Even partition functions and 2-adic analysis

 Author: N. Baccar
Abstract

Let \mathcal{A} denote a set of positive integers, and let $p(\mathcal{A}, n)$ denote the associated partition function. Let β be an odd positive integer, and let $P(z)$ be a polynomial in $\mathbb{F}_{2}[z]$ of order β such that $P(0)=1$. J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy proved that there exists a unique set $\mathcal{A}=\mathcal{A}(P)$ such that $\sum_{n \geq 0} p(\mathcal{A}, n) z^{n} \equiv P(z)(\bmod 2)$; that is, the partition function $p(\mathcal{A}, n)$ is even from a certain point on. The problem of determining the elements of the set $\mathcal{A}(P)$ is not an easy one and several particular cases have already been studied; namely, when P is irreducible and $\beta=p$ a prime number such that the order of 2 modulo p is $p-1,(p-1) / 2,(p-1) / 3$ or $(p-1) / 4$. In this paper, we consider the case P is irreducible such that the order of 2 modulo β is $\frac{\varphi(\beta)}{2}$ where φ is Euler's function.

Even partition functions and 2-adic analysis

by
N. Baccar

Université de Sousse
ISITCOM Hammam Sousse., Dép. de Math Inf.
5 Bis Rue 1 Juin 1955-4011 Hammam Sousse, Tunisie.
naceurbaccar@yahoo.fr

Abstract

Let \mathcal{A} denote a set of positive integers, and let $p(\mathcal{A}, n)$ denote the associated partition function. Let β be an odd positive integer, and let $P(z)$ be a polynomial in $\mathbb{F}_{2}[z]$ of order β such that $P(0)=1$. J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy proved that there exists a unique set $\mathcal{A}=\mathcal{A}(P)$ such that $\sum_{n \geq 0} p(\mathcal{A}, n) z^{n} \equiv P(z)(\bmod 2)$; that is, the partition function $p(\mathcal{A}, n)$ is even from a certain point on. The problem of determining the elements of the set $\mathcal{A}(P)$ is not an easy one and several particular cases have already been studied; namely, when P is irreducible and $\beta=p$ a prime number such that the order of 2 modulo p is $p-1,(p-1) / 2,(p-1) / 3$ or $(p-1) / 4$. In this paper, we consider the case P is irreducible such that the order of 2 modulo β is $\frac{\varphi(\beta)}{2}$ where φ is Euler's function.

Key words: Partitions, 2-adic integers, Dirichlet characters, Gauss sums, Ramanujan sums.

2010 MSC: 11P83, 11D88, 11L05, 11L40.

1 Introduction.

Let \mathcal{A} be a non-empty set of positive integers, and let $p(\mathcal{A}, n)$ denote the number of partitions of n into parts belonging to the set \mathcal{A}; that is, the number of finite non-increasing sequences $n_{1}, n_{2}, \ldots, n_{k}$ belonging to \mathcal{A} such that

$$
n=n_{1}+n_{2}+\cdots+n_{k}
$$

By convention, we take $p(\mathcal{A}, 0)=1$.
Let \mathbb{F}_{2} be the field with two elements, and let $P(z)=1+\varepsilon_{1} z+\cdots+\varepsilon_{N} z^{N} \in \mathbb{F}_{2}[z]$ of degree $N \geq 1$. It is known that (see [12]) there exists a unique set $\mathcal{A}=\mathcal{A}(P)$ of positive integers such that the generating function $\mathcal{F}(z)$ satisfies

$$
\begin{equation*}
\mathcal{F}(z)=\mathcal{F}_{\mathcal{A}}(z)=\prod_{a \in \mathcal{A}} \frac{1}{1-z^{a}}=\sum_{n \geq 0} p(\mathcal{A}, n) z^{n} \equiv P(z) \quad(\bmod 2) \tag{1.1}
\end{equation*}
$$

The elements of the set $\mathcal{A}=\mathcal{A}(P)$ have been determined in some special cases but not for all P 's, and it seems that the general case is a deep problem.

In fact the set $\mathcal{A}=\mathcal{A}(P)$ is constructed (cf. [12]) by recursion; we write $\mathcal{A}_{n}=$ $\mathcal{A} \cap\{1, \ldots, n\}$ so that

$$
p\left(\mathcal{A}_{N}, n\right) \equiv \varepsilon_{n} \quad(\bmod 2), \quad n=1, \ldots, N
$$

Further, assume that $n \geq N+1$ and \mathcal{A}_{n-1} has been defined so that $p(\mathcal{A}, k)$ is even for $N+1 \leq k \leq n-1$. Then set

$$
n \in \mathcal{A} \text { if and only if } p\left(\mathcal{A}_{n-1}, n\right) \text { is odd. }
$$

It follows from the construction that for $n \geq N+1$, we have

$$
\left\{\begin{array}{l}
\text { if } n \in \mathcal{A}, \quad p(\mathcal{A}, n)=1+p\left(\mathcal{A}_{n-1}, n\right) \tag{1.2}\\
\text { if } n \notin \mathcal{A}, \quad p(\mathcal{A}, n)=p\left(\mathcal{A}_{n-1}, n\right) .
\end{array}\right.
$$

which implies that $p(\mathcal{A}, n)$ is even for $n \geq N+1$. By computer, J.-L. Nicolas and A. Sárközy (see [13]) have studied all sets $\mathcal{A}=\mathcal{A}(P)$ for degree $(P) \leq 5$; for all of these sets, by using (1.2), they have computed the values of the first elements (up to 1000). As examples,

$$
\begin{equation*}
\mathcal{A}\left(1+z+z^{4}\right)=\{1,2,5,6,7,10,11,13,14,16,21,22,24,28,29,33, \ldots\} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A}\left(1+z^{3}+z^{4}\right)=\{3,4,6,7,8,10,11,12,13,15,20,21,26,29,30,32, \ldots\} . \tag{1.4}
\end{equation*}
$$

Let $c \geq 2$ be an integer and $P_{c}(z)=P\left(z^{c}\right)$. By the algorithm (1.2), it is possible to see that the elements of $\mathcal{A}\left(P_{c}\right)$ are c-times the elements of $\mathcal{A}(P)$. Indeed, From (1.1),

$$
\begin{equation*}
\prod_{a \in \mathcal{A}(P)} \frac{1}{1-z^{c a}} \equiv P\left(z^{c}\right) \quad(\bmod 2) \tag{1.5}
\end{equation*}
$$

Let $\beta \geq 3$ be an odd positive integer and let $P(z) \in \mathbb{F}_{2}[z]$ be irreducible of order β; that is, β is the smallest positive integer such that $P(z)$ divides $1+z^{\beta}$ in $\mathbb{F}_{2}[z]$. Let m be an odd positive integer and $\delta_{\mathcal{A}}$ is the characteristic function of the set \mathcal{A}; that is,

$$
\begin{cases}\delta_{\mathcal{A}}(n)=1 & \text { if } n \in \mathcal{A} \\ \delta_{\mathcal{A}}(n)=0 & \text { if } n \notin \mathcal{A} .\end{cases}
$$

Throughout this paper, we denote by $\mathcal{A}^{<m>}$ the set of integers of the form $2^{k} m$ belonging to $\mathcal{A}=\mathcal{A}(P)$. One of the main problems that arise in the study of the set $\mathcal{A}=\mathcal{A}(P)$ is whether a positive integer $n=2^{j} m$ is or is not in $\mathcal{A}^{<m>}$? An answer can be given by the algorithm (1.2) but for fairly large values of j. In order to overcome this difficulty, it has been convenient to consider the 2 -adic integer $S(\mathcal{A}, m)$ given by the expansion

$$
\begin{equation*}
S(\mathcal{A}, m)=\delta_{\mathcal{A}}(m)+2 \delta_{\mathcal{A}}(2 m)+2^{2} \delta_{\mathcal{A}}\left(2^{2} m\right)+\cdots=\sum_{k=0}^{\infty} 2^{k} \delta_{\mathcal{A}}\left(2^{k} m\right) \tag{1.6}
\end{equation*}
$$

Indeed, it is clear that by knowing the expansion $S(\mathcal{A}, m)$, one can compute $S(\mathcal{A}, m) \bmod$ 2^{j+1} then deduce $\delta_{\mathcal{A}}\left(2^{k} m\right)$ for all $k, 0 \leq k \leq j$ and obtain all the elements of the set $\mathcal{A}^{<m>}$. Furthermore, it was proved in [2] that the 2 -adic integer $S(\mathcal{A}, m)$ is algebraic. Here and throughout

$$
\begin{equation*}
G_{m, \mathcal{A}}(x) \text { denotes the minimal polynomial of } S(\mathcal{A}, m) \tag{1.7}
\end{equation*}
$$

The method of proving that $S(\mathcal{A}, m)$ is algebraic is briefly recalled at the end of Section 2. To specify which root of $G_{m, \mathcal{A}}(x)$ corresponds to $S(\mathcal{A}, m)$, one just have to compute some first few elements of the set \mathcal{A}. For more clarity, it might be worthwhile to give an example illustrating how the polynomial $G_{m, \mathcal{A}}(x)$ provides a way to determine the set $\mathcal{A}^{<m>}$.
Example: $\beta=15$. The only irreducible polynomials in $\mathbb{F}_{2}[z]$ of order $\beta=15$ are $1+z+z^{4}$ and $1+z^{3}+z^{4}$; we take $\mathcal{A}=\mathcal{A}\left(1+z+z^{4}\right), \mathcal{A}^{\prime}=\mathcal{A}\left(1+z^{3}+z^{4}\right)$. For instance, we aim to determine $\mathcal{A}^{<7>}$ and $\mathcal{A}^{<7>}$. In Theorem 5.1 below, with $m=7$, we obtain

$$
G_{7, \mathcal{A}}(x)=G_{7, \mathcal{A}^{\prime}}(x)=x^{2}+\frac{15}{49} .
$$

By using the function polrootspadic of PARI, it turns out that roots of $x^{2}+\frac{15}{49}$ are

$$
x_{1}=1+2+2^{2}+2^{3}+2^{4}+2^{10}+2^{11}+2^{12}+\cdots+2^{996}+2^{998}+\cdots
$$

and

$$
x_{2}=1+2^{5}+2^{6}+2^{7}+2^{8}+2^{9}+2^{13}+2^{14}+\cdots+2^{997}+2^{999}+\cdots .
$$

From (1.3) (resp. (1.4)) we observe that $7 \in \mathcal{A}$ and $14=2 \times 7 \in \mathcal{A}$ (resp. $7 \in \mathcal{A}^{\prime}$ and $\left.14=2 \times 7 \notin \mathcal{A}^{\prime}\right)$, so that from (1.6), $S(\mathcal{A}, 7) \equiv 3(\bmod 4)\left(\right.$ resp. $S\left(\mathcal{A}^{\prime}, 7\right) \equiv 1$ $(\bmod 4))$ and therefore $S(\mathcal{A}, 7)=x_{1}\left(\operatorname{resp} . S\left(\mathcal{A}^{\prime}, 7\right)=x_{2}\right)$. Hence

$$
\begin{equation*}
\mathcal{A}^{<7>}=\left\{7,14,28,56,112, \ldots, 2^{996} \times 7,2^{998} \times 7, \ldots\right\} \tag{1.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{A}^{\prime<7>}=\left\{7,224,448,896, \ldots, 2^{997} \times 7,2^{999} \times 7, \ldots\right\} \tag{1.9}
\end{equation*}
$$

For a positive integer n, denote by \widetilde{n} the square-free kernel of n; that is,

$$
\begin{equation*}
\widetilde{n}=\prod_{p \mid n, p \text { prime }} p \text { with } \widetilde{1}=1 \tag{1.10}
\end{equation*}
$$

and we denote by $\omega(n)$ the number of prime factors of n without multiplicity; that is,

$$
\begin{equation*}
\omega(n)=\sum_{p \text { prime, } p \mid n} 1 \tag{1.11}
\end{equation*}
$$

For an odd positive integer d, denote by $s(d)$ the order of 2 modulo d; that is, $s(d)$ is the smallest positive exponent for which

$$
\begin{equation*}
2^{s(d)} \equiv 1 \quad(\bmod d) \tag{1.12}
\end{equation*}
$$

and denote by $r(d)$ the positive integer satisfying

$$
\begin{equation*}
\varphi(d)=s(d) r(d) \tag{1.13}
\end{equation*}
$$

where φ is Euler's function.

For $\mathcal{A}=\mathcal{A}(P)$, the problem of determining the elements of the set $\mathcal{A}^{<m>}$ has been solved when the order β of the irreducible polynomial P is a prime number p such that $s(p)=(p-1) / 2$ (see [1]), $s(p)=(p-1) / 3$ (see [4]) and $s(p)=(p-1) / 4$ (see [3]). If $s(p)=p-1$, it turns out that $P(z)=\frac{1-z^{p}}{1-z}=1+z+\cdots+z^{p-1}$ is the only irreducible polynomial of order p; in this case we have

$$
\begin{aligned}
\mathcal{F}_{\mathcal{A}}(z) & \equiv \frac{1-z^{p}}{1-z} \quad(\bmod 2) \\
& \equiv \frac{1}{1-z} \frac{1}{1-z^{p}} \frac{1}{1-z^{2 p}} \frac{1}{1-z^{4 p}} \cdots \frac{1}{1-z^{2^{k} p}} \cdots \quad(\bmod 2),
\end{aligned}
$$

which means that

$$
\mathcal{A}=\left\{1, p, 2 p, 4 p, \ldots, 2^{k} p, \ldots\right\} .
$$

In the present paper, we aim to treat the case P is irreducible of order β such that

$$
s(\beta)=\varphi(\beta) / 2
$$

An observation (cf. [10, Theorem 2.47]) of big importance is that there exist only two irreducible polynomials in $\mathbb{F}_{2}[z]$ of order β. Moreover, it turns out (cf. Section 3) that one also have $s(\widetilde{\beta})=\varphi(\widetilde{\beta}) / 2$ which will allow us to restrict our study to the case β square-free. Indeed, if β is not square-free and $\widetilde{\beta}$ is the square-free kernel of β defined by (1.10) then (cf. Section 3)

$$
\begin{equation*}
\mathcal{A}(P)=c \cdot \mathcal{A}(R), \tag{1.14}
\end{equation*}
$$

where $c=\beta / \widetilde{\beta}$ and R is an irreducible polynomial in $\mathbb{F}_{2}[z]$ of order $\widetilde{\beta}$. This may be interpreted as asserting that

$$
\begin{cases}\mathcal{A}(P)^{<m>}=\emptyset & \text { if } c \nmid m \\ \mathcal{A}(P)^{<m>}=c \cdot \mathcal{A}(R)^{<m / c>} & \text { if } c \mid m .\end{cases}
$$

It will be proved in Lemma 3.1 below that $\omega(\beta)=1$ or 2 . As has been mentioned above the case β square-free with $\omega(\beta)=1$ (that is, $\beta=p$ is prime) was already treated, then we need only concern ourselves with the situation in which β is squarefree with $\omega(\beta)=2$. Hence, it is convenient to consider the set \mathcal{L} defined by

$$
\begin{equation*}
\mathcal{L}=\{d \geq 3, d \text { odd, square-free and not prime such that } s(d)=\varphi(d) / 2\} \tag{1.15}
\end{equation*}
$$

the first elements (up to 100) of \mathcal{L} are: $15,21,33,35,39,55,57,69,77,87,95$. The first part of Section 3 will be devoted to the study of the set \mathcal{L}.

For purpose of determining the set $\mathcal{A}(P)^{<m>}$, where P is irreducible of order $\beta \in \mathcal{L}$, we explicitly compute $G_{m, \mathcal{A}}(x)$ for all odd positive integers m : this result is given below in Theorem 5.1. Depending on the values of m, the polynomial $G_{m, \mathcal{A}}(x)$ is either x (which means that $S(\mathcal{A}, m)=0$; that is, $\mathcal{A}(P)^{<m>}=\emptyset$) or a quadratic polynomial. We will start by recalling in Section 2 some of the main properties of the set $\mathcal{A}=\mathcal{A}(P)$. In Section 4, we give a brief survey on Dirichlet characters, Gauss sums and Ramanujan sums. We end this paper by giving a numerical example with $\beta=15=3 \times 5$ and $m=3^{a} 5^{b} 7(a \geq 0$ and $b \geq 0)$; we first determine the sets $\mathcal{A}^{<m>}$ and $\mathcal{A}^{\prime<m>}$ where $\mathcal{A}=\mathcal{A}\left(1+z+z^{4}\right)$ and $\mathcal{A}^{\prime}=\mathcal{A}\left(1+z^{3}+z^{4}\right)$ and then deduce the sets $\mathcal{A}(P)^{<m>}$, for any irreducible polynomial P of order $45=3^{2} \times 5$.

2 Some results on the set $\mathcal{A}=\mathcal{A}(P)$

Let $\beta \geq 3$ be an odd positive integer. We shall call a prime number $p \geq 3$ a β-bad prime if there exists a positive integer t such that

$$
\begin{equation*}
p \equiv 2^{t} \quad(\bmod \beta) \tag{2.1}
\end{equation*}
$$

In what follows we denote by \mathcal{M}_{β} the set of all odd positive integers m for which there does not exist a β-bad prime p such that $p \mid m$.

Remark 2.1. Let $P(z) \in \mathbb{F}_{2}[z]$ be irreducible of order β and let $\mathcal{A}=\mathcal{A}(P)$ be the even partition set satisfying (1.1). It turns out (see [2] and [6, Theorem 1, III and IV]) that if $m \notin \mathcal{M}_{\beta}$ or $\widetilde{\beta} \beta \mid m$ then $S(\mathcal{A}, m)$ vanishes. Consequently, the elements of the set \mathcal{A} are of the form

$$
\begin{equation*}
2^{k} m, \text { where } m \in \mathcal{M}_{\beta} \text { and } \widetilde{\beta} \beta \nmid m . \tag{2.2}
\end{equation*}
$$

Let $s=s(\beta)$ and $r=r(\beta)$ be the integers defined by (1.12) and (1.13). Let $P_{1}, P_{2}, \ldots, P_{r}$ be all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of order β (see [10, Theorem 2.47]); it is also important to point out that each of these polynomials is of degree s. For all $\ell, 1 \leq \ell \leq r$, let $\mathcal{A}_{\ell}=\mathcal{A}\left(P_{\ell}\right)$ be the even partition set satisfying (1.1), and let $S\left(\mathcal{A}_{\ell}, m\right)$ be the 2-adic integer given by (1.6). Let the polynomial $H_{m}(x)$ defined by

$$
\begin{equation*}
H_{m}(x)=m^{r}\left(x-S\left(\mathcal{A}_{1}, m\right)\right)\left(x-S\left(\mathcal{A}_{2}, m\right)\right) \cdots\left(x-S\left(\mathcal{A}_{r}, m\right)\right) . \tag{2.3}
\end{equation*}
$$

Interestingly(see [2, Proposition 3.1]), the polynomial $H_{m}(x)$ has integer coefficients, which means that for all $\ell, 1 \leq \ell \leq r$, the minimal polynomial $G_{m, \mathcal{A}_{\ell}}(x)$ of the algebraic number $S\left(\mathcal{A}_{\ell}, m\right)$ (cf. (1.7)) is a factor of $H_{m}(x)$.

Let $(\mathbb{Z} / \beta \mathbb{Z})^{*}$ be the group of invertible residues modulo β, and let $\left.<2\right\rangle$ be its subgroup generated by 2 . Then $<2>$ acts on the set $\mathbb{Z} / \beta \mathbb{Z}$ by usual multiplication. Given such action and denoting the orbit of some n by $O_{\beta}(n)$, it follows that $\mathbb{Z} / \beta \mathbb{Z}$ is partitioned as follows

$$
\mathbb{Z} / \beta \mathbb{Z}=O_{\beta}\left(y_{1}\right) \cup O_{\beta}\left(y_{2}\right) \cup \cdots O_{\beta}\left(y_{f}\right) \cup O_{\beta}(\beta)
$$

with $y_{1}=1$. We will say that $O_{\beta}\left(y_{i}\right)$ is an invertible orbit if $\operatorname{gcd}\left(y_{i}, \beta\right)=1$; then clearly, r is the number of invertible orbits and so $(\mathbb{Z} / \beta \mathbb{Z})^{\star}$ may be represented in the form

$$
\begin{equation*}
(\mathbb{Z} / \beta \mathbb{Z})^{\star}=O_{\beta}\left(y_{1}\right) \cup O_{\beta}\left(y_{2}\right) \cup \cdots O_{\beta}\left(y_{r}\right), \tag{2.4}
\end{equation*}
$$

where $O_{\beta}\left(y_{1}\right), O_{\beta}\left(y_{2}\right), \ldots, O_{\beta}\left(y_{r}\right)$ are the invertible orbits. For $r+1 \leq i \leq f$ the orbits $O_{\beta}\left(y_{i}\right)$ are those for which y_{i} is not coprime with β, but not a multiple of β. Here and throughout this paper we adopt the extension that the orbits are also considered as part of $\mathbb{Z}: n \in O_{\beta}(y)$ if there exists $t \geq 0$ such that

$$
\begin{equation*}
n \equiv 2^{t} y \quad(\bmod \beta) \tag{2.5}
\end{equation*}
$$

One can easily observe that β-bad primes (defined in (2.1)) are elements of $O_{\beta}(1)$. Furthermore, it should be noted that (cf. [2, formula (2.11)])

$$
\begin{equation*}
\left|O_{\beta}(y)\right|=s\left(\frac{\beta}{\operatorname{gcd}(\beta, y)}\right) \tag{2.6}
\end{equation*}
$$

Example: When $\beta=15$, we obtain

$$
\mathbb{Z} / 15 \mathbb{Z}=O_{15}(1) \cup O_{15}(7) \cup O_{15}(3) \cup O_{15}(5) \cup O_{15}(15)
$$

so that $s=s(15)=4, r=2, f=4, y_{1}=1, y_{2}=7, y_{3}=3, y_{4}=5$ and

$$
\begin{aligned}
O_{15}(1) & =\{1,2,4,8\} \\
O_{15}(7) & =\{7,11,13,14\} \\
O_{15}(3) & =\{3,6,9,12\} \\
O_{15}(5) & =\{5,10\} \\
O_{15}(15) & =\{15\}
\end{aligned}
$$

We define the polynomial $D_{m}(z)$ (cf. [2, formula (3.8)]) by

$$
D_{m}(z)=\sum_{h=1}^{f} \lambda\left(m, y_{h}\right) B\left(y_{h}, z\right)+s \gamma(m),
$$

where $B(n, z)$ is the polynomial given by

$$
\begin{gather*}
B(n, z)=\sum_{j=0}^{s-1} z^{2^{j} n \bmod \beta} ; n \in \mathbb{Z}, \tag{2.7}\\
\lambda(m, n)=\sum_{\substack{d \left\lvert\, \tilde{m} \\
\frac{m}{d} \in O_{\beta}(n)\right.}} \mu(d), \tag{2.8}\\
\gamma(m)=\sum_{\substack{\frac{m}{d} \equiv 0}} \mu(d), \\
(\bmod \beta)
\end{gather*}
$$

μ is the Möbius's function, $s=s(\beta)$ is defined in (1.12) and \widetilde{m} is defined by (1.10). We shall note that $B(n, z)$ is stable on the orbits of $\mathbb{Z} / \beta \mathbb{Z}$; that is,

$$
\begin{equation*}
\text { if } n_{1} \in O_{\beta}\left(n_{2}\right) \text { then } B\left(n_{1}, z\right)=B\left(n_{2}, z\right) \tag{2.9}
\end{equation*}
$$

Consequently, using the fact that $B(\beta, z)=s$, we get

$$
D_{m}(z)=\sum_{h=1}^{f}\left(\sum_{\substack{d \left\lvert\, \tilde{m} \\ \frac{m}{d} \in O_{\beta}\left(y_{h}\right)\right.}} \mu(d) B\left(\frac{m}{d}, z\right)\right)+\sum_{\substack{\left.\frac{m}{d}=0 \\ d \right\rvert\, \tilde{m} \\(\bmod \beta)}} \mu(d) B\left(\frac{m}{d}, z\right),
$$

whence

$$
\begin{equation*}
D_{m}(z)=\sum_{d \mid \widetilde{m}} \mu(d) B\left(\frac{m}{d}, z\right) . \tag{2.10}
\end{equation*}
$$

Let ζ be a β-th primitive root of unity over the 2 -adic field \mathbb{Q}_{2}. It was proved in [2, formula (3.13)] that, for all $\ell, 1 \leq \ell \leq r, S(\mathcal{A} \ell, m)$ can be expressed in terms of ζ. More precisely, the sets \mathcal{A}_{ℓ} can be arranged so that,

$$
\begin{equation*}
m S\left(\mathcal{A}_{\ell}, m\right)=-D_{m}\left(\zeta^{y_{\ell}}\right) ; 1 \leq \ell \leq r \tag{2.11}
\end{equation*}
$$

Knowing this, we may rewrite the polynomial $H_{m}(x)$ (cf. (2.3)) as

$$
\begin{equation*}
H_{m}(x)=\left(m x+D_{m}\left(\zeta^{y_{1}}\right)\right)\left(m x+D_{m}\left(\zeta^{y_{2}}\right)\right) \cdots\left(m x+D_{m}\left(\zeta^{y_{r}}\right)\right) \tag{2.12}
\end{equation*}
$$

Example: By way of illustration, we take $\beta=15$. In this instance, we find that $B(1, z)=z+z^{2}+z^{4}+z^{8}, B(7, z)=z^{7}+z^{11}+z^{13}+z^{14}, B(3, z)=z^{3}+z^{6}+z^{9}+z^{12}$, $B(5, z)=2 z^{5}+2 z^{10}$ and $B(15, z)=4$. Next, choosing $m=7$, we obtain

$$
\begin{gathered}
D_{7}(\zeta)=B(7, \zeta)-B(1, \zeta)=\zeta^{7}+\zeta^{11}+\zeta^{13}+\zeta^{14}-\zeta-\zeta^{2}-\zeta^{4}-\zeta^{8} \\
D_{7}\left(\zeta^{7}\right)=-D_{7}(\zeta)
\end{gathered}
$$

and

$$
\begin{aligned}
H_{7}(x)= & \left(7 x+D_{7}(\zeta)\right)\left(7 x+D_{7}\left(\zeta^{7}\right)\right)=49 x^{2}-\left(D_{7}(\zeta)\right)^{2} \\
= & 49 x^{2}+\zeta^{14}+\zeta^{13}-2 \zeta^{12}+\zeta^{11}-4 \zeta^{10}-2 \zeta^{9}+\zeta^{8}+\zeta^{7}-2 \zeta^{6}-4 \zeta^{5}+ \\
& \zeta^{4}-2 \zeta^{3}+\zeta^{2}+\zeta+8
\end{aligned}
$$

3 A description of \mathcal{L}

Recall that \mathcal{L} (cf. (1.15)) is the set of all odd integers $d \geq 3$ square-free and not prime satisfying $s(d)=\frac{\varphi(d)}{2}$, where $s(d)$ is defined by (1.12) and φ is Euler's function. In Theorem 3.1 below, we will give a description of the set \mathcal{L}; more precisely, by description, we mean necessary and sufficient conditions under which a given integer is in \mathcal{L}. From now on, we always use the letters p and q to denote distinct odd prime numbers, while η and ν will always denote positive integers.
Lemma 3.1. Let β be an odd positive integer, and let ω be the arithmetic function given by (1.11). Then,

$$
s(\beta)=\varphi(\beta) / 2 \Longrightarrow \omega(\beta)=1 \text { or } 2 .
$$

Proof. 1. Let the decomposition of β into irreducible factors be

$$
\beta=q_{1}^{k_{1}} q_{2}^{k_{2}} \cdots q_{\ell}^{k_{\ell}},
$$

with $\ell=\omega(\beta)$. Since $\varphi\left(q_{1}^{k_{1}}\right), \varphi\left(q_{2}^{k_{2}}\right), \cdots, \varphi\left(q_{\ell}^{k_{\ell}}\right)$ are even, one can consider the integer Q_{i} given by

$$
Q_{i}=\prod_{\substack{j=1 \\ j \neq i}}^{\ell} \frac{\varphi\left(q_{j}^{k_{j}}\right)}{2}, 1 \leq i \leq \ell
$$

By Euler's theorem we have for all $i, 1 \leq i \leq \ell$,

$$
2^{\frac{\varphi(\beta)}{2^{\ell-1}}}=\left(2^{\varphi\left(q_{i}^{k_{i}}\right)}\right)^{Q_{i}} \equiv 1 \quad\left(\bmod q_{i}^{k_{i}}\right)
$$

Together with the fact that the modulus are relatively prime, these congruences imply that

$$
2^{\frac{\varphi(\beta)}{2^{-1}}} \equiv 1 \quad(\bmod \beta)
$$

which means that

$$
\begin{equation*}
s(\beta) \leq \frac{\varphi(\beta)}{2^{\ell-1}} \tag{3.1}
\end{equation*}
$$

Finally, by taking $s(\beta)=\varphi(\beta) / 2$ in (3.1) it follows that $\ell=\omega(\beta) \leq 2$, as desired.
Lemma 3.2. Let $u \geq 3$ and $v \geq 3$ be relatively prime odd integers.

1) If $s(u v)=\varphi(u v) / 2$ then $\operatorname{gcd}(s(u), s(v))=1$ or 2 .
2) If $\operatorname{gcd}(s(u), s(v))=1$ then

$$
s(u v)=\varphi(u v) / 2 \Longleftrightarrow\left\{\begin{array}{l}
s(u)=\varphi(u) \text { and } s(v)=\varphi(v) / 2 \\
o r \\
s(u)=\varphi(u) / 2 \text { and } s(v)=\varphi(v)
\end{array}\right.
$$

3) If $\operatorname{gcd}(s(u), s(v))=2$ then

$$
s(u v)=\varphi(u v) / 2 \Longleftrightarrow s(u)=\varphi(u) \quad \text { and } s(v)=\varphi(v)
$$

Proof. Using the fact that $\operatorname{gcd}(u, v)=1$, it follows that $s(u v)$ is the lcm of $s(u)$ and $s(v)$, so that one can write

$$
\begin{equation*}
s(u v)=\frac{s(u) s(v)}{\operatorname{gcd}(s(u), s(v))} \tag{3.2}
\end{equation*}
$$

But $\operatorname{gcd}(u, v)=1, \varphi$ is multiplicative and $s(u v)=\varphi(u v) / 2$, whence

$$
\frac{\varphi(u) \varphi(v)}{2}=\frac{\varphi(u v)}{2}=s(u v)=\frac{s(u) s(v)}{\operatorname{gcd}(s(u), s(v))}
$$

and

$$
\frac{\varphi(u)}{s(u)} \frac{\varphi(v)}{s(v)}=\frac{2}{\operatorname{gcd}(s(u), s(v))}
$$

As $s(u)$ divides $\varphi(u)$ and $s(v)$ divides $\varphi(v)$, the product of the two integers $\varphi(u) / s(u)$ and $\varphi(v) / s(v)$ must be ≥ 1. The only possibility is that $\varphi(u) / s(u)$ and $\varphi(v) / s(v)$ are both equal to 1 , which proves 3) or one of them is equal to 2 and the other one is equal to 1 which proves 2).

Thanks to Lemma 3.1, the set \mathcal{L} can be rewritten as follows

$$
\begin{equation*}
\mathcal{L}=\{p q \text { such that } s(p q)=(p-1)(q-1) / 2\} . \tag{3.3}
\end{equation*}
$$

Let us associate to the couple (p, q) the integer $\vartheta(p, q)$ defined by

$$
\vartheta(p, q)=\operatorname{gcd}(s(p), s(q)) .
$$

Let us define the sets \mathcal{P}_{1} and \mathcal{P}_{2} containing odd primes with the restrictions:

$$
\begin{align*}
& \mathcal{P}_{1}: s(p)=p-1 \tag{3.4}\\
& \mathcal{P}_{2}: s(p)=(p-1) / 2 \tag{3.5}
\end{align*}
$$

the first elements (up to 100) of \mathcal{P}_{1} are: $3,5,11,13,19,29,37,53,59,61,67,83$ while those of \mathcal{P}_{2} are: $7,17,23,41,47,71,79,97$. Thanks to Euler's criterion, 2 is a square modulo $p \in \mathcal{P}_{2}$ but not a square modulo $p \in \mathcal{P}_{1}$.

Theorem 3.1.

$$
p q \in \mathcal{L} \Longleftrightarrow \begin{cases}p \in \mathcal{P}_{1}, q \in \mathcal{P}_{1} & \text { and } \vartheta(p, q)=2 \tag{3.6}\\ \text { or } & \text { and } \vartheta(p, q)=1 . \\ \left(\left(p \in \mathcal{P}_{1}, q \in \mathcal{P}_{2}\right) \text { or }\left(p \in \mathcal{P}_{2}, q \in \mathcal{P}_{1}\right)\right) & \text { and }\end{cases}
$$

Proof. The proof is an immediate consequence of (3.3) and Lemma 3.2.
We now change focus somewhat and take up the study of the sets $\mathcal{A}(P)$ (cf. (1.1)), when P is irreducible in $\mathbb{F}_{2}[z]$ of order an odd positive integer β such that $s(\beta)=\varphi(\beta) / 2$. More particularly, we aim asserting that we shall restrict the determination of $\mathcal{A}(P)^{<m>}$ (the set of the elements of $\mathcal{A}(P)$ of the form $2^{k} m$) to the more interesting situation, that where β is square-free. Before going further, it is worth noting that there exist exactly 2 different irreducible polynomials in $\mathbb{F}_{2}[z]$ of order β.

Lemma 3.3. Let $n \geq 3$ be an odd positive integer, s the function defined in (1.12), and let p be such that $p \mid n$. Then for all $k \geq 0$,

$$
\begin{equation*}
s\left(p^{k} n\right) \mid p^{k} s(n) \tag{3.7}
\end{equation*}
$$

Proof. When $k=0$, the stated conclusion obviously holds, whereas when $k=1$ then from (1.12), we may write $2^{s(n)}=1+g n$, for some positive integer g. Raising to the p th power, we obtain

$$
\begin{aligned}
2^{p s(n)} & =(1+g n)^{p}=1+\binom{p}{1}(g n)+\binom{p}{2}(g n)^{2}+\cdots+\binom{p}{p-1}(g n)^{p-1}+(g n)^{p} \\
& \equiv 1+\binom{p}{1}(g n) \quad\left(\bmod n^{2}\right) .
\end{aligned}
$$

But $p n \mid n^{2}$ and $p \left\lvert\,\binom{ p}{1}\right.$; therefore the last congruence becomes

$$
2^{p s(n)} \equiv 1 \quad(\bmod p n),
$$

which means that $s(p n) \mid p s(n)$. Next, by induction on k, we show that $2^{p^{k} s(n)}=$ $1+g_{k} p^{k} n$ for some integer g_{k}.

Lemma 3.4. Let β be an odd positive integer such that $s(\beta)=\varphi(\beta) / 2$. Then
(i) $s(\widetilde{\beta})=\varphi(\widetilde{\beta}) / 2$.
(ii) If $p^{2} \mid \beta$ then $s(p \widetilde{\beta})=\varphi(p \widetilde{\beta}) / 2$.

Proof. We assume that $s(\beta)=\varphi(\beta) / 2$ and recall that from Lemma 3.1, one have $\omega(\beta)=1$ or 2 . We treat the case $\omega(\beta)=2$; that is, $\beta=p^{\eta} q^{\nu}$ (the proof of the case $\omega(\beta)=1$ is quite analogous).
(i) It follows from Lemma 3.3 and (3.1) that

$$
\frac{\varphi\left(p^{\eta} q^{\nu}\right)}{2}=s\left(p^{\eta} q^{\nu}\right) \leq p^{\eta-1} q^{\nu-1} s(p q) \leq p^{\eta-1} q^{\nu-1} \frac{\varphi(p q)}{2}=\frac{\varphi\left(p^{\eta} q^{\nu}\right)}{2}
$$

whence $s(p q)=\frac{\varphi(p q)}{2}$ as claimed.
(ii) If $p^{2} \mid \beta$ then $\eta \geq 2$, which as in (i), gives

$$
\frac{\varphi\left(p^{\eta} q^{\nu}\right)}{2}=s\left(p^{\eta} q^{\nu}\right) \leq p^{\eta-2} q^{\nu-1} s\left(p^{2} q\right) \leq p^{\eta-2} q^{\nu-1} \frac{\varphi\left(p^{2} q\right)}{2}=\frac{\varphi\left(p^{\eta} q^{\nu}\right)}{2}
$$

whence $s\left(p^{2} q\right)=\frac{\varphi\left(p^{2} q\right)}{2}$ as claimed.
Lemma 3.5. ([10, Theorem 3.35]) Let $R_{1}(z), R_{2}(z), \ldots, R_{N}(z)$ be all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of degree u and order e, and let $t \geq 2$ be an integer whose prime factors divide e but not $\left(2^{u}-1\right) / e$. Then $R_{1}\left(z^{t}\right), R_{2}\left(z^{t}\right), \ldots, R_{N}\left(z^{t}\right)$ are all the distinct monic irreducible polynomials in $\mathbb{F}_{2}[z]$ of degree ut and order et.
Corollary 3.1. Let β be an odd positive integer such that $s(\beta)=\varphi(\beta) / 2$ and let $\widetilde{P}(z)$ and $\widetilde{Q}(z)$ be all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of order $\widetilde{\beta}$. If $c=\beta / \widetilde{\beta}$ then $\widetilde{P}\left(z^{c}\right)$ and $\widetilde{Q}\left(z^{c}\right)$ are all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of order β.
Proof. If $\beta=\widetilde{\beta}$, there is nothing to prove. Assume then, that $c=\beta / \widetilde{\beta} \neq 1$ and let p be a prime factor of $c=\beta / \widetilde{\beta}$. Clearly, p divides $\widetilde{\beta}, p^{2}$ divides β and $s(p \widetilde{\beta})=\varphi(p \widetilde{\beta}) / 2$ (as seen in (ii) of Lemma 3.4). Suppose that p divides $\left(2^{s(\widetilde{\beta})}-1\right) / \widetilde{\beta}$; that is, $2^{s(\widetilde{\beta})} \equiv 1$ $(\bmod p \widetilde{\beta})$. Thus, $s(p \widetilde{\beta}) \leq s(\widetilde{\beta})$, whence $\varphi(p \widetilde{\beta}) / 2=p \varphi(\widetilde{\beta}) / 2 \leq \varphi(\widetilde{\beta}) / 2$, which is impossible. For the rest of the proof, we just apply Lemma 3.5.

Let β be an odd positive integer such that $s(\beta)=\varphi(\beta) / 2$ and let $P(z)$ and $Q(z)$ be all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of order β. In agreement with the last corollary, $P(z)$ and $Q(z)$ can be arranged so that $P(z)=\widetilde{P}\left(z^{c}\right)$ and $Q(z)=$ $\widetilde{Q}\left(z^{c}\right)$, which with (1.5), yields

$$
\mathcal{A}(P)=c \cdot \mathcal{A}(\widetilde{P}) \text { and } \mathcal{A}(Q)=c \cdot \mathcal{A}(\widetilde{Q})
$$

Therefore, the elements of $\mathcal{A}(P)$ and $\mathcal{A}(Q)$ must be multiple of c. Moreover, if $c \mid m$ then the elements of $\mathcal{A}(P)^{<m>}$ (resp. $\mathcal{A}(Q)^{<m>}$) can be deduced from those of $\mathcal{A}(\widetilde{P})^{<m / c>}\left(\operatorname{resp} . \mathcal{A}(\widetilde{Q})^{<m / c>}\right) ;$

$$
\begin{equation*}
\mathcal{A}(P)^{<m>}=c \cdot \mathcal{A}(\widetilde{P})^{\langle m / c\rangle} \text { and } \mathcal{A}(Q)^{<m>}=c \cdot \mathcal{A}(\widetilde{Q})^{\langle m / c\rangle} . \tag{3.8}
\end{equation*}
$$

Example: As a concrete example, we take $\beta=45$. We have $s(\beta)=s(45)=12=$ $\varphi(45) / 2, \widetilde{\beta}=15$ and $c=\beta / \widetilde{\beta}=3$. The only irreducible polynomials in $\mathbb{F}_{2}[z]$ of order $\beta=45$ are

$$
P(z)=1+z^{3}+z^{12} \text { and } Q(z)=1+z^{9}+z^{12} .
$$

Here, for instance, we aim to determine the sets $\mathcal{A}(P)^{<21>}$ and $\mathcal{A}(Q)^{<21>}$. To this end, we just need to determine the sets $\mathcal{A}(\widetilde{P})^{<7>}$ and $\mathcal{A}(\widetilde{Q})^{<7>}$ with

$$
\widetilde{P}(z)=1+z+z^{4} \text { and } \widetilde{Q}(z)=1+z^{3}+z^{4}
$$

Indeed, since $P(z)=\widetilde{P}\left(z^{3}\right)$ and $Q(z)=\widetilde{Q}\left(z^{3}\right)$ then, from (3.8),

$$
\mathcal{A}(P)^{<21>}=3 \cdot \mathcal{A}(\widetilde{P})^{<7>} \text { and } \mathcal{A}(Q)^{<21>}=3 \cdot \mathcal{A}(\widetilde{Q})^{<7>} .
$$

Recalling that the sets $\mathcal{A}(\widetilde{P})^{<7>}$ and $\mathcal{A}(\widetilde{Q})^{<7>}$ are those corresponding to those given respectively by (1.8) and (1.9), we obtain

$$
\mathcal{A}(P)^{<21>}=\left\{21,42,84,168,336, \ldots 2^{996} \times 21,2^{998} \times 21, \ldots\right\}
$$

and

$$
\mathcal{A}(Q)^{<21>}=\left\{21,672,1344,2688, \ldots, 2^{997} \times 21,2^{999} \times 21, \ldots\right\}
$$

4 Dirichlet character and Gauss sums

We begin by recalling some basic facts concerning the theory of Dirichlet characters and Gauss sums. Let $\beta \geq 3$ be an odd positive integer and let χ be a Dirichlet character $\bmod \beta$. Let κ be a positive divisor of β : we say that a character $\chi^{\star} \bmod$ κ induces χ if

$$
\chi(n)= \begin{cases}\chi^{\star}(n) & \text { if } \operatorname{gcd}(n, \beta)=1 \\ 0 & \text { otherwise }\end{cases}
$$

In this case κ is called an induced modulus for χ; and the smallest induced modulus κ for χ is called the conductor of χ. The Dirichlet character χ is said to be primitive $\bmod \beta$ if it has no induced modulus $\kappa<\beta$. The following characterization of primitive Dirichlet characters will be useful (see [9, Theorem 9.4] for a more general version of this result).

Lemma 4.1. Under the above notation, the following are equivalent:
(1) χ is primitive.
(2) If $d \mid \beta$ and $d<\beta$, then there is an integer n such that $n \equiv 1(\bmod d)$, $\operatorname{gcd}(n, \beta)=1$ and $\chi(n) \neq 1$.

Let ζ be a β-th primitive root of unity, and let n be a positive integer. The sum

$$
\begin{equation*}
\tau(n, \chi)=\sum_{\nu} \chi(\nu) \zeta^{n \nu} \tag{4.1}
\end{equation*}
$$

where ν runs through a full (or reduced) system of residues modulo β, is called the Gauss sum associated with χ. It turns out that, if χ is induced by the primitive character χ^{\star} modulo κ then (see [9, Theorem 9.12]),

$$
\begin{cases}\tau(n, \chi)=0 & \text { if } \kappa \nmid \rho \tag{4.2}\\ \tau(n, \chi)=\bar{\chi}^{\star}(n / \operatorname{gcd}(\beta, n)) \chi^{\star}(\rho / \kappa) \frac{\varphi(\beta)}{\varphi(\rho)} \mu(\rho / \kappa) \tau\left(\chi^{\star}\right) & \text { if } \kappa \mid \rho\end{cases}
$$

where $\tau\left(\chi^{\star}\right)=\tau\left(1, \chi^{\star}\right)$ is the normed Gaussian sum, $\bar{\chi}^{\star}$ is the complex conjugate of χ^{\star} and

$$
\rho=\rho(\beta, n)=\frac{\beta}{\operatorname{gcd}(\beta, n)} .
$$

If χ is the principal character $\bmod \beta(\chi$ assumes the value 1 for all n coprime with β) then $\tau(n, \chi)$ reduces to the Ramanujan sum $c(n, \beta)$;

$$
\begin{equation*}
c(n, \beta)=\sum_{\nu} \zeta^{n \nu}, \tag{4.3}
\end{equation*}
$$

where ν runs through a reduced system of residues modulo β. It is known that the Ramanujan sum satisfies Hölder's formula (see [9], p. 110),

$$
\begin{equation*}
c(n, \beta)=\frac{\varphi(\beta)}{\varphi(\rho)} \mu(\rho), \tag{4.4}
\end{equation*}
$$

which when taking $n=1$ reduces to the Möbius function: $c(1, \beta)=\mu(\beta)$.
From now on, we assume that β is an element of \mathcal{L} and recall that, in this case, $r=r(\beta)=2$ where $r(\beta)$ is that integer defined by (1.13). From (2.4), one may write

$$
\begin{equation*}
(\mathbb{Z} / \beta \mathbb{Z})^{\star}=O_{\beta}(1) \cup O_{\beta}(y) . \tag{4.5}
\end{equation*}
$$

where y is a positive integer coprime with β, but does not belong to $O_{\beta}(1)$. Under these assumptions, one can define the map χ by

$$
\begin{cases}\chi(n)=1 & \text { if } n \in O_{\beta}(1) \tag{4.6}\\ \chi(n)=-1 & \text { if } n \in O_{\beta}(y) \\ \chi(n)=0 & \text { if } \operatorname{gcd}(n, \beta)>1\end{cases}
$$

We may easily verify that χ is indeed a quadratic Dirichlet character $\bmod \beta$. Moreover, the Gauss sum associated with χ (cf. (4.1)) may be written as

$$
\tau(n, \chi)=\sum_{j=0}^{s-1}\left(\zeta^{n}\right)^{2^{j}}-\sum_{j=0}^{s-1}\left(\zeta^{n}\right)^{2^{j} y}
$$

where $s=s(\beta)=\frac{\varphi(\beta)}{2}$. The last equality can be rewritten as

$$
\begin{equation*}
\tau(n, \chi)=B(n, \zeta)-B(n y, \zeta) \tag{4.7}
\end{equation*}
$$

where $B(n, z)$ is the polynomial defined by (2.7). On the other hand, the Ramanujan sum $c(n, \beta)$ (cf. (4.3)) can be written as

$$
\begin{equation*}
c(n, \beta)=B(n, \zeta)+B(n y, \zeta) \tag{4.8}
\end{equation*}
$$

The following Lemmas will be needed in the proof of Theorem 5.1.

Lemma 4.2. Let χ be the quadratic Dirichlet character $\bmod \beta$ defined by (4.6), and let χ^{\star} be the primitive Dirichlet character mod κ that induces χ. Let \mathcal{P}_{1} and \mathcal{P}_{1} the sets defined respectively by (3.4) and (3.5).

1. If $\beta=p q$ where $p \in \mathcal{P}_{1}$ and $q \in \mathcal{P}_{1}$, then

$$
\begin{equation*}
\kappa=p q \text { and } \chi^{\star}=\chi \tag{4.9}
\end{equation*}
$$

2. If $\beta=p q$ where $p \in \mathcal{P}_{2}$ and $q \in \mathcal{P}_{1}$, then

$$
\kappa=p \text { and } \chi^{\star}(n)=\left\{\begin{array}{cl}
1 & \text { if } n \in O_{p}(1) \tag{4.10}\\
-1 & \text { if } n \in O_{p}(y)
\end{array}\right.
$$

Proof. 1. We assume that $\beta=p q$ where $p \in \mathcal{P}_{1}, q \in \mathcal{P}_{1}$ and we shall prove that χ is primitive. In anticipation of a contradiction, we suppose (cf. Lemma 4.1) that there exists a positive integer $d<\beta=p q$ dividing β such for all integers n satisfying

$$
\begin{equation*}
n \equiv 1 \quad(\bmod d) \text { and } \operatorname{gcd}(n, p q)=1 \tag{4.11}
\end{equation*}
$$

we have $\chi(n)=1$. For instance, let us take $d=p$ and then let \mathcal{R} be the set of all residues modulo $p q$ satisfying (4.11); that is,

$$
\mathcal{R}=\{1+k p, k=0,1, \ldots, q-1 \text { and } \operatorname{gcd}(1+k p, q)=1\}
$$

For $t, 0 \leq t \leq p-2$, we define the set \mathcal{R}_{t} by

$$
\mathcal{R}_{t}=\left\{2^{t} n \bmod p q, n \in \mathcal{R}\right\} .
$$

If $n \in \mathcal{R}$, we have $\chi(n)=1$ and thus $n \in O_{p q}(1)$, which implies that $2^{t} n \in O_{p q}(1)$; that is,

$$
\begin{equation*}
\bigcup_{t=0}^{p-2} \mathcal{R}_{t} \subset O_{p q}(1) \tag{4.12}
\end{equation*}
$$

From (2.6) and the fact that $\beta=p q \in \mathcal{L}$, it follows that $\left|O_{p q}(1)\right|=s(p q)=$ $(p-1)(q-1) / 2$, which with (4.12) yields

$$
\begin{equation*}
\left|\bigcup_{t=0}^{p-2} \mathcal{R}_{t}\right| \leq(p-1)(q-1) / 2 \tag{4.13}
\end{equation*}
$$

We claim that for all $t, 0 \leq t \leq p-2$, we have

$$
\left|\mathcal{R}_{t}\right|=|\mathcal{R}|=q-1 \text { or } q .
$$

For a fixed $t(0 \leq t \leq p-2)$, it is clear that if n and n^{\prime} are distinct elements of \mathcal{R} then $2^{t} n$ and $2^{t} n^{\prime}$ are incongruent modulo $p q$; therefore, $\left|\mathcal{R}_{t}\right|=|\mathcal{R}|$. Now, we shall prove that $|\mathcal{R}|=q-1$ or q; in other words at most one term of the progression $1,1+p, \ldots, 1+(q-1) p$ is divisible by q. Suppose to the contrary, that there exist two distinct integers k and $k^{\prime}, 0 \leq k<k^{\prime} \leq q-1$ such that the numbers $1+k p$
and $1+k^{\prime} p$ are divisible by q. Then q divides their difference $\left(k^{\prime}-k\right) p$. But p and q are distinct prime numbers, and thus $q \mid\left(k^{\prime}-k\right)$ which is nonsense in light of the inequality $0<k^{\prime}-k<q$.

We shall now prove that the \mathcal{R}_{t} 's are pairwise disjoint. If it happened that

$$
2^{t} n \equiv 2^{t^{\prime}} n^{\prime} \quad(\bmod p q)
$$

where $0 \leq t, t^{\prime} \leq p-2, n \in \mathcal{R}$ and $n^{\prime} \in \mathcal{R}$, then, by passing to a congruence modulo p, we would have

$$
2^{t} \equiv 2^{t^{\prime}} \quad(\bmod p)
$$

Therefore, since $s(p)=p-1$, it follows that $t \equiv t^{\prime}(\bmod p-1)$ which implies that $t=t^{\prime}$ (since $\left|t-t^{\prime}\right| \leq p-2$) establishing the result claimed. Consequently,

$$
\left|\bigcup_{t=0}^{p-2} \mathcal{R}_{t}\right|=\sum_{t=0}^{p-2}\left|\mathcal{R}_{t}\right|=(p-1)|\mathcal{R}| \geq(p-1)(q-1)
$$

which contradicts (4.13).
2. We assume that $\beta=p q$ where $p \in \mathcal{P}_{2}$ and $q \in \mathcal{P}_{1}$. According to Theorem 3.1, $\operatorname{gcd}((p-1) / 2, q-1)=1$, and thus $(p-1) / 2$ must be odd, which implies that -1 is not a square modulo p. But, $p \in \mathcal{P}_{2}$, and thus 2 is square modulo p; hence 2 and -1 can not lie in a same orbit of $(\mathbb{Z} / p \mathbb{Z})^{\star}$. Consequently, $(\mathbb{Z} / p \mathbb{Z})^{\star}$ can be partitioned as follows

$$
(\mathbb{Z} / p \mathbb{Z})^{\star}=O_{p}(1) \cup O_{p}(-1) .
$$

From (4.5), it follows that $-1 \notin O_{\beta}(1)$ which with the fact that $\operatorname{gcd}(-1, \beta)=1$ yields $-1 \in O_{\beta}(y)$, say $y \in O_{p}(-1)$. Hence,

$$
\begin{equation*}
(\mathbb{Z} / p \mathbb{Z})^{\star}=O_{p}(1) \cup O_{p}(y) \tag{4.14}
\end{equation*}
$$

It now follows that the Dirichlet character $\chi^{\star} \bmod \kappa$ with $\kappa=p$ (cf. (4.10)) is well-defined; moreover, it clearly induces the character χ given by (4.6). The proof is completed by noting that the modulus p is prime which makes χ^{\star} primitive.

Remark 4.1. As it can be seen in the last Lemma, χ^{\star} is a primitive quadratic character modulo κ; hence (cf. [8, Theorem 7, p. 392])

$$
\begin{cases}\tau\left(\chi^{\star}\right)=\sqrt{\kappa} & \text { if } \chi^{\star}(-1)=1 \tag{4.15}\\ \tau\left(\chi^{\star}\right)=i \sqrt{\kappa} & \text { if } \chi^{\star}(-1)=-1\end{cases}
$$

where $\tau\left(\chi^{\star}\right)=\tau\left(1, \chi^{\star}\right)$ is the normed Gaussian sum (cf. (4.1)) and i is the imaginary unit.
Lemma 4.3. For a positive integer n, let $\psi(n)$ and $\phi(n)$ be the expressions defined by

$$
\begin{equation*}
\psi(n)=B(n, \zeta) \text { and } \phi(n)=B(n y, \zeta) \tag{4.16}
\end{equation*}
$$

where $B(n, z)$ is the polynomial defined by (2.7) and ζ is a β-th primitive root of unity. Let χ be the quadratic Dirichlet character mod β given by (4.6), and let χ^{\star} be the primitive character mod κ inducing χ. With $\tau\left(\chi^{\star}\right)=\tau\left(1, \chi^{\star}\right)$ as defined by (4.1), a and b positive integers, we have

- $\beta=p q, p \in \mathcal{P}_{1}$ and $q \in \mathcal{P}_{1}$:

1. $\psi(1)=\frac{1+\tau\left(\chi^{\star}\right)}{2}$ and $\phi(1)=\frac{1-\tau\left(\chi^{\star}\right)}{2}$
2. If $b \geq 1$, then $\psi\left(q^{b}\right)=\phi\left(q^{b}\right)=-\frac{(q-1)}{2}$ and $\psi\left(p q^{b}\right)=\phi\left(p q^{b}\right)=\varphi(\beta) / 2$
3. If $a \geq 1$, then $\psi\left(p^{a}\right)=\phi\left(p^{a}\right)=-\frac{(p-1)}{2}$ and $\psi\left(p^{a} q\right)=\phi\left(p^{a} q\right)=\varphi(\beta) / 2$

- $\beta=p q, p \in \mathcal{P}_{2}$ and $q \in \mathcal{P}_{1}$:

1. $\psi(1)=\frac{1-\chi^{\star}(q) \tau\left(\chi^{\star}\right)}{2}$ and $\phi(1)=\frac{1+\chi^{\star}(q) \tau\left(\chi^{\star}\right)}{2}$
2. If $b \geq 1$, then

- $\psi\left(q^{b}\right)=-(q-1) \frac{1-\chi^{\star}\left(q^{b-1}\right) \tau\left(\chi^{\star}\right)}{2}, \phi\left(q^{b}\right)=-(q-1) \frac{1+\chi^{\star}\left(q^{b-1}\right) \tau\left(\chi^{\star}\right)}{2}$
- $\psi\left(p q^{b}\right)=\phi\left(p q^{b}\right)=\varphi(\beta) / 2$

3. If $a \geq 1$, then $\psi\left(p^{a}\right)=\phi\left(p^{a}\right)=-\frac{(p-1)}{2}$ and $\psi\left(p^{a} q\right)=\phi\left(p^{a} q\right)=\varphi(\beta) / 2$.

Proof. From (4.7) and (4.8), we obtain

$$
\psi(n)+\phi(n)=c(n, \beta) \text { and } \psi(n)-\phi(n)=\tau(n, \chi)
$$

whence

$$
\psi(n)=\frac{1}{2}(c(n, \beta)+\tau(n, \chi)) \text { and } \phi(n)=\frac{1}{2}(c(n, \beta)-\tau(n, \chi)) .
$$

For the rest of the proof, we just have to apply (4.2) and (4.4).

5 The minimal polynomial $G_{m, \mathcal{A}}(x)$ of $S(\mathcal{A}, m)$

Let \mathcal{L} be the set defined by (1.15), and let $\beta=p q$ be an element of \mathcal{L}. Let \widetilde{P} and \widetilde{Q} be all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of order β; and let $\mathcal{A}=\mathcal{A}(\widetilde{P})$ and $\mathcal{A}^{\prime}=\mathcal{A}(\widetilde{Q})$ be the even partition sets satisfying (1.1). For an odd positive integer m, we recall that $\mathcal{A}^{<m>}$ (resp. $\mathcal{A}^{\prime<m>}$) denotes the set of the elements of \mathcal{A} (resp. \mathcal{A}^{\prime}) of the form $2^{k} m$. Let $S(\mathcal{A}, m)$ and $S\left(\mathcal{A}^{\prime}, m\right)$ be the 2 -adic integers defined by (1.6) and we recall that $G_{m, \mathcal{A}}(x)$ and $G_{m, \mathcal{A}^{\prime}}(x)$ (cf. (1.7)) denote the minimal polynomials of $S(\mathcal{A}, m)$ and $S\left(\mathcal{A}^{\prime}, m\right)$, respectively. In this Section, for purpose of determining the sets $\mathcal{A}^{<m>}$ and $\mathcal{A}^{\prime<m>}$, we aim to obtain formulae for $G_{m, \mathcal{A}}(x)$ and $G_{m, \mathcal{A}^{\prime}}(x)$.

Let \mathcal{P}_{1} and \mathcal{P}_{2} be the sets of odd primes defined by (3.4) and (3.5). In what follows, we always use the letters a and b to denote non negative integers and we take p as the prime number dividing β that may belong to \mathcal{P}_{2}. As it has already been mentioned in Section 2 (cf. (2.2)), if $m \notin \mathcal{M}_{\beta}$ or if $\beta^{2} \mid m$ then $S(\mathcal{A}, m)$ and
$S\left(\mathcal{A}^{\prime}, m\right)$ vanish; in other words, $\mathcal{A}^{<m>}=\mathcal{A}^{\prime<m>}=\emptyset$. Thus, we may hereafter restrict our study to odd integers of the form

$$
\begin{equation*}
p^{a} q^{b} m \text { such that } \operatorname{gcd}(m, p q)=1 \text { and }(a \leq 1 \text { or } b \leq 1), \tag{5.1}
\end{equation*}
$$

where $m \in \mathcal{M}_{\beta}$ (cf. Remark 2.1).
Theorem 5.1. Let $\beta=p q \in \mathcal{L}$ defined in (1.15), $m \neq 1$ be an odd positive integer belonging to \mathcal{M}_{β} such that $\operatorname{gcd}(m, \beta)=1$, and let $\alpha(m)$ be the integer defined by

$$
\alpha(m)=2^{\omega(m)-1},
$$

where $\omega(m)$ is given by (1.11). We let χ, χ^{\star} as in Lemma 4.3, κ is the conductor of χ and we define the integer i^{\star} by

$$
i^{\star}=\chi^{\star}(-1)
$$

1. $G_{1, \mathcal{A}}(x)=x^{2}+x+\frac{1-i^{\star} \kappa}{4}$ and $G_{m, \mathcal{A}}(x)=x^{2}-\frac{\alpha^{2}(m)}{m^{2}} i^{\star} \kappa$.
2. $G_{q, \mathcal{A}}(x)=x^{2}-x+\frac{q^{2}-\left(q-1+\chi^{\star}(q)\right)^{2 g} i^{\star} \kappa}{4 q^{2}}$ and

$$
G_{q m, \mathcal{A}}(x)=x^{2}-\frac{\alpha^{2}(m)\left(q-1+\chi^{\star}(q)\right)^{2 g}}{q^{2} m^{2}} i^{\star} \kappa \text {, where } g=0 \text { if } p \in \mathcal{P}_{1} \text { and } g=1
$$

$$
\text { if } p \in \mathcal{P}_{2}
$$

3. $G_{p, \mathcal{A}}(x)=x^{2}-x+\frac{p^{2}-i^{\star} \kappa}{4 p^{2}}$ and $G_{p m, \mathcal{A}}(x)=x^{2}-\frac{\alpha^{2}(m)}{p^{2} m^{2}} i^{\star} \kappa$.
4. $G_{p q, \mathcal{A}}(x)=x^{2}+x+\frac{p^{2} q^{2}-\left(q-1+\chi^{\star}(q)\right)^{2 g} i^{\star} \kappa}{4 p^{2} q^{2}}$ and
$G_{p q m, \mathcal{A}}(x)=x^{2}-\frac{\alpha^{2}(m)\left(q-1+\chi^{\star}(q)\right)^{2 g}}{p^{2} q^{2} m^{2}} i^{\star} \kappa$.
5. If $a \leq 1, b \geq 2$ and $p \in \mathcal{P}_{1}$ then $G_{p^{a} q^{b}, \mathcal{A}}(x)=x$ and $G_{p^{a} q^{b} m, \mathcal{A}}(x)=x$.
6. If $a \leq 1, b \geq 2$ and $p \in \mathcal{P}_{2}$ then

- $G_{p^{a} q^{b}, \mathcal{A}}(x)=x$ and $G_{p^{a} q^{b} m, \mathcal{A}}(x)=x$ when $\chi^{\star}(q)=1$.
- $G_{p^{a} q^{b}, \mathcal{A}}(x)=x^{2}-\frac{(q-1)^{2}}{p^{2 a} q^{2 b}} i^{\star} \kappa$ and $G_{p^{a} q^{b} m, \mathcal{A}}(x)=x^{2}-\frac{4 \alpha^{2}(m)(q-1)^{2}}{p^{2 a} q^{2 b} m^{2}} i^{\star} \kappa$ when $\chi^{\star}(q)=-1$.

7. If $a \geq 2$ and $b \leq 1$, then $G_{p^{a} q^{b}, \mathcal{A}}(x)=x$ and $G_{p^{a} q^{b} m, \mathcal{A}}(x)=x$.

Proof. We let $m \in \mathcal{M}_{\beta}$ such that $\operatorname{gcd}(m, p q)=1$ and we shall look for formulae for $G_{p^{a} q^{b} m, \mathcal{A}}(x)$ and $G_{p^{a} q^{b} m, \mathcal{A}^{\prime}}(x)$. For this purpose, we shall make explicit the polynomial $H_{p^{a} q^{b} m}(x)$ defined by (2.3); this interest comes from the fact (cf. Section 2) that $G_{p^{a} q^{b} m, \mathcal{A}}(x)$ and $G_{p^{a} q^{b} m, \mathcal{A}^{\prime}}(x)$ are irreducible factors of $H_{p^{a} q^{b} m}(x)$.

Let $D_{p^{a} q^{b} m}(z)$ be the polynomials given by (2.10), and let y be an integer defined by (4.5). From (2.12), we know that there exists a β-th primitive root of unity ζ such that

$$
H_{p^{a} q^{b} m}(x)=\left(p^{a} q^{b} m x+D_{p^{a} q^{b} m}(\zeta)\right)\left(p^{a} q^{b} m x+D_{p^{a} q^{b} m}\left(\zeta^{y}\right)\right) ;
$$

so that

$$
\begin{equation*}
H_{p^{a} q^{b} m}(x)=a_{2} x^{2}+a_{1} x+a_{0}, \tag{5.2}
\end{equation*}
$$

where
$a_{2}=p^{2 a} q^{2 b} m^{2}, a_{1}=p^{a} q^{b} m\left(D_{p^{a} q^{b} m}(\zeta)+D_{p^{a} q^{b} m}\left(\zeta^{y}\right)\right)$ and $a_{0}=D_{p^{a} q^{b} m}(\zeta) D_{p^{a} q^{b} m}\left(\zeta^{y}\right)$.
From (2.10), it follows that

$$
\begin{equation*}
D_{p^{a} q^{b} m}(z)=\sum_{d \mid \tilde{m}} \mu(d) U_{\frac{m}{d}}(z), \tag{5.3}
\end{equation*}
$$

where $U_{\ell}(z)$ is the polynomial given by
$U_{\ell}(z)=B\left(p^{a} q^{b} \ell, z\right)-\varepsilon(a) B\left(p^{a-1} q^{b} \ell, z\right)-\varepsilon(b) B\left(p^{a} q^{b-1} \ell, z\right)+\varepsilon(a) \varepsilon(b) B\left(p^{a-1} q^{b-1} \ell, z\right)$,
where $\varepsilon(n)=0$ or 1 according as $n=0$ or not, and $B(n, z)$ is the polynomial defined by (2.7). But, for all d dividing \widetilde{m}, one easily see that $\frac{m}{d} \in O_{\beta}(1)$ or $\frac{m}{d} \in O_{\beta}(y)$, so that (5.3) becomes

$$
\begin{equation*}
D_{p^{a} q^{b} m}(z)=\lambda(m, 1) U_{1}(z)+\lambda(m, y) U_{y}(z), \tag{5.4}
\end{equation*}
$$

where $\lambda(m, n)$ is the integer given by (2.8).
In order to obtain formulae for $\lambda(m, 1)$ and $\lambda(m, y)$, we first note that $\lambda(1,1)=1$ and $\lambda(1, y)=0$. Next, we assume that $m \neq 1$ and recall that all prime divisors of m lie in $O_{\beta}(y)$. By observing that the product of two elements of $O_{\beta}(1)$ or $O_{\beta}(y)$ is an element of $O_{\beta}(1)$ whereas the product of an element of $O_{\beta}(1)$ with another of $O_{\beta}(y)$ gives an element of $O_{\beta}(y)$, we obtain for $d \mid \widetilde{m}$

$$
\begin{aligned}
& \frac{m}{d} \in O_{\beta}(1) \Longleftrightarrow \Omega\left(\frac{m}{d}\right) \text { is even, } \\
& \frac{m}{d} \in O_{\beta}(y) \Longleftrightarrow \Omega\left(\frac{m}{d}\right) \text { is odd, }
\end{aligned}
$$

where $\Omega(n)$ denotes the number of prime factors of n counted with multiplicity. Hence, from (2.8),

$$
\lambda(m, 1)=\sum_{\substack{d \left\lvert\, \widetilde{m} \\ \Omega\left(\frac{m}{d}\right)\right. \text { is even }}} \mu(d)=\sum_{\substack{d \mid \tilde{m} \\ \Omega(m)-\Omega(d) \text { is even }}} \mu(d) .
$$

Since, in the last sum, d is square-free then $\Omega(d)=\omega(d)$ along with the fact that

$$
\sum_{\substack{d \mid \tilde{m} \\ \omega(d) \text { is even }}} 1=\sum_{\substack{d \mid \tilde{m} \\ \omega(d) \text { is odd }}} 1=2^{\omega(m)-1}
$$

yields

$$
\lambda(m, 1)=(-1)^{\Omega(m)} 2^{\omega(m)-1}=(-1)^{\Omega(m)} \alpha(m) .
$$

Similarly, we obtain

$$
\lambda(m, y)=-(-1)^{\Omega(m)} 2^{\omega(m)-1}=-(-1)^{\Omega(m)} \alpha(m)
$$

Now, by replacing in (5.4), z first by ζ and then by ζ^{y}, we obtain

$$
D_{p^{a} q^{b}}(\zeta)=U_{1}(\zeta) \text { and } D_{p^{a} q^{b}}\left(\zeta^{y}\right)=U_{y}(\zeta)
$$

and

$$
\left.D_{p^{a} q^{b} m}(\zeta)=-D_{p^{a} q^{b} m}\left(\zeta^{y}\right)=(-1)^{\Omega(m)} \alpha(m)\left(U_{1}(\zeta)-U_{y}(\zeta)\right)\right), \text { if } m \neq 1
$$

with

$$
U_{1}(\zeta)=\psi\left(p^{a} q^{b}\right)-\varepsilon(a) \psi\left(p^{a-1} q^{b}\right)-\varepsilon(b) \psi\left(p^{a} q^{b-1}\right)+\varepsilon(a) \varepsilon(b) \psi\left(p^{a-1} q^{b-1}\right)
$$

and

$$
U_{y}(\zeta)=\phi\left(p^{a} q^{b}\right)-\varepsilon(a) \phi\left(p^{a-1} q^{b}\right)-\varepsilon(b) \phi\left(p^{a} q^{b-1}\right)+\varepsilon(a) \varepsilon(b) \phi\left(p^{a-1} q^{b-1}\right),
$$

where ψ and ϕ are defined by (4.16).
Lastly, the calculations leading to the expressions of the terms a_{1} and a_{0} are a bit long but straightforward, so it is convenient that we omit them. Without embarking on the details, we apply Lemma 4.3 to calculate $U_{1}(\zeta)$ and $U_{y}(\zeta)$, which will allow us to obtain the coefficient a_{1}, a_{0} and make explicit the polynomial $H_{p^{a} q^{b} m}(x)$. It turns out that $H_{p^{a} q^{b} m}(x)$ is either $p^{2 a} q^{2 b} m^{2} x^{2}$ (which means that $G_{p^{a} q^{b} m, \mathcal{A}}(x)=G_{p^{a} q^{b} m, \mathcal{A}^{\prime}}(x)=x$) or an irreducible quadratic polynomial (which means that $\left.G_{p^{a} q^{b} m, \mathcal{A}}(x)=G_{p^{a} q^{b} m, \mathcal{A}^{\prime}}(x)=\frac{1}{p^{2 a} q^{2 b} m^{2}} H_{p^{a} q^{b} m}(x)\right)$. In fact, this may be interpreted as asserting that $S\left(\mathcal{A}, p^{a} q^{b} m\right)$ and $S\left(\mathcal{A}^{\prime}, p^{a} q^{b} m\right)$ are conjugate.

Example: We take $\beta=3 \times 5=15$. The irreducible polynomials of order $\beta=15$ over $\mathbb{F}_{2}[z]$ are $\widetilde{P}(z)=1+z+z^{4}$ and $\widetilde{Q}(z)=1+z^{3}+z^{4}$. Let $\mathcal{A}=\mathcal{A}(\widetilde{P})$ and $\mathcal{A}^{\prime}=\mathcal{A}(\widetilde{Q})$ be the sets defined by (1.1). For $m \geq 3$, recall that the 2 -adic integer $S(\mathcal{A}, m)$ can be written as follows

$$
S(\mathcal{A}, m)=\epsilon_{0}+\epsilon_{1} \cdot 2+\epsilon_{2} \cdot 2^{2}+\epsilon_{3} \cdot 2^{3}+\cdots
$$

where $\epsilon_{k} \in\{0,1\}$. We also recall that by knowing the last expansion, one can deduce the elements of the set $\mathcal{A}^{<m>}$ since

$$
2^{k} m \in \mathcal{A}^{<m>} \Longleftrightarrow \epsilon_{k}=1
$$

We begin by looking for the elements of the sets $\mathcal{A}^{\left.<3^{a} 5^{b} 7\right\rangle}$ and $\mathcal{A}^{\left.<3^{a} 5^{b} 7\right\rangle}$. For that, we first have to calculate $G_{3^{a} 5^{b} 7, \mathcal{A}}(x)$ (for all values of a and b), and then determine its roots; namely the expansions $S\left(\mathcal{A}, 3^{a} 5^{b} 7\right)$ and $S\left(\mathcal{A}^{\prime}, 3^{a} 5^{b} 7\right)$. In order to specify which root of $G_{3^{a} 5^{b} 7, \mathcal{A}}(x)$ corresponds to $S\left(\mathcal{A}, 3^{a} 5^{b} 7\right)$, we just need to compute the first few elements of the sets \mathcal{A} and \mathcal{A}^{\prime}.

- $(a \leq 1$ and $b \geq 2)$ or ($a \geq 2$ and $b \leq 1): G_{3^{a} 5^{b} 7, \mathcal{A}}(x)=G_{3^{a} 5^{b} 7, \mathcal{A}^{\prime}}(x)=x$.
$\mathcal{A}^{<3^{a} 5^{b} 7>}=\mathcal{A}^{\prime<3^{a} 5^{b} 7>}=\emptyset$.
- $G_{7, \mathcal{A}}(x)=x^{2}+\frac{15}{49}$.
$\mathcal{A}^{<7>}=\left\{7,14,28,56,112,2^{10} \times 7,2^{11} \times 7,2^{12} \times 7,2^{15} \times 7,2^{17} \times 7,2^{18} \times 7,2^{22} \times 7, \ldots\right\}$ $\mathcal{A}^{\prime<7>}=\left\{7,224,448,896,1792,2^{9} \times 7,2^{13} \times 7,2^{14} \times 7,2^{16} \times 7,2^{19} \times 7,2^{20} \times 7, \ldots\right\}$
- $G_{35, \mathcal{A}}(x)=x^{2}+\frac{3}{245}$.
$\mathcal{A}^{<35>}=\left\{35,140,280,1120,8960,2^{9} \times 35,2^{10} \times 35,2^{14} \times 35,2^{19} \times 35,2^{20} \times 35, \ldots\right\}$
$\mathcal{A}^{\prime<35>}=\left\{35,70,560,2240,4480,2^{11} \times 35,2^{12} \times 35,2^{13} \times 35,2^{15} \times 35,2^{16} \times 35, \ldots\right\}$
- $G_{21, \mathcal{A}}(x)=x^{2}+\frac{5}{147}$.
$\mathcal{A}^{<21>}=\left\{21,42,168,1344,2^{8} \times 21,2^{13} \times 21,2^{16} \times 21,2^{17} \times 21,2^{20} \times 21,2^{23} \times 21, \ldots\right\}$
$\mathcal{A}^{\prime<21>}=\left\{21,84,336,672,2^{7} \times 21,2^{9} \times 21,2^{10} \times 21,2^{11} \times 21,2^{12} \times 21,2^{14} \times 21, \ldots\right\}$
- $G_{105, \mathcal{A}}(x)=x^{2}+\frac{1}{735}$.
$\mathcal{A}^{<105>}=\left\{105,1680,3360,2^{6} \times 105,2^{7} \times 105,2^{9} \times 105,2^{12} \times 105,2^{15} \times 105, \ldots\right\}$
$\mathcal{A}^{\prime<105>}=\left\{105,210,420,840,2^{8} \times 105,2^{10} \times 105,2^{11} \times 105,2^{13} \times 105,2^{14} \times 105, \ldots\right\}$
Recall that $P(z)=\widetilde{P}\left(z^{3}\right)=1+z^{3}+z^{12}$ and $Q(z)=\widetilde{Q}\left(z^{3}\right)=1+z^{9}+z^{12}$ are all the distinct irreducible polynomials in $\mathbb{F}_{2}[z]$ of order 45. Let $\mathcal{A}(P)$ and $\mathcal{A}(Q)$ be the sets defined by (1.1). Looking for the elements of the sets $\mathcal{A}(P)^{<3^{a} 5^{b} 7>}$ and $\mathcal{A}(Q)^{<3^{a} 5^{b} 7>}$, it turns out that if $3 \nmid 3^{a} 5^{b} 7(a=0)$ then

$$
\mathcal{A}(P)^{<3^{a} 5^{b} 7>}=\mathcal{A}(Q)^{<3^{a} 5^{b} 7>}=\emptyset
$$

From (3.8), it follows that if $3 \mid 3^{a} 5^{b} 7(a \geq 1)$ then

$$
\mathcal{A}(P)^{<3^{a} 5^{b} 7>}=3 \cdot \mathcal{A}^{<3^{a-1} 5^{b} 7>} \text { and } \mathcal{A}(Q)^{<3^{a} 5^{b} 7>}=3 \cdot \mathcal{A}^{\prime<3^{a-1} 5^{b} 7>}
$$

which can be expressed in more detail by:

- $(a \leq 2$ and $b \geq 2)$ or $(a \geq 3$ and $b \leq 1): \mathcal{A}(P)^{<3^{a} 5^{b} 7>}=\mathcal{A}(Q)^{<3^{a} 5^{b} 7>}=\emptyset$
- $\mathcal{A}(P)^{<21>}=3 \cdot \mathcal{A}^{<7>}$ and $\mathcal{A}(Q)^{<21>}=3 \cdot \mathcal{A}^{<7>}$;
$\mathcal{A}(P)^{<21>}=\left\{21,42,84,168,336,2^{10} \times 21,2^{11} \times 21,2^{12} \times 21,2^{15} \times 21,2^{17} \times 21, \ldots\right\}$
$\mathcal{A}(Q)^{<21>}=\left\{21,672,1344,2688,5376,2^{9} \times 21,2^{13} \times 21,2^{14} \times 21,2^{16} \times 21,2^{19} \times 21, \ldots\right\}$
- $\mathcal{A}(P)^{<3.5 .7>}=3 \cdot \mathcal{A}^{<35>}$ and $\mathcal{A}(Q)^{<3.5 .7>}=3 \cdot \mathcal{A}^{<35>}$
$\mathcal{A}(P)^{<105>}=\left\{105,420,840,3360,26880,2^{9} \times 105,2^{10} \times 105,2^{14} \times 105,2^{19} \times 105, \ldots\right\}$
$\mathcal{A}(Q)^{<105>}=\left\{105,210,1680,6720,13440,2^{11} \times 105,2^{12} \times 105,2^{13} \times 105,2^{15} \times 105, \ldots\right\}$
- $\mathcal{A}(P)^{<63>}=3 \cdot \mathcal{A}^{<21>}$ and $\mathcal{A}(Q)^{<63>}=3 \cdot \mathcal{A}^{\prime<21>}$

$$
\begin{aligned}
& \mathcal{A}(P)^{<63>}=\left\{63,126,504,4032,2^{8} \times 63,2^{13} \times 63,2^{16} \times 63,2^{17} \times 63,2^{20} \times 63, \ldots\right\} \\
& \mathcal{A}(Q)^{<63>}=\left\{63,252,1008,2016,2^{7} \times 63,2^{9} \times 63,2^{10} \times 63,2^{11} \times 63,2^{12} \times 63, \ldots\right\} \\
& \text { - } \mathcal{A}(P)^{<315>}=3 \cdot \mathcal{A}^{<105>} \text { and } \mathcal{A}(Q)^{<315>}=3 \cdot \mathcal{A}^{\prime<105>} . \\
& \mathcal{A}(P)^{<315>}=\left\{315,5040,10080,2^{6} \times 315,2^{7} \times 105,2^{9} \times 315,2^{12} \times 315,2^{15} \times 315, \ldots\right\} \\
& \mathcal{A}(Q)^{<315>}=\left\{315,630,1260,2520,2^{8} \times 315,2^{10} \times 315,2^{11} \times 315,2^{13} \times 315, \ldots\right\} .
\end{aligned}
$$

Conclusion Let $\beta \geq 3$ be an odd positive integer and let $P(z) \in \mathbb{F}_{2}[z]$ be irreducible of order β. It can now be stated that the problem of determining the elements of the set $\mathcal{A}^{<m>}$ is solved for the case $s(\beta)=\varphi(\beta) / 2$ and it will be interesting to envisage extending the cases $\beta=p$ a prime with $s(p)=(p-1) / 3$ or $(p-1) / 4$ to all β such that $s(\beta)=\varphi(\beta) / 3$ or $\varphi(\beta) / 4$.
In the following table we give $s(\beta)$ for all values of $\beta<100$.

β	$s(\beta)$	35	$12=\varphi(35) / 2$	69	$22=\varphi(69) / 2$
3	$2=\varphi(3)$	37	$36=\varphi(37)$	71	$35=\varphi(71) / 2$
5	$4=\varphi(5)$	39	$12=\varphi(39) / 2$	73	$9=\varphi(73) / 8$
7	$3=\varphi(7) / 2$	41	$20=\varphi(41) / 2$	75	$20=\varphi(75) / 2$
9	$6=\varphi(9)$	43	$14=\varphi(43) / 3$	77	$30=\varphi(77) / 2$
11	$10=\varphi(11)$	45	$12=\varphi(45) / 2$	79	$39=\varphi(79) / 2$
13	$12=\varphi(13)$	47	$23=\varphi(47) / 2$	81	$54=\varphi(81)$
15	$4=\varphi(15) / 2$	49	$21=\varphi(49) / 2$	83	$82=\varphi(83)$
17	$8=\varphi(17) / 2$	51	$8=\varphi(51) / 4$	85	$8=\varphi(85) / 8$
19	$18=\varphi(19)$	53	$52=\varphi(53)$	87	$28=\varphi(87) / 2$
21	$6=\varphi(21) / 2$	55	$20=\varphi(55) / 2$	89	$11=\varphi(89) / 8$
23	$11=\varphi(23) / 2$	57	$18=\varphi(57) / 2$	91	$12=\varphi(91) / 6$
25	$20=\varphi(25)$	59	$58=\varphi(59)$	93	$10=\varphi(93) / 6$
27	$18=\varphi(27)$	61	$60=\varphi(61)$	95	$36=\varphi(95) / 2$
29	$28=\varphi(29)$	63	$6=\varphi(63) / 6$	97	$48=\varphi(97) / 2$
31	$5=\varphi(31) / 6$	65	$12=\varphi(65) / 4$	99	$30=\varphi(99) / 2$
33	$10=\varphi(33) / 2$	67	$66=\varphi(67)$		

The values of $\beta<100$ for which the problem of determining the elements of the set $\mathcal{A}^{\langle m\rangle}$ is solved by Theorem 5.1 are

$$
\beta=15,21,33,35,39,45,55,57,69,75,77,87,95,99 .
$$

On the other hand the values of $\beta<100$ for which the problem remains unresolved are

$$
\beta=51,63,65,73,85,89,91,93 ;
$$

it should be noted that the case $\beta=31$ has been treated in [7].

References

[1] N. Baccar, Sets with even partition function and 2-adic integers, Periodica Math. Hungar 55 (2) (2007), 177-193.
[2] N. Baccar, On the elements of sets with even partition function, Ramanujan J 38 (2015), 561-577.
[3] N. Baccar, Sets with even partition function and cyclotomic numbers, Journal of the Australian Mathematical Society 100 (2016), 289-302.
[4] N. Baccar and A. Zekraoui, Sets with even partition function and 2-adic integers II, Journal of Integer Sequences 13 (2010), Article 10.1.3.
[5] N. Baccar and F. Ben Saïd, On sets such that the partition function is even from a certain point on, International Journal of Number Theory 5 (3) (2009), 1-22.
[6] N. Baccar, F. Ben Saïd and A. Zekraoui, On the divisor function of sets with even partition functions, Acta Math. Hungar 112 (1-2) (2006), 25-37.
[7] F. Ben Saïd, J.-L. Nicolas and A. Zekraoui, On the parity of generalised partition function III, Journal de Th'eorie des Nombres de Bordeaux 22 (2010), 51-78
[8] Z. I. Borevitch and I. R. Chafarevitch, Théorie des Nombres (Gauthiers-Villars, Paris, 1967).
[9] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press 2006.
[10] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications, Cambridge University Press, (1986).
[11] J.-L. Nicolas and A. Sárközy, On the parity of partition functions, Illinois J. Math. 39 (1995), 586-597.
[12] J.-L. Nicolas, I.Z. Ruzsa and A. Sárközy, On the parity of additive representation functions, J. Number Theory 73 (1998), 292-317.
[13] J.-L. Nicolas, A. Sárközy,On the parity of generalized partition functions, in: Proceedings of the Millennium Conference, Urbana, IL, May 2000.

