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A. SÁRKÖZY sarkozy@cs.elte.hu
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Abstract. For A = {a1,a2, . . .} ⊂ N, let pA(n) denote the number of partitions ofn into a’s and letqA(n)
denote the number of partitions ofn into distinct a’s. The asymptotic behaviour of the quotientlog pA(n)

logqA(n)
is studied.
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1. Introduction

N denotes the set of the positive integers. IfA = {a1,a2, . . .} (with a1 < a2 < · · ·) is a
set of positive integers, thenpA(n) denotes the number of partitions ofn into a’s, i.e., the
number of solutions of the equation

x1a1+ x2a2+ · · · = n

in non-negative integersx1, x2, . . . , while qA(n,m) denotes the number of partitions such
that eacha occurs at mostm times, i.e., the number of solutions withxi ≤ m for all i . In
particular, we writeqA(n, 1) = qA(n), so thatqA(n) denotes the number of partitions ofn
into distinct a’s, i.e., the number of solutions of the equation

ai1 + ai2 + · · · = n (i1 < i2 < · · ·).
In [1], Bateman and Erd˝os gave a necessary and sufficient condition onA for pA(n)

being increasing from a certain point on. They were probably the first authors to deal with
a property ofpA(n) other than the estimate of its magnitude. Some other properties ofpA,
depending onA, are studied in [2, 3, 7, 8].

In this paper our goal is to study the connection between the partition functionspA(n)
andqA(n) for general infinite setsA. (If A is finite, qA(n) = 0 for n large enough.) First
we will show
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Theorem 1.For every infinite set A⊂ N we have

lim sup
n→+∞

log(max(2, pA(n)))

log(max(2,qA(n)))
≥
√

2. (1.1)

Note that since it is well-known [4, 5] that

log p(n) = (1+ o(1))π(2/3)1/2n1/2 (1.2)

and

logq(n) = (1+ o(1))π(1/3)1/2n1/2

(wherep(n) = pN(n) andq(n) = qN(n) are the classical partition functions), we have

lim
n→+∞

log p(n)

logq(n)
=
√

2,

so that (1.1) cannot be improved without additional assumption onA. However, we will
prove that ifA is “thin” then the limit in (1.1) is infinite:

Theorem 2.If A ⊂ N is an infinite set with

lim inf
n→+∞

log A(n)

logn
= 0, (1.3)

then we have

lim sup
n→+∞

log(max(2, pA(n)))

log(max(2,qA(n)))
= ∞. (1.4)

We will show that Theorem 2 is best possible in the sense that (1.3) cannot be replaced
by a weaker assumption. Indeed, for allε > 0 there is a setA ⊂ N such that the limit on
the left hand side of (1.3) is< ε, and we even have

lim sup
n→+∞

log A(n)

logn
< ε,

but the limit in (1.4) is finite:

Theorem 3.Let r,m ∈ N and A= Ar = {1r , 2r , 3r , . . .} be the set of the rth powers of
the integers. Then

lim
n→∞

log pAr (n)

logqAr (n,m)
= 1(

1− 1
(m+1)1/r

)r/(r+1)
· (1.5)
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Due to the following asymptotic expansion asr →∞:(
1− 1

m1/r

)−r/(r+1)

= r

logm
+
(

1

2
+ log logm

logm
− logr

logm

)
+ O

(
log2 r

r

)
, (1.6)

the right hand side in (1.5) can be as large as we wish form fixed, andr large enough.
We remark that the lim sup in (1.1) cannot be replaced by lim inf; to show this we shall

have to consider setsA that are very irregularly distributed, similar to the counterexample
given in [3]. We hope to return to this problem in a subsequent paper.

Finally, we remark that the results above can all be extended and generalized to the
functionqA(n,m) in place ofqA(n). In particular, we can prove the following extension of
Theorem 1:

Theorem 4. For any m∈ N and for every infinite set A⊂ N satisfying the condition

for all a ∈ A, the gcd of the elements of A\{a} is 1, (1.7)

we have

lim sup
n→+∞

log(max(2, pA(n)))

log(max(2,qA(n,m)))
≥
√

m+ 1

m
· (1.8)

(Again, as in the special casem= 1, the caseA=N shows that (1.8) is the best possi-
ble, cf. [2]. By the Bateman-Erd˝os theorem [1] the condition (1.7) implies thatpA(n) is
increasing from a certain point on.)

However, since the proofs of Theorems 1 and 4 are similar but the proof of the latter
result is much more technical, we will give here a detailed proof of Theorem 1 and only
sketch the proof of Theorem 4.

Let n = n1 + n2 + · · · + nr (n1 ≥ n2 ≥ · · · ≥ nr ) be a partition5 of n. This partition
is said to represent an integera, if a can be written as a subsuma = ni1 + ni2 + · · · + ni j

(1 ≤ i1 < i2 < · · · < i j ≤ r ) of the partition5. We define the setS(5) as the set of all
integersa represented by5. In [8] and [2], the number of distinct setsS(5) generated by
the pA(n) partitions ofn (with parts belonging toA) is denoted byp̂A(n). Erdős asked the
following question: is it true that for allA ⊂ N, there exists a numberβ < 1 such that

p̂A(n) ≤ (pA(n))
β

holds forn large enough? In [2] it is proved (the proof is easy) that ifA is m-stable (i.e.,
a ∈ A⇒ ma∈ A) with m≥ 2 then

p̂A(n) ≤ qA(n, 2m− 2)

so that, by Theorem 4, the answer to Erd˝os’s question is yes for all setsA satisfying (1.7)
and which arem-stable for somem≥ 2.
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2. Proof of Theorem 1.

If the greatest common divisor, sayd, of the elements ofA is greater than 1, then dividing
every element ofA by d we may reduce the problem to the case when the elements ofA
are coprime. WritingA = {a1,a2, . . .} (with a1 < a2 < · · ·), we may therefore assume that

(a1,a2, . . .) = 1. (2.1)

It follows that there is ak ∈ N with

(a1,a2, . . . ,ak) = 1.

Then it is well-known that there is ann0 ∈ N such that ifn ≥ n0, n ∈ N, then there are
non-negative integersx1, . . . , xk with

a1x1+ · · · + akxk = n (for n ≥ n0). (2.2)

Write n1 = n0 + ak+1. If n ≥ n1, n ∈ N, thenn has at least two different partitions into
a’s: one partition is obtained by applying (2.2) ton, and a second partition is obtained by
applying (2.2) to the numbern− ak+1 ≥ n0 and adding the partak+1. Thus we have

pA(n) ≥ 2 for n ≥ n1. (2.3)

By extending this method, or by using generating functions (cf. [1, Lemma 1], it can be
shown that assuming (2.1), one has limn→∞ pA(n) = +∞.

We will prove (1.1) by contradiction: assume that

lim sup
n→+∞

log pA(n)

log(max(2,qA(n))
<
√

2. (2.4)

Then there are numbersε > 0, n2 ∈ N such that forn ≥ n2 we have

logqA(n) >

(
1√
2
+ ε

)
log pA(n) (for n ≥ n2). (2.5)

Denote the generating functions of the functionspA(n) andqA(n) by FA(x) andGA(x),
respectively. Thus

FA(x) =
+∞∑
n=0

pA(n)x
n =

∏
a∈A

1

1− xa
(|x| < 1) (2.6)

and

GA(x) =
+∞∑
n=0

qA(n)x
n =

∏
a∈A

(1+ xa) (|x| < 1). (2.7)
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Then clearly we have

FA(x
2) =

∏
a∈A

1

1− x2a
=
∏
a∈A

1

1− xa

(∏
a∈A

(1+ xa)

)−1

= FA(x)(GA(x))
−1

whence

FA(x
2)GA(x) = FA(x)

which, by (2.6) and (2.7), can be rewritten as( +∞∑
r=0

pA(r )x
2r

)( +∞∑
s=0

qA(s)x
s

)
=
+∞∑
t=0

pA(t)x
t .

It follows that ∑
2r+s=t
r,s≥0

pA(r )qA(s) = pA(t). (2.8)

Substitutingt = 4n and keeping only the (roughly maximal) term withr = n, s = 2n on
the left hand side, we obtain that

pA(n)qA(2n) ≤ pA(4n) (n ∈ N).

By (2.3) and (2.5), it follows that for alln ≥ n3
def= max{n1, n2} we have

log pA(4n) ≥ log pA(n)+ logqA(2n) > log pA(n)+
(

1√
2
+ ε

)
log pA(2n) (n ≥ n3).

(2.9)
Now write

b = min

{
log pA(n3),

(√
2+ ε

2

)−1

log pA(2n3)

}
(2.10)

so that

b > 0 (2.11)

by (2.3) and sincen3 > n1. We will prove by induction onk that

log pA(n32k) ≥ b

(√
2+ ε

2

)k

(2.12)
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for k = 0, 1, 2, . . . , Indeed, by (2.10), (2.12) holds fork = 0 andk = 1. Assume now that
k ≥ 1,k ∈ N, and that (2.12) holds with 0, 1, . . . , k in place ofk. Then by (2.9) it follows that

log pA(n32k+1) ≥ log pA(n32k−1)+
(

1√
2
+ ε

)
log pA(n32k)

≥ b

(√
2+ ε

2

)k−1

+
(

1√
2
+ ε

)
b

(√
2+ ε

2

)k

= b

(√
2+ ε

2

)k−1(
1+

(
1√
2
+ ε

)(√
2+ ε

2

))
= b

(√
2+ ε

2

)k−1(
2+

(√
2+ 1

2
√

2

)
ε + 1

2
ε2

)
> b

(√
2+ ε

2

)k−1(
2+
√

2ε + 1

4
ε2

)
= b

(√
2+ ε

2

)k+1

,

so that (2.12) also holds withk+ 1 in place ofk. This completes the proof of (2.12).
By (2.11), it follows from (2.12) that fork→∞ we have

log log pA(n32k) ≥ (1+ o(1))k log

(√
2+ ε

2

)
. (2.13)

On the other hand, clearly we havepA(n) ≤ p(n), and thus it follows from (1.2) that for
k→+∞ we have

log log pA(n32k) ≤ log log p(n32k) = (1+ o(1)) log(n32k)1/2 = (1+ o(1))k log
√

2

which contradicts (2.13). This completes the proof of Theorem 1.

3. Proof of Theorem 2.

We will prove the Theorem by contradiction. Assume that an infinite setA ⊂ N satisfies
(1.3), but (1.4) does not hold, i.e., there are numbersM, n4 ∈ N such that

pA(n) ≤ (qA(n))
M (n ≥ n4). (3.1)

Using again (2.8), witht = 3n and keeping only the term withr = s = n on the left hand
side, we obtain

pA(n)qA(n) ≤ pA(3n) (n ∈ N). (3.2)

Writing δ = 1/M , it follows from (3.1) and (3.2) that

pA(3n) ≥ pA(n)(pA(n))
1/M = (pA(n))

1+δ (n ≥ n4). (3.3)
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As in the proof of Theorem 1, we may assume that (2.1) and then also (2.3) holds. Write
n5 = max{n1, n4}. Then it follows from (2.3) and (3.3) by induction onk that

pA(3
kn5) ≥ (pA(n5))

(1+δ)k ≥ 2(1+δ)
k
(k = 0, 1, 2, . . .). (3.4)

Consider a large integern, and define the integerk = k(n) by

3kn5+ n1 ≤ n < 3k+1n5+ n1 (3.5)

so that

k = logn

log 3
+ O(1) (n→+∞). (3.6)

Define the integerm= m(n) by

3kn5+m= n

so thatm ≥ n1 by (3.5). Thus by (2.3) (which we have assumed)m has at least one
partition intoa’s. Fixing such a partition ofm and combining it with distinct partitions of
n−m= 3kn5 into a’s, we obtain distinct partitions ofn into a’s and thus, by (3.4),

pA(n) ≥ pA(n−m) = pA(3
kn5) ≥ 2(1+δ)

k
(3.7)

for n large enough. It follows from (3.6) and (3.7) that

log log pA(n)

logn
≥ k log(1+ δ)+ O(1)

k log 3+ O(1)
= log(1+ δ)

log 3
+ o(1) (n→+∞). (3.8)

On the other hand, if we writeA = {α1, α2, . . .} with α1 < α2 < · · ·, and callA(n) the
number of elements ofA up ton then pA(n) denotes the number of solutions of

x1α1+ x2α2+ · · · + xA(n)αA(n) = n (3.9)

in non-negative integersx1, x2, . . . , xA(n) (for all n ∈ N). Here eachxi (i = 1, 2, . . . , A(n))
is one of the(n+ 1) integers 0, 1, . . . ,n. It follows that the number of solutions of (3.9) is

pA(n) ≤ (n+ 1)A(n) ≤ (2n)A(n)

whence

log log pA(n) ≤ log A(n)+ log log(2n)

so that, by (1.3),

lim inf
n→+∞

log log pA(n)

logn
≤ lim inf

n→+∞

(
log A(n)

logn
+ log log(2n)

logn

)
= 0.

This contradicts (3.8), and the proof of Theorem 2 is complete.
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4. Proof of Theorem 3.

Let us denote byfr (x) the generating function:

fr (x) =
∞∑

n=0

pAr (n)x
n =

∏
a∈A

(1− xa)−1.

At the end of their famous paper [5], Hardy and Ramanujan have written an asymptotic
estimation forpAr (n), without giving a complete proof, just saying that their method used
to estimatep(n) can be extended. A complete proof was given later by Wright in [9]. As
far as we know, no asymptotic estimation forqAr (n,m) has been published, though it is
doable by using the generating function

F(x) =
∞∑

n=0

qAr (n,m)x
n =

∏
a∈A

(1+ xa + x2a + · · · + xma) = fr (xm+1)

fr (x)
.

One can get an asymptotic estimate forqAr (n,m) by using the estimate offr (x) when
x → 1− given in [5, Section 7.3], or in [9], and then applying the Tauberian theorem of
Ingham (cf. [6]).

Here, it is enough to have an asymptotic estimate for the logarithms ofpAr (n) and
qAr (n,m) and we shall use the Tauberian theorem of Hardy and Ramanujan [4]. It is proved
in [4] that

log fr (x) ∼ 0
(

1

r
+ 1

)
ζ

(
1

r
+ 1

)(
log

1

x

)−1/r

(4.1)

and

log pAr (n) ∼ (r + 1)

(
1

r
0

(
1

r
+ 1

)
ζ

(
1

r
+ 1

))r/(r+1)

n1/(r+1). (4.2)

Thus, by (4.1), it follows that the generating function ofqAr (n,m) verifies

log F(x) ∼ 0
(

1

r
+ 1

)
ζ

(
1

r
+ 1

)(
1− 1

(m+ 1)1/r

)(
log

1

x

)−1/r

.

The Tauberian theorem of Hardy and Ramanujan says that, if logF(x) ∼ D(log 1
x )
−α, then

log

(
N∑

n=0

qAr (n,m)

)
∼ BNα/(1+α) (4.3)
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with B = D1/(1+α)α−α/(1+α)(1+α). It follows easily from (4.3) and the fact thatqAr (n,m)
is an increasing function ofn that

logqAr (n,m) ∼ (r + 1)

(
1

r
0

(
1

r
+ 1

)
ζ

(
1

r
+ 1

)(
1− 1

(m+ 1)1/r

))r/(r+1)

n1/(r+1).

This, together with (4.2), yields (1.5).

5. Sketch of the Proof of Theorem 4.

It follows from (1.7) that (2.1) and (2.3) hold. Again we proceed by contradiction: assume
that for someε > 0 andn ≥ n6 we have

logqA(n,m) >

(√
m

m+ 1
+ ε

)
log pA(n) (n ≥ n6). (5.1)

Denote the generating function ofqA(n,m) by GA(x,m):

GA(x,m) =
∞∑

n=0

qA(n,m)x
n =

∏
a∈A

(
1+

m∑
j=1

x ja

)
=
∏
a∈A

1− x(m+1)a

1− xa
(for |x| < 1).

Then we have

FA(x
m+1)GA(x) = FA(x)

so that ( +∞∑
r=0

pA(r )x
(m+1)r

)( +∞∑
s=0

qA(s,m)x
s

)
=
+∞∑
t=0

pA(t)x
t

whence ∑
(m+1)r+s=t

r,s≥0

pA(r )qA(s,m) = pA(t).

Substitutingt = (m+ 1)2n, and keeping only the term withr = n, s= m(m+ 1)n on the
left hand side, we obtain that

pA(n)qA(m(m+ 1)n,m) ≤ pA((m+ 1)2n) (for all n ∈ N). (5.2)



38 NICOLAS AND SÁRKÖZY

By (2.3), (5.1) and (5.2) we have for largen

log pA((m+ 1)2n)> log pA(n)+
(√

m

m+ 1
+ ε
)

log pA(m(m+ 1)n) (n≥ n7). (5.3)

By a result of Bateman and Erd˝os [1] it follows from (1.7) that, forn large enough,pA(n)
is increasing:

pA(n) < pA(n+ 1) (n ≥ n8). (5.4)

Now it follows from (2.3), (5.3) and (5.4) by induction onN that if δ, ε′ (> 0) are small
enough andN0 is large enough in terms ofm, ε,n1, n7, n8, then we have

log pA(N) > δN(1/2)+ε′ (N ≥ N0). (5.5)

Indeed, observe first that ifN0≥ n1 then, by (2.3), (5.5) holds forN= N0, N0+ 1, . . . ,
(m+ 1)2N0, providedδ is small enough. Next we assume thatN > (m+ 1)2N0 and that
(5.5) holds for allN ′ with N0 ≤ N ′ ≤ N − 1. Our goal is to show that (5.5) also holds for
N ′ = N. To prove this, define the positive integern by

(m+ 1)2n ≤ N < (m+ 1)2(n+ 1) (5.6)

so that

n ≥ N0 (5.7)

and, by (5.4) and (5.6),

pA(N) ≥ pA((m+ 1)2n). (5.8)

We can obtain a lower bound for the right hand side of (5.3) by using the induction
hypothesis in both terms; by (5.8), this is also a lower bound for logpA(N). A simple
computation shows that ifε′ is small enough andN0 is large enough, then this lower bound
for log pA(N) is greater than the right hand side of (5.5), and this completes the proof.
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