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1. Introduction

N denotes the set of positive integers. If A = {a1, a2, . . .} (with a1 < a2 < . . .) is a set of
positive integers, then pA(n) denotes the number of partitions of n into a’s, i.e., the number
of solutions of the equation

x1a1 + x2a2 + · · · = n (1.1)

in non negative integers x1, x2, . . . , while qA(n) denotes the number of restricted partitions
of n into a’s; in other words, qA(n) is the number of solutions of (1.1) with xi = 0 or 1 for
all i’s.

The main result of [10] is that for any infinite set A ⊂ N, we have

lim sup
n→+∞

log(max(2, pA(n)))

log(max(2, qA(n)))
≥

√
2. (1.2)
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If p(n) = pN(n) and q(n) = qN(n) are the classical partition functions, it is well-known
(cf. [8, 1]) that

p(n) ∼ 1

4n
√

3
exp

(
π

√
2

3

√
n

)
, π

√
2

3
= 2.56 . . . (1.3)

and

q(n) ∼ 1

4(3n3)1/4
exp

(
π√

3

√
n

)
,

π√
3

= 1.81 . . . (1.4)

It follows from (1.3) and (1.4) that

lim
n→∞

log p(n)

log q(n)
=

√
2,

so that (1.2) is best possible. It was also proved in [10] that if A(x) = ∑
i

ai ≤ x
1, the counting

function of A, satisfies

lim inf
x→∞

log A(x)

log x
= 0, (1.5)

then we have

lim sup
n→+∞

log(max(2, pA(n)))

log(max(2, qA(n)))
= ∞. (1.6)

In this paper, we shall deal with the inferior limit. In Section 2, we will prove

Theorem 1. There exists a set S ⊂ N with

S(x) =
∑

s∈S,s≤x

1 ≥ x3/16 (1.7)

and

lim inf
n→∞

log pS (n)

log qS (n)
= 1.

In Section 3, we shall prove:

Theorem 2. Let A be a set of positive integers. Let us assume that

α = lim inf
n→∞

A(n)

n
(1.8)

is positive. Then there exists η = η(α) > 0 such that

pA(n) ≥ (qA(n))1+η(α) for n ≥ n0. (1.9)
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The idea of the proof of Theorem 2 is to construct, from most of the restricted partitions
of n into parts in A, many unrestricted partitions of n.

In Section 4, we will prove the following theorem which shows that Theorem 2 is in
some sense best possible:

Theorem 3. Let f (x) be any non-increasing function of x > 0 and tending to 0 as x tends
to infinity. There is a set A ⊂ N such that

A(n)

n
> f (n) for n > n0 (1.10)

and

lim inf
n→∞

log pA(n)

log qA(n)
= 1. (1.11)

This result is much sharper than Theorem 1. The construction of the set A in Theorem 3
is similar to the construction of the set S in Theorem 1, however, here the construction is
more complicated. The proof of Theorem 3 will be based mostly on Proposition 1 below.
We will give only an outline of the proof of Proposition 1; a complete proof could be given,
but it would be very lenghty and technical. Thus we have decided to give here (Section 2)
a complete and precise proof of the weaker but much simpler version stated in Theorem 1.

Let r (n, m) and 
(n, m) denote the number of partitions of n into parts at least m, resp. into
distinct parts at least m. (In other words, if M = {n ∈ N, n ≥ m}, then r (n, m) = pM(n)
and 
(n, m) = qM(n).)

It was proved in [5] and [11] that, for any λ > 0, we have

lim
n→∞

log(r (n, λ
√

n))√
n

= g(λ) (1.12)

and

lim
n→∞

log(ρ(n, λ
√

n))√
n

= h(λ). (1.13)

Moreover the two functions g and h have the same asymptotic expansion as λ → ∞:

g(λ), h(λ) = 2 log λ − log log λ + 1 − log 2

λ
+ O

(
log log λ

λ log λ

)
. (1.14)

Let us define, for 1 ≤ x ≤ y, r (n; x, y) and 
(n; x, y) as the number of partitions of n into
parts belonging to the interval [x, y[, resp. into distinct parts belonging to [x, y[.

Proposition 1. There exist two continous functions g2(λ), h2(λ) defined for λ > 0 such
that

lim
n→∞

log r (n; λ
√

n, 2λ
√

n)√
n

= g2(λ) (1.15)
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and

lim
n→∞

log max{1, 
(n; λ
√

n, 2λ
√

n)}√
n

= h2(λ). (1.16)

Moreover, as λ → ∞, we have g2(λ) ∼ h2(λ) and both functions g2 and h2 satisfy the
asymptotic expansion (1.14).

The sketch of the proof of Proposition 1 will be given in Section 4. More precisely, we
shall consider only (1.16); the proof of (1.15) would be similar, and we do not need (1.15) in
the proof of Theorem 3. The proof of (1.16) follows the proof of (1.13) in [11] and consists
of two parts, the upper bound for 
(n; λ

√
n, 2λ

√
n) and the lower bound. The upper bound

is stated in Lemma 6 below. We have not given the proof of the lower bound which can be
obtained by the methods used in [5] or [11] or by applying the saddle point method to the
generating series.

2. An elementary counterexample

Lemma 1. Let n be a positive integer and x a positive real number. Let us denote by
p(n, x) the number of partitions of n into parts ≤x (while r (n, x) denotes the number of
partitions of n into parts ≥x, as defined above). Then for n ≥ 1 and λ > 0 we have

log p(n, λ
√

n) ≤
{

(λ(3 − 2 log λ))
√

n for λ ≤ 1

3
√

n for λ > 1

}
≤ 3

√
λn (2.1)

and

log r (n, λ
√

n) ≤
{( 2 log λ+3

λ

)√
n for λ ≥ 1

3
√

n for λ < 1

}
≤ 3√

λ

√
n. (2.2)

Proof: The first inequality in (2.1), for λ ≤ 1, is proved in [6], Lemma 2, where it is
deduced from the classical result

p(n, m) ≤ 1

m!

(
n + m(m+1)

2 − 1

m − 1

)
, m ∈ N

(see, e.g., [3]). For λ > 1 the second inequality in (2.1) follows from p(n, λ
√

n) ≤ p(n) and

from the upper bound p(n) ≤ exp(π
√

2n
3 ) which holds for all n ≥ 1 (cf. [12], Theorem 15.5).

The inequality λ(3 − 2 log λ) ≤ 3
√

λ for λ ≤ 1 is a simple analysis exercise. Finally, (2.2)
follows from (2.1) and from the relation r (n, x) ≤ p(n, n/x).

Lemma 2. Let A = {a1, a2, . . .} be a set of positive integers, with a1 = 1 < a2 < · · · Let
us denote by A(x) the number of ai ’s not exceeding x, and by pA(n) the number of partitions
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of n with parts in A. Then, for n ∈ N, we have

pA(n) ≤ n A(n)−1.

Proof: If 1 ≤ n < a2, this is obvious since pA(n) = 1 and A(n) = 1. If n ≥ a2, let us set
m = A(n) ≥ 2. Then pA(n) is the number of solutions of

x1 + x2a2 + · · · + xmam = n.

The possible values for xi are 0, 1, . . . , �n/ai�, and, when x2, . . . , xm are fixed, there is
only one possibility for x1. Thus

pA(n) ≤
m∏

i=2

(⌊
n

ai

⌋
+ 1

)
≤

(⌊
n

2

⌋
+ 1

)m−1

≤ nm−1.

Lemma 3. Let B = {b1, . . . , bβ} ⊂ N and t a positive integer. There is a u ∈ [tb1, tbβ]
such that qB(u), the number of partitions of u into distinct parts belonging to B, satisfies:

qB(u) ≥ 1

t(bβ − b1) + 1

(
β

t

)
.

Proof: Let us consider the ( β
t ) different choices βi1 , . . . , βit ; each of the sums βi1 +· · ·+βit

is between tb1 and tbβ . Thus the most frequently occuring value will be obtained at least
1

t(bβ−b1)+1 ( β
t ) times.

Proof of Theorem 1: For k ≥ 1 set

tk = 24k
, βk = tk+1

tk
= t3

k = 23·4k

and

Sk = {tk+1 − βk + 1, tk+1 − βk + 2, . . . , tk+1}.

Then

|Sk | = βk,

and since

tk+1 − βk = t4
k − t3

k = t3
k (tk − 1) > tk,

thus we have

Sk ⊂ ]tk, . . . tk+1].
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Now we define S by

S = {1} ∪
(⋃

k≥1

Sk

)
.

Recalling that S(x) = ∑
s∈S, s≤x 1, for k ≥ 2 we have

βk−1 ≤ S(tk) = 1 + β1 + · · · + βk−1 = 1 + 212 + · · · + 23·4k−1

≤ 1 + 2 + 22 + · · · + 23·4k−1
< 2βk−1 = 23·4k−1+1. (2.3)

If x > t2 = 216, then we define l = l(x) ≥ 2 by tl < x ≤ tl+1, which implies

4l <
log x

log 2
≤ 4l+1

and, from (2.3), we have

S(x) ≥ S(tl) ≥ βl−1 = 23·4l−1 = 2
3

16 4l+1 ≥ x3/16

which proves (1.7). (Similarly, it is not difficult to show that S(x) � x3/4.)
Now we apply Lemma 3 with B = Sk and t = tk : there exist uk ∈ N such that

(tk − 1)tk+1 = (tk+1 − βk)tk < uk ≤ tk tk+1 (2.4)

and

qS (uk) ≥ qS k(uk) ≥ 1

tk(βk − 1) + 1

(
βk

tk

)
≥ 1

tkβk

(
βk

tk

)
. (2.5)

Now we will give an upper bound for pS (uk). Set N = tk tk+1 = t5
k . Since 1∈ S, thus

pS (n) is a non-decreasing function of n, so that from (2.4),

pS (uk) ≤ pS (tk tk+1) = pS (N ). (2.6)

The smallest element of Sk+1 is

tk+2 − βk+1 + 1 > tk+2 − βk+1 = tk+2

(
1 − 1

tk+1

)
>

tk+2

2
= t4

k+1

2
> tk+1tk = N .

Thus if for k ≥ 2 we set Ck = {1} ∪ (
⋃

j≤k−1 S j ), then we have

pS (N ) = pCkUSk (N ) =
N∑

j=0

pCk( j)pS k(N − j). (2.7)

Now we apply Lemma 2 with A = Ck, n = N , A(n) = S(tk), which by (2.3) yields

pCk(N ) ≤ N S(tk )−1 ≤ (tk tk+1)2βk−1 . (2.8)
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Since 1 ∈ Ck , thus pCk( j) is a non-decreasing function of j , and thus it follows from (2.7)
that

pS (N ) ≤ pCk(N )
N∑

j=0

pS k(N − j). (2.9)

If we denote the elements of Sk by s1 < s2 < · · · < sβ k , then the sum above is the number
of solutions of

x1s1 + · · · + xβ ksβ k ≤ N

which, by

x1s1 + · · · + xβ ksβ k ≥ (
x1 + · · · + xβ k

)
s1,

is smaller, than the number of solutions of

x1 + · · · + β k ≤ �N/s1�. (2.10)

since

N

s1
= tk tk+1

tk+1 − βk + 1
<

tk tk+1

tk+1 − βk
= tk

1 − 1/tk
= tk + 1 + 1

tk
+ · · · < tk + 2,

thus �N/s1� ≤ tk + 1, so that the number of solutions of (2.10) is

≤
(

tk + 1 + βk

βk

)
=

(
βk + tk + 1

tk + 1

)
.

Thus we have

N∑
j=0

pS k(N − j) ≤
(

βk + tk + 1

tk + 1

)
= βk + tk + 1

tk + 1

(
βk + tk

tk

)
≤ βk

(
βk + tk

tk

)
. (2.11)

It follows from (2.6), (2.8), (2.9) and (2.11) that

pS (uk) ≤ (tk tk+1)2βk−1βk

(
βk + tk

tk

)
. (2.12)

It remains to estimate
(
βk

tk

)
and

(
βk+tk

tk

)
. We have

(
βk

tk

)
= βk(βk − 1) . . . (βk − tk + 1)

tk!
≥ (βk − tk)tk

t tk
k

=
(

βk

tk

)tk (
1 − tk

βk

)tk
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and (
1 − tk

βk

)tk

= exp

(
−tk log

(
1 + tk

βk − tk

))
≥ exp

(
− t2

k

βk − tk

)

≥ exp

(
−2t2

k

βk

)
since βk ≥ 2tk

= exp

(
− 2

tk

)
since βk = t3

k

so that (
βk

tk

)
≥

(
βk

tk

)tk

exp

(
− 2

tk

)
. (2.13)

Similary, by using the weak form n! ≥ nne−n of Stirling’s formula:

(
βk + tk

tk

)
≤ (βk + tk)tk

tk!
≤ β

tk
k

tk!
exp

(
t2
k

βk

)
≤

(
eβk

tk

)tk

exp

(
1

tk

)
. (2.14)

From (2.5) and (2.13), we get for k → ∞:

log qS (uk) ≥ tk log

(
βk

tk

)
− 2

tk
− log(βk tk) = (1 + o(1))2t k log t k, (2.15)

and from (2.12) and (2.14)

log pS (uk) ≤ tk log

(
eβk

tk

)
+ 1

tk
+ 2βk−1log(tk tk+1) + log βk

= 2tk log tk + tk + 1

tk
+ 10t3/4

k log tk + 3 log tk = (1 + o(1))2 tk log tk . (2.16)

Since, obviously, qS (uk) ≤ pS (uk), Theorem 1 follows from (2.15) and (2.16).

3. The case lim inf A(n)/n = α > 0

First we shall prove (see [9], Theorem 16.1):

Lemma 4. Let A be a set of coprime positive integers, α a positive real number such that
lim inf A(n)/n = α. Then for all ε, 0 < ε < α, there exist n0 = n0(ε) such that for n ≥ n0

the following inequality holds:

pA(n) ≥ exp(C
√

(α − ε)n), C = π

√
2

3
= 2.56. (3.1)
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Proof: Let us call P(A) the property

For all a ∈ A, the g.c.d. of the elements of A − {a} is 1. (3.2)

It follows from the Bateman-Erdős Theorem (cf. [2]) that, if A possesses property P(A),
then pA(n) is increasing from a certain point on. First we assume that P(A) holds. If we
write A = {a1, a2, . . .} with a1 < a2 < . . . , then there exists m1 = m1(ε) such that

am ≤ m

α − ε
2

, m ≥ m1. (3.3)

Let us define m = m(n) by am ≤ n < am+1. Then S(n) = ∑n
i=0 pA(i) is the number of

solutions of

x1a1 + · · · + xmam ≤ n (3.4)

and, for m ≥ m1, this is greater than the number of solutions of

xm1 am1 + · · · + xmam ≤ n.

But then from (3.3), S(n) is greater, than the number of solutions S′ of

m1xm 1 + · · · + mxm ≤ N =
⌊(

α − ε

2

)
n

⌋
. (3.5)

With any solutions of (3.5) we can associate at most N m1−1 solutions of

x1 + 2x2 + · · · + m1xm 1 + · · · + mxm ≤ N . (3.6)

By (3.3) (with m + 1 in place of m) and n < am+1 we have m + 1 > N . Thus the number
of solutions of (3.6) is

∑N
i=0 p(i) ≥ p(N ), and we have from (1.3):

S(n) ≥ S′ ≥ p(N )

N m1−1
≥ 1

10
exp(C

√
N − m1 log N ). (3.7)

Since pA(n) is increasing, thus we have pA(n) ≥ S(n)/n which together with (3.7) and
the value of N given in (3.5) proves Lemma 4 when P(A) holds.

Let us assume now that P(A) does not hold. Then there exists ai 1 such that the g.c.d.
of the elements of A1 = A − {ai 1} is g1 ≥ 2. If P( 1

g1
A1) does not hold, then there exists

ai 2 ≥ g1 such that the g.c.d. of the elements of A2 = A1\{ai 2} is g2 ≥ 4, and so on. This
process is finite, othervise for any k, we had a sequence ai 1, . . . ai k ≥ 2k−1, so that the
elements of Ak = A\{ai 1, . . . ai k} have a g.c.d. gk ≥ 2k . Then A(2k−1) ≤ k for any k and
limn→∞ A(n)

n = 0, which contradicts our hypothetis.
We may now assume that for some k,P(Bk) holds, with Bk = 1

gk
Ak = {b1, b2, . . .}. We

have lim inf Bk (n)
n = αgk . The numbers ai 1, ai 2, . . . , ai k and gk are coprime (any common

divisor would divide all elements of A). It is well-known that then there is n0 such that any
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n ≥ n0 can be written in the form

n = x0 gk + x1 ai 1 + · · · + xk ai k, x j ≥ 0.

For n large, let us write n = n′ + n0 + g where 0 ≤ g < gk and n′ is a multiple of gk . We
have

pA(n) ≥ pBk

(
n′

gk

)
.

But, from the first part of our proof, as P(Bk) holds, we have:

pBk

(
n′

gk

)
≥ exp

(
C

√
αgk − ε

√
n′

gk

)

and since n − n′ = O(1), this completes the proof of Lemma 4.

Let us prove now:

Lemma 5. Let A = {a1, a2, . . .} be a set of positive integers and β = lim supn→∞
A(n)

n .
Then for all positive ε and n large enough, the following inequality holds:

qA(n) ≤ exp

(
π√

3

√
(β + ε)n

)
. (3.8)

Proof: We shall follow the proof of Theorem 16.1 of [9]. First there exists m2 = m2(ε)
such that

m ≥ m2 ⇒ am ≥ m

β + ε/2
. (3.9)

Let us set A1 = {a1, a2, . . . , am2} and A2 = {am2+1, am2+2, . . .}; we have A1 ∩ A2 = ∅,
A1 ∪ A2 = A so that

qA(n) =
n∑

m=0

qA2 (m)qA1 (n − m). (3.10)

Further, qA1 (n) is the number of solutions of x1a1 +x2a2 +· · ·+xm2 am2 = n, with xi = 0, 1;
thus, for any n ≥ 0,

qA1 (n) ≤ 2m2 . (3.11)

Let

m = ak1 + ak2 + · · · + akr , m2 < k1 < k2 < · · · < kr
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be a restricted partition of m with parts in A2; to this partition we associate the restricted
partition

ν = k1 + k2 + · · · + kr , m2 < k1 < k2 < · · · < kr ,

and, from (3.9), ν ≤ m(β + ε/2). This establishes a one-to-one mapping from restricted
partitions of m with parts in A2 to restricted partitions of integers ν less than m(β + ε/2).
Since the restricted partition function q(n) is non decreasing, we have

qA2 (m) ≤
∑

0≤ν≤m(β+ ε
2 )

q(ν) ≤
(

1 +
⌊

m

(
β + ε

2

)⌋)
q

(⌊
m

(
β + ε

2

)⌋)
.

It follows from (3.10) and (3.11) that

qA(n) ≤ 2m2

n∑
m=0

qA2 (m) ≤ 2m2 (n + 1)

(
1 +

⌊
n

(
β + ε

2

)⌋)
q

(⌊
n

(
β + ε

2

)⌋)
,

which, with (1.4), implies (3.8) and the proof of Lemma 5 is completed.

Proof of Theorem 2: If the greatest common divisor, say d, of the elements ofA is greater
than 1, then dividing every element of A by d we may reduce the problem to the case when
the elements of A are coprime.

First we remark that, writing β = lim supn→∞
A(n)

n , Lemma 5 implies

qA(n) ≤ exp

(
π√

3

√
(β + ε)n

)
(3.12)

for any ε > 0 and n large enough. Since we have assumed that the elements ofA are coprime,
it follows from Lemma 4 that, for any ε > 0 and n large enough,

pA(n) ≥ exp

(
π

√
2

3

√
(α − ε)n

)
(3.13)

Inequalities (3.12) and (3.13) prove Theorem 2 when β < 2α. However, this simple argu-
ment cannot be used for β ≥ 2α, so we need a different proof which covers all values of β.
From Lemma 4, for n large enough we have.

pA(n) ≥ exp(2.5
√

αn). (3.14)

So, we may assume that, for n large enough,

qA(n) ≥ exp(2.4
√

αn) (3.15)

since othervise (1.9) holds with η(α) = 25/24.
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Now we claim that if (3.15) holds for some n, then there exist c2 = c2(α) > 0 and
c3 = c3(α) > 0 such that for more than

1

2
qA(n) (3.16)

restricted A-partitions π of n we have ∑
a∈π

a<c3
√

n

a > c2n. (3.17)

Indeed, the number of exceptions is less than

c2n∑
a=0

q(a)
(n − a, c3
√

n) ≤ q(c2n)
c2n∑
a=0

r (n − a, c3
√

n),

and by (1.4) and Lemma 1, this is smaller than

n exp

(
π√

3

√
c2n

)
exp


 3√

c3

√
n

n−a

√
n − a


 ≤ n exp

(
π√

3

√
c2n + 3

√
n

c3

)

so that for c3 large enough, and c2 small enough, it is, in view of (3.15), smaller than 1
2 qA(n).

One can choose

c2 = α

4
and c3 = 9

α
. (3.18)

Now, consider all the restricted A-partitions π of n satisfying (3.17). Let ε = ε(α) be small
enough in terms of α and to be fixed later. Divide the interval (0, c3

√
n] into k equal parts

where k is an integer which will be fixed later (in (3.25)). Then for 1 ≤ j ≤ k, the length
of each interval I j = (( j − 1) c3

√
n

k , j c3
√

n
k ] is c3

√
n

k . For each of the partitions π satisfying
(3.17) let I (π ) denote that interval I j for which

∑
a∈I j

a is maximal, so that

∑
a∈I (π )

a >
c2

k
n. (3.19)

By (3.16) and the pigeon hole principle, there is a h ∈ {1, 2, . . . , k} so that

I (π ) = Ih (3.20)

holds for at least 1
2k qA(n) of the partitions π satisfying (3.17). Let P denote the set of the

restricted A-partitions satisfying (3.17) and (3.20), so that

|P| ≥ 1

2k
qA(n). (3.21)
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To each π ∈ P assign the partition

π ′ = π\({a : a ∈ Ih} ∪ {a : a ≤ ε
√

n}).

Since, for all j, I j contains at most 1 + c3
√

n
k integers, thus {a : a ∈ Ih} can be chosen in at

most

21+c3
√

n/k < 22c3
√

n/k

ways. It follows that writing

P ′ = {π ′ : π ∈ P}

we have

|P ′| > |P| 2−2c3
√

n/k 2−ε
√

n = |P| 2−(ε+2c3/k)
√

n. (3.22)

Now, write

M =
⌊

α

2
ε
√

n

⌋

so that, by (1.8), for n large enough

a1 < a2 < · · · < aM ≤ ε
√

n. (3.23)

Let

T =
⌊

2c2

c3

1

ε

⌋
.

For some π ′ ∈ P ′, consider all the sums

∑
a∈π ′

a +
M∑

i=1

xi ai with 0 ≤ x1, . . . , xM ≤ T . (3.24)

It follows from (3.19), (3.23) and (3.24) that

M∑
i=1

xi ai ≤ TMε
√

n ≤ 2c2

c3
· 1

ε
· α

2
ε
√

n · ε
√

n = c2

c3
αεn <

∑
a∈I (h)

a

by choosing k so that

k =
⌊

c3

αε

⌋
≥ c3

2αε
. (3.25)
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It follows that the sum in (3.24) is smaller than n so that this sum forms an unrestricted
partition of some m with m < n. Since for each π ′ ∈ P ′ there are

|P ′| (T + 1)M > |P ′|
(

2c2

c3
·1

ε

)� α
2 ε

√
n�

> |P ′| exp

(
α

4
ε

(
log

2c2

c3ε

)√
n

)

partitions of form (3.24), we have from (3.21), (3.22) and (3.25):

∑
m≤n

pA(m) ≥ |P ′| exp

(
α

4
ε

(
log

2c2

c3ε

)√
n

)

≥ 1

2k
qA(n)exp

{(
α

4
ε

(
log

2c2

c3ε

)
− 2

c3

k
− ε

)√
n

}

≥ 1

2k
qA(n)exp

{
ε

(
α

4
log

2c2

c3ε
− (4α + 1)

)√
n

}
.

By choosing ε = 2c2
c3

exp(−17 − 4
α

), for all large n it follows

∑
m≤n

pA(m) >
1

2k
qA(n)exp

{(
2c2

c3

α

4
exp

(
−17 − 4

α

))√
n

}

> qA(n)exp

{(
c2

c3

α

4
exp

(
−17 − 4

α

))√
n

}
. (3.26)

It follows from (1.4) and (3.26) that∑
m≤n

pA(m) > qA(n)q(n)2η ≥ qA(n)1+2η (3.27)

with, from (3.18),

η = c2

c3

α

16
exp

(
−17 − 4

α

)
= α3

576
exp

(
−17 − 4

α

)
.

Since now property P(A) in (3.2) is assumed, thus we have pA(n + 1) > pA(n) for n large
enough, whence

(n + 1)pA(n) ≥
∑

0≤m≤n

pA(m) (3.28)

and (1.9) follows from (3.27) and (3.28).

If P(A) does not hold, then we have seen in the proof of Lemma 4 that A can be written
in the form A = A′ ∪ A′′,A′ ∩ A′′ = ∅,A′ finite, A′′ = gB, where g is the g.c.d. of the
elements ofA′′. In the constuction of π ′ we keep the parts belonging toA′, we remove those
parts from A′′ which are either smaller than ε

√
n or belong to Ih , and we replace them by

the elements a1, . . . , aM belonging to A′′. All the sums obtained in (3.24) are congruent to
n mod g, and since P(B) is true thus (3.28) follows, and we can conclude similarly.
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4. Proof of Proposition 1

We will prove (1.16), the proof of (1.15) is similar. The proof follows the proof of (1.13) as
given in [11]. We use the notation and the results of [11]:

F(x) =
∫ ∞

x

u

1 + eu
du, (4.1)

F(x) = π2

12
− x2

4
+ O(x3) as x → 0, (4.2)

F(x) = (x + 1)e−x + O(xe−2x ) as x → ∞, (4.3)

G(x) = x√
F(x)

is increasing for x ≥ 0, (4.4)

H is the inverse function of G, (4.5)

and for λ → ∞, H satisfies

H (λ) = 2 log λ − log log λ − log 2 + O

(
log log λ

log λ

)
. (4.6)

Finally h(λ), defined in (1.13), is equal to:

h(λ) = 2H (λ)

λ
− λlog

(
1 + e−H (λ)

)
. (4.7)

Here for x ∈ R we define

F2(x) = F(x) − F(2x) =
∫ 2x

x

u

1 + eu
du (4.8)

(note that, for x > 0, F2(−x) = 3x2 − F2(x) and F2(−x) ≥ 0) and

G2(x) = x√
F2(x)

. (4.9)

It follows from (4.2) and (4.8) that G2(0+) = 2√
3
. Now, we observe that if

∑
λ
√

n≤m<2λ
√

n

m < n,

then we have 
(n; λ
√

n, 2λ
√

n) = 0. Hence, for λ <

√
2
3 , (1.16) holds with h2(λ) = 0.

Further we set, for s ∈ R,

F2(x, s) =
∫ 2x

x

u du

1 + eus
= 1

s2
F2(sx). (4.10)
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Clearly, for x fixed, F2(x, s) is a decreasing function of s, and

lim
s→−∞ F2(x, s) = 3x2

2
, F2(x, 0) = 3x2

4
and lim

s→+∞ F2(x, s) = 0.

So, for x ≥
√

2
3 , there is a unique value s = s(x) such that F2(x, s(x)) = 1. For λ ≥ √

2/3,
we define

H2(λ) = λs(λ) (4.11)

so that, from (4.10), we have

F2(H2(λ)) = H2(λ)2

λ2
. (4.12)

It follows from (4.9) and (4.12) that, for H2(λ) > 0 (i.e. for λ > 2√
3
) we have

G2(H2(λ)) = λ (4.13)

and since G2(x), defined by (4.9), is increasing for x large enough, G2 and H2 are inverse
in a neighborood of +∞.

Since, from (4.3), for x large F(2x) is much smaller than F(x), G2(x) is close to G(x),
and it could be shown by a little computation (we leave the details to the reader) that H2(λ)
satisfies the same asymptotic expansion as H (λ) if λ → ∞:

H2(λ) = 2 log λ − log log λ − log 2 + O

(
log log λ

log λ

)
. (4.14)

Finally, for λ >

√
2
3 we set

h2(λ) = 2H2(λ)

λ
+ 2λlog

(
1 + e−2H2(λ)

) − λlog
(
1 + e−H2(λ)

)
, (4.15)

and, from (4.14), h2(λ) is asymptotic to (1.14) as λ → +∞. Note that expression (4.15)
appears in formula (50) in [11]. When λ → √

2/3, with λ >
√

2/3, then H2(λ) → −∞,
and a simple calculation shows that h2(λ) → 0.

We now prove:

Lemma 6. Let λ >
√

2/3, and h2(λ) defined by (4.15). For n ≥ 2 we have

lim sup
n→∞

log 
(n; λ
√

n, 2λ
√

n)√
n

≤ h2(λ). (4.16)



ON THE ASYMPTOTIC BEHAVIOUR OF GENERAL PARTITION FUNCTIONS, II 295

Proof: It is the same proof as the proof of Proposition 1 in [11]. We start from the
generating function:

∞∑
n=0


(n; x, 2x)zn =
∏

x≤m<2x

(1 + zm)

which for real positive z yields


(n; λ
√

n, 2λ
√

n) ≤ z−n
∏

λ
√

n≤m<2λ
√

n

(1 + zm)

and

log(
(n; λ
√

n, 2λ
√

n)) ≤ −n log z +
∑

λ
√

n≤m<2λ
√

n

log(1 + zm).

Here we chose z as

z = exp

(
− H2(λ)

λ
√

n

)
.

By comparing the above sum to the corresponding integral, we can show exactly in the
same way as in [11] that, when H2(λ) ≥ 0, log 
(n; λ

√
n, 2λ

√
n) ≤ h2(λ)

√
n + 1, while,

if H2(λ) < 0 (i.e., for
√

2
3 < λ < 2√

3
), by a slightly different argument it can be shown

that log 
(n; λ
√

n, 2λ
√

n) ≤ h2(λ)
√

n + 3 |H2(λ)| + 1. In both cases, (4.16) follows, and
the proof of Lemma 6 is completed.

To prove (1.16), from Lemma 6 we need to show

lim inf
n→∞

log 
(n; λ
√

n, 2λ
√

n)√
n

≥ h2(λ). (4.17)

As mentionned in the introduction, (4.17) can be proved by the methods of [5] or [11],
Section 3 or 5, or by analytical methods.

Finally, from (4.14) and (4.15), it follows that, for λ → ∞, the asymptotic expansion of
h2(λ) is (1.14).

5. Proof of Theorem 3

Let (λk)k≥1 be a non-decreasing sequence of integers satisfying 3 ≤ λ1 ≤ λ2 ≤ . . . . With
this sequence we associate the sequence n0 = 1, nk = λknk−1 for k ≥ 1.

The set A is defined as

A = {1} ∪
⋃
k≥1

{nk, nk + 1, . . . , 2nk − 1}.
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In order to satisfy (1.11), we chose λ1, λ2, . . . by induction so that for k large enough,
λk+1 < 1

2 f (nk ) . Indeed, then for 2nk ≤ n < 2nk+1 we have

n f (n) ≤ 2nk+1 f (nk) = 2λk+1nk f (nk) < nk ≤ A(n)

whence (1.10) follows.
Let λ a fixed, but large, positive real number. We now choose, for k → ∞, an integer

N = Nk defined as

N = Nk =
⌊

n2
k

λ2

⌋
. (5.1)

A simple calculation shows that, for k large enough, nk − 1
2 < λ

√
N ≤ nk holds, and we

have

qA(N ) ≥ 
(N ; nk, 2nk) = 
(N ; λ
√

N , 2λ
√

N )

and, from (5.1), Proposition 1 and (1.14), we can choose λ large enough so that, for k large
enough, we have

log qA(Nk) = log qA(N ) ≥
(

2 log λ − log log λ

λ

)√
N . (5.2)

Further,

pA(N ) =
∑

N ′+N ′′+N ′′′=N

P1 P2 P3 (5.3)

where

P1 is the number of partitions of N ′ into parts in A and less than nk ,
P2 is the number of partitions of N ′′ into parts in A and between nk and 2nk ,
P3 is the number of partitions of N ′′′ into parts greater than nk+1.

From the definition of A, we have

P2 = r (N ′′; nk, 2nk) ≤ r (N ′′, nk) = r (N ′′, λ
√

N ) = r (N ′′; λ′′√N ′′)

with λ′′ = λ

√
N
N ′′ ≥ λ, and thus from Lemma 1:

log(P2) ≤ 2 log λ′′ + 3

λ′′
√

N ′′ ≤ 2 log λ + 3

λ

√
N ′′ ≤ 2 log λ + 3

λ

√
N (5.4)

holds. Further, we have

P1 ≤ p(N ′, 2nk−1) = p

(
N ′,

2nk

λk

)
≤ p

(
N ′,

2λ
√

N

λk

)
= p(N ′, λ′√N

′
)
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with λ′ = 2λ
λk

√
N
N ′ . Therefore, from Lemma 1,

log P1 ≤ 3
√

λ′N ′ = 3

√
2λ

λk

√
NN ′ ≤ 3

√
2λ

λk
N ≤ 5

√
λ

λk

√
N . (5.5)

Finally, since nk+1 = λk+1nk ≥ λλk

√
N , we have

P3 ≤ r (N ′′′, nk+1) ≤ r (N ′′′, λλk

√
N ) = r (N ′′′, λ′′′√N ′′′)

with λ′′′ = λλk

√
N

N ′′′ ≥ λλk . So, from Lemma 1,

log P3 ≤ 3√
λ′′′

√
N ′′′ ≤ 3√

λλk

√
N ′′′ ≤ 3√

λλk

√
N (5.6)

holds. Since the number of terms in the sum (5.3) is
(N

2

) ≤ N 2, it follows from (5.3), (5.4),
(5.5) and (5.6) that

log pA(Nk) = log pA(N ) ≤
(

2 log λ + 3

λ
+ 5

√
λ

λk
+ 3√

λλk

)√
N + 2 log N (5.7)

which together with (5.2) yields, for k large enough,

log pA(Nk)

log qA(Nk)
≤

(
2 log λ+3

λ
+ 5

√
λ
λk

+ 3√
λλk

) √
Nk(

2 log λ−log log λ

λ

) √
Nk

+ 2 log Nk(
2 log λ−log log λ

λ

) √
Nk

.

When k → ∞, λk → ∞ and we have

lim inf
n→∞

log pA(n)

log qA(n)
≤ 2 log λ + 3

2 log λ − log log λ
.

But λ can be choosen as large as we wish so that (1.11) holds, and the proof of Theorem 3
is completed.
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