_4 = 1 | X_0 = 1)$, $\mathbb{P}(X_1 = 2 | X_0 = 2)$, $\mathbb{P}(X_2 = 2 | X_0 = 2)$ et $\mathbb{P}(X_3 = 2 | X_0 = 2)$.
- (c) Quelle est la loi de X_1 si X_0 suit une loi uniforme sur $\{1, 2, 3\}$.
- (d) On suppose que X_0 a pour loi (1/2, 1/4, 1/4). Calculer $\mathbb{P}(X_1 = 2 \text{ et } X_2 = 3) \text{ et } \mathbb{P}(X_1 = 2 \text{ et } X_3 = 2)$.
- 2. Anna, Bruno et Carole se lancent un ballon. Anna le lance toujours à Carole ; Carole le lance aux deux autres avec la même probabilité ; Bruno le lance une fois sur trois à Anna, deux fois sur trois à Carole. Pour tout $n \in \mathbb{N}$, on note

$$X_n = \begin{cases} A, & \text{si Anna a le ballon après } n \text{ lancers }; \\ B, & \text{si Bruno a le ballon après } n \text{ lancers }; \\ C, & \text{si Carole a le ballon après } n \text{ lancers.} \end{cases}$$

- (a) Dessiner le graphe de probabilités associé à $(X_n)_{n\geq 0}$ et écrire sa matrice de transition Q.
- (b) Notons, pour tout $n \in \mathbb{N}$, $\mu_n = (a_n, b_n, c_n)$ la loi de X_n .
 - (i) Pour tout $n \in \mathbb{N}$, calculer μ_{n+1} en fonction de μ_n .
 - (ii) On suppose que Anna a le ballon au début du jeu. Pour chacun des joueurs, calculer la probabilité d'avoir le ballon après deux lancers.
- (c) Montrer que $(X_n)_{n>0}$ admet une unique probabilité invariante π et la calculer.
- 3. On considère la chaîne de Markov sur l'espace d'états $\{1,2\}$ dont la matrice de transition est la suivante :

$$\begin{pmatrix} 1-p & p \\ q & 1-q \end{pmatrix}$$

où $p, q \in [0, 1]$ sont fixés.

- (a) Dessiner son graphe. Déterminer la ou les mesures stationnaires.
- (b) On note $a_n = P(X_n = 1)$ et $b_n = \mathbb{P}(X_n = 2)$. Ecrire une relation de récurrence pour les couples (a_n, b_n) et la résoudre.
- (c) Etudier alors le comportement asymptotique de $\mathbb{P}(X_n=1)$.

4. Dépenses énergétiques

On dispose, dans une maison individuelle, de deux systèmes de chauffage, l'un de base, et l'autre d'appoint. On dira qu'on est dans l'état 1 si seul le chauffage de base fonctionne, et dans l'état 2 si les deux systèmes fonctionnent.

Si un jour on est dans l'état 1, on estime qu'on y reste le lendemain avec une probabilité $\frac{1}{2}$; en revanche, si on est dans l'état 2, le lendemain la maison est chaude, et l'on passe à l'état 1 avec une probabilité $\frac{3}{4}$.

Soit X_n l'état du système au jour numéro n.

- (a) Expliquer pourquoi $(X_n)_{n\geq 0}$ peut être modélisé par une chaîne de Markov homogène. Quel est son espace d'états? Déterminer sa matrice de transition Q et son graphe.
- (b) On pose $p_n = \mathbb{P}(X_n = 1)$. Déterminer une relation de récurrence entre p_n et p_{n+1} , puis exprimer p_n en fonction de p_0 . Que vaut $\lim_{n \to \infty} p_n$?
- (c) Sachant qu'on est dans l'état 1 un dimanche, trouver la probabilité d'être dans le même état le dimanche suivant ?
- (d) Montrer que si un jour on se trouve dans l'état 1 avec une proba $\frac{3}{5}$, alors il en est de même tous les jours qui suivent.
- (e) Chaque journée dans l'état 1 coûte 1,5 €, et dans l'état 2 coûte 2 €. Chaque transition de l'état 1 à l'état 2 ou inversement coûte 0,5 €. Calculer le coût moyen d'une journée dans la situation précédente.

5. Bruit qui court

Un message pouvant prendre 2 formes (oui ou non) est transmis à travers n intermédiaires. On suppose que chaque intermédiaire transmet le message de façon correcte avec une probabilité $p \in]0,1[$ ou le déforme en son contraire avec une probabilité 1-p. Les intermédiaires sont indépendants.

- (a) Modéliser cette situation par une chaîne de Markov à 2 états.
- (b) Calculer la probabilité que l'information transmise par le n-ième intermédiaire soit conforme à l'information initiale.

Indication: remarquer que (1, 1) et (1,-1) sont vecteurs propres de Q et diagonaliser Q.

(c) Que se passe-t-il lorsque $n \to +\infty$?