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Abstract. For A = {a1,ap,...} C N, let pa(n) denote the number of partitions ofinto a’s and letga(n)
denote the number of partitionswfnto distinct &s. The asymptotic behaviour of the quotié%% is studied.

Key words: partitions, generating functions, asymptotic estimate

1991 Mathematics Subject Classification: Primary—11P81, 11P82

1. Introduction

N denotes the set of the positive integersAl= {a;, a, ...} (witha; < a, < ---)isa
set of positive integers, them (n) denotes the number of partitionsminto a’s, i.e., the
number of solutions of the equation

X181 + Xe@2 + -+ =N

in non-negative integens;, Xz, . . ., while ga(n, m) denotes the number of partitions such
that eacha occurs at mosin times, i.e., the number of solutions with < m for all i. In
particular, we writega(n, 1) = ga(n), so thatga(n) denotes the number of partitions rof
into distinct ds, i.e., the number of solutions of the equation

a,+a,+--=n (L<iz<--).

In [1], Bateman and Emk gave a necessary and sufficient conditionfofor pa(n)
being increasing from a certain point on. They were probably the first authors to deal with
a property ofpa(n) other than the estimate of its magnitude. Some other propertigg, of
depending orA, are studied in [2, 3, 7, 8].

In this paper our goal is to study the connection between the partition fungigms
andqga(n) for general infinite seté\. (If A s finite, ga(n) = O for n large enough.) First
we will show
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Theorem 1.For every infinite set A= N we have

log(max2, pa(n)) _

limsu . 1.1
n—>+ocp log(max(2, ga(n))) — (1)

Note that since it is well-known [4, 5] that
log p(n) = (1+ o(1))7(2/3)"*n*/? (1.2)

and
logq(n) = (1 + o(1))7(1/3)2n"/?

(wherep(n) = py(n) andq(n) = gn(n) are the classical partition functions), we have

im log p(n) _
n—-+c0 logq(n)

9

so that (1.1) cannot be improved without additional assumptioA.odowever, we will
prove that ifA is “thin” then the limit in (1.1) is infinite:

Theorem 2.If A c N is an infinite set with

liminf 2920 _ g (1.3)
n— 400 Iog n
then we have
im Suplog(maX(Z, pa(m)) (1.4)

notoo lOg(Max2, ga(n)))

We will show that Theorem 2 is best possible in the sense that (1.3) cannot be replaced
by a weaker assumption. Indeed, forat- O there is a seA C N such that the limit on
the left hand side of (1.3) is ¢, and we even have

lim supIog A ,
n—+o00 lOgN

but the limit in (1.4) is finite:

Theorem 3.Letr,me Nand A= A, ={1", 2,3, ...} be the set of the rth powers of
the integers. Then

logpa (M) 1

n—oo logga, (N, M) (1_ (m+11)1/r)r/<r+1>

(1.5)
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Due to the following asymptotic expansionras> oco:

1\ /e r 1 loglogm logr log? r
1- = o (zp080am 9T ) (09T (1)
m?/r logm 2 logm logm r

the right hand side in (1.5) can be as large as we wisimfiked, andr large enough.

We remark that the lim sup in (1.1) cannot be replaced by liminf; to show this we shall
have to consider set that are very irregularly distributed, similar to the counterexample
given in [3]. We hope to return to this problem in a subsequent paper.

Finally, we remark that the results above can all be extended and generalized to the
functionga(n, m) in place ofga(n). In particular, we can prove the following extension of
Theorem 1:

Theorem 4. For any me N and for every infinite set & N satisfying the condition

for alla € A, the gcd of the elements of\fa} is 1, a.7)
we have
fim sup 292 Pa) - fm+ 1 (1.8)
n>+oo l0g(Max2, ga(n, m))) m

(Again, as in the special case=1, the caséA =N shows that (1.8) is the best possi-
ble, cf. [2]. By the Bateman-Eod"theorem [1] the condition (1.7) implies thpk(n) is
increasing from a certain point on.)

However, since the proofs of Theorems 1 and 4 are similar but the proof of the latter
result is much more technical, we will give here a detailed proof of Theorem 1 and only
sketch the proof of Theorem 4.

Letn=ny+ny+---4+n (N1 > ny > --- > n;) be a partitionlT of n. This partition
is said to represent an integerif a can be written as a subsum= n;, +n;, +--- +n;
(1<i1<iz <--- <ij <r) of the partitionIT. We define the sef(IT) as the set of all
integersa represented byl. In [8] and [2], the number of distinct sefIT) generated by
the pa(n) partitions ofn (with parts belonging t&\) is denoted by (n). Erdds asked the
following question: is it true that for alh C N, there exists a numbé¢ < 1 such that

Pa(n) < (pa(n))”

holds forn large enough? In [2] it is proved (the proof is easy) thaAils m-stable (i.e.,
ae€ A= mae A)withm > 2 then

Pa(n) < ga(n, 2m—2)

so that, by Theorem 4, the answer to &@"question is yes for all sefssatisfying (1.7)
and which aren-stable for somen > 2.
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2. Proof of Theorem 1.

If the greatest common divisor, sdy of the elements oA is greater than 1, then dividing

every element oA by d we may reduce the problem to the case when the elemems of

are coprime. WritingA = {ai, a, ...} (witha; < a, < ---), we may therefore assume that
(ag,a,...)=1 (2.1)

It follows that there is & € N with

(@, a,...,a) =1

Then it is well-known that there is amy € N such that ifn > ng, n € N, then there are
non-negative integers, . .., Xk with

Xy +---+axk =n  (forn > np). (2.2)
Write n1 = ng + ac;1- If N > n1, n € N, thenn has at least two different partitions into
a’s: one partition is obtained by applying (2.2)ipand a second partition is obtained by
applying (2.2) to the number — ax, 1 > ng and adding the pa#y. ;. Thus we have
pa(n) >2 forn> n;. (2.3)
By extending this method, or by using generating functions (cf. [1, Lemma 1], it can be

shown that assuming (2.1), one hasyling, pa(n) = +oo.
We will prove (1.1) by contradiction: assume that

. log pa(n)
limsu 2.4
e 2o 10g(Max2, Ga() @4)
Then there are numbets> 0, n, € N such that fom > n, we have
logga(n) ( 1 + ) log pa(n) (forn > ny) (2.5)
> — I3 . .
A \/é A = 12

Denote the generating functions of the functigmgn) andga(n) by Fa(x) andGa(x),
respectively. Thus

_ ya
aeAl X

+00 1
Fa0O =Y pax" =[] (IxI <1 (2.6)
n=0
and

+00
Ga0) =Y damx"=[]@+x (x <. 2.7)
n=0

acA
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Then clearly we have

-1
1 1
FaO®) =] 1_xa I1 1_xa (11(1+ Xa)) = FA()(Ga()) ™

acA acA

whence
FAX>)Ga(X) = Fa(X)

which, by (2.6) and (2.7), can be rewritten as

+oo +oo 400
(Z pA<r>x2'> (Z qA<s>xS> =Y pa®x.
r=0 s=0 t=0
It follows that

Y Pa)a(S) = pal). (2.8)
o

Substitutingt = 4n and keeping only the (roughly maximal) term with= n, s = 2n on
the left hand side, we obtain that

PA(MAa(2n) < pa(dn) (neN).

By (2.3) and (2.5), it follows that for ath > n3 def maxny, Ny} we have

1
log pa(4n) > log pa(n) +logga(2n) > log pa(n) + (— + 8) log pa(2n) (n = nz).

NG
2.9)
Now write
£ -1
b= min{ log pa(ng), («/ﬁ + E) log pA(2n3)} (2.10)
so that
b0 (2.11)

by (2.3) and sinces > n;. We will prove by induction ork that

k
log pa(ns2¥) > b<\/§ + %) (2.12)
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fork=0,1,2,..., Indeed, by (2.10), (2.12) holds far= 0 andk = 1. Assume now that
k > 1,k € N,andthat(2.12) holdswith @, ..., kin place ok. Then by (2.9) it follows that

log pa(na2t?) > log pa(nz2<?) + (% + e) log pa(ns2%)

> b<~/§+ %)kl-i- (%2 +s)b(ﬁ+ g)k
k—1
b<ﬁ+ %) <1+ (% +e><\/§+ g))

b<~/§+ %>k—1<2+ <ﬁ+ 2_\1/§>8 + %82>
> b<\/§+ %)k_1<2+ V2e + %82> = b<\/§+ %)Hl,

so that (2.12) also holds with+ 1 in place ofk. This completes the proof of (2.12).
By (2.11), it follows from (2.12) that fok — oo we have

log log pa(nz2¥) > (1 + o(1)k Iog(ﬁ + %) (2.13)

On the other hand, clearly we hapa(n) < p(n), and thus it follows from (1.2) that for
k — 400 we have

log log pa(ns2X) < loglog p(n32*) = (14 o(1)) log(n32)Y? = (14 o(1))k log~/2

which contradicts (2.13). This completes the proof of Theorem 1.

3. Proof of Theorem 2.

We will prove the Theorem by contradiction. Assume that an infiniteAset N satisfies
(1.3), but (1.4) does not hold, i.e., there are numbérs, € N such that

pa() < (@aM™ (0 > ny). (3.1)

Using again (2.8), withh = 3n and keeping only the term with= s = n on the left hand
side, we obtain

PA(MYa(n) < paBn) (neN). (3-2)
Writing § = 1/M, it follows from (3.1) and (3.2) that

PABN) = pa(m(PaM™™ = (Pa(M)™™ (N > ny). (3.3)
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As in the proof of Theorem 1, we may assume that (2.1) and then also (2.3) holds. Write
ns = max{ny, ng}. Then it follows from (2.3) and (3.3) by induction érthat

Pa(3Ns) > (pa(ns) T = 2049 (k=10,1,2,...). (3.4)

Consider a large integer, and define the integér= k(n) by

Fns+n <n<3Fns+ny (3.5)
so that
logn
k=—+0@1 . 3.6
|093+ I (h— +o0) (3.6)

Define the integem = m(n) by
3ns+m=n

so thatm > n; by (3.5). Thus by (2.3) (which we have assumedhas at least one
partition intoa’s. Fixing such a partition ofn and combining it with distinct partitions of
n —m = 3¥ns into a’s, we obtain distinct partitions af into a’s and thus, by (3.4),

pa(n) > pa(n —m) = pa(3ns) > 24" 3.7)

for n large enough. It follows from (3.6) and (3.7) that

log log pa(n) - klog(1+46) + O(1)  log(1l+é)

logn ~ klog3+0(1) log3 +0(1) (n— +o00). (3.8)

On the other hand, if we writ& = {a1, ay, ...} with @y < a» < ---, and callA(n) the
number of elements of up ton then pa(n) denotes the number of solutions of

X101 + X2 + - - - + Xam@am =N (3.9)
in non-negative integers, Xz, ..., Xam (foralln € N). Hereeach; (i =1, 2, ..., A(n))
is one of the(n + 1) integers 01, ..., n. It follows that the number of solutions of (3.9) is

pa(m < (n+ DA™ < 2mA™
whence
loglog pa(n) < log A(n) + loglog(2n)
so that, by (1.3),

liming 1°9109PAM _ Lo (09AM | loglogemy _
N—+00 logn n—+oo \ logn logn

This contradicts (3.8), and the proof of Theorem 2 is complete.
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4. Proof of Theorem 3.

Let us denote byf, (x) the generating function:

fr) =) pax"=JJa-xH™
n=0

acA

At the end of their famous paper [5], Hardy and Ramanujan have written an asymptotic
estimation forpa, (n), without giving a complete proof, just saying that their method used
to estimatep(n) can be extended. A complete proof was given later by Wright in [9]. As
far as we know, no asymptotic estimation fp( (n, m) has been published, though it is
doable by using the generating function

fr (Xm+l)

F(x) =Zoqmn, mx" = [J@+x* +x2 4 4 x™) = R0

acA

One can get an asymptotic estimate diar(n, m) by using the estimate of; (x) when
x — 17 given in [5, Section 7.3], or in [9], and then applying the Tauberian theorem of
Ingham (cf. [6]).

Here, it is enough to have an asymptotic estimate for the logarithns@h) and
ga, (n, m) and we shall use the Tauberian theorem of Hardy and Ramanujan [4]. Itis proved

in [4] that
—1r
log fr (x) ~ F(% + 1);(% + 1><Iog ;) (4.1)

and

1 /1 1 r/r+1)
log pa (N) ~ (r + D(F F<F + 1){(; + 1>> nt/ D, (4.2)

Thus, by (4.1), it follows that the generating functionogf (n, m) verifies

IoFx)~F<l 1> (1 1)(1 : )(Io 1)‘1”
9 T o )U%%)

The Tauberian theorem of Hardy and Ramanujan says that, if(gy~ D(log %)—“, then

n=0

N
log (ZQA (n, m)) ~ BN/t (4.3)
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with B = DYI+@)g—/0+@) (1 4 ). It follows easily from (4.3) and the fact tha, (n, m)
is an increasing function of that

1 /1 1 1 r/C+D)
IOgQAr (n9 m) ~ (r + 1)<F F(F + 1>§<r_ + 1) (1 - W)) nl/(r+1).

This, together with (4.2), yields (1.5).

5. Sketch of the Proof of Theorem 4.

It follows from (1.7) that (2.1) and (2.3) hold. Again we proceed by contradiction: assume
that for somes > 0 andn > ng we have

logga(n, m) > <‘/ml—|—1 + s) log pa(n) (N> ng). (5.1)

Denote the generating function @f(n, m) by Ga(x, m):

1— X(m+1)a

Ga(X,m) = ZqA(n, m)x" = 1_[ <1+ ija> = l_[ e (for |x| < 1).
n=0 j=1

acA acA

Then we have
FAX™GA(X) = Fa(X)

so that

+00 +0o +00
<Z pA(r)x(m*”> (ZqA(s, m)xs) =Y paldx'
r=0 s=0 t=0

whence

> palt)gals, m) = pa(t).

(M+Dr +s=t
r,s>0

Substitutingt = (m + 1)?n, and keeping only the term with=n, s = m(m + 1)n on the
left hand side, we obtain that

pa(Mga(m(m+ 1)n, m) < pa((m+1)%n) (foralln e N). (5.2)
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By (2.3), (5.1) and (5.2) we have for large

m
log pa((m+1)n) > log pa(n) + (‘/m—+1 +s> log pa(mm+1)n) (n>n7). (5.3)
By a result of Bateman and Ewd [1] it follows from (1.7) that, fon large enoughpa(n)
is increasing:
pa(n) < pa(n+1) (n > ng). (5.4)

Now it follows from (2.3), (5.3) and (5.4) by induction dwi that if §, ¢’ (> 0) are small
enough and\g is large enough in terms of, ¢, n1, n7, ng, then we have

log pa(N) > NH2F (N > No). (5.5)

Indeed, observe first that N > n; then, by (2.3), (5.5) holds foN = Ng, No+1, ...,

(m + 1)2Ng, provideds is small enough. Next we assume that> (m + 1)°Ng and that
(5.5) holds for allN” with Np < N’ < N — 1. Our goal is to show that (5.5) also holds for
N’ = N. To prove this, define the positive integeby

M+12n<N < M+1%n+1) (5.6)
so that
n> Np (5.7)
and, by (5.4) and (5.6),
pa(N) > pa((m+ 1)°n). (5.8)

We can obtain a lower bound for the right hand side of (5.3) by using the induction
hypothesis in both terms; by (5.8), this is also a lower bound fopladN). A simple
computation shows thatif is small enough andly is large enough, then this lower bound
for log pa(N) is greater than the right hand side of (5.5), and this completes the proof.
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