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Abstract

Let A denote a set of positive integers, and let p(A, n) denote the associ-
ated partition function. Let β be an odd positive integer, and let P (z) be a
polynomial in F2[z] of order β such that P (0) = 1. J.-L. Nicolas, I.Z. Ruzsa
and A. Sárközy proved that there exists a unique set A = A(P ) such that∑
n≥0 p(A, n)zn ≡ P (z) (mod 2); that is, the partition function p(A, n) is even

from a certain point on. The problem of determining the elements of the set
A(P ) is not an easy one and several particular cases have already been studied;
namely, when P is irreducible and β = p a prime number such that the order of
2 modulo p is p−1, (p−1)/2, (p−1)/3 or (p−1)/4. In this paper, we consider

the case P is irreducible such that the order of 2 modulo β is ϕ(β)
2 where ϕ is

Euler’s function.
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1 Introduction.

Let A be a non-empty set of positive integers, and let p(A, n) denote the number
of partitions of n into parts belonging to the set A; that is, the number of finite
non-increasing sequences n1, n2, . . . , nk belonging to A such that

n = n1 + n2 + · · ·+ nk.

By convention, we take p(A, 0) = 1.
Let F2 be the field with two elements, and let P (z) = 1+ε1z+· · ·+εNzN ∈ F2[z]

of degree N ≥ 1. It is known that (see [12]) there exists a unique set A = A(P ) of
positive integers such that the generating function F(z) satisfies

F(z) = FA(z) =
∏
a∈A

1

1− za
=
∑
n≥0

p(A, n)zn ≡ P (z) (mod 2). (1.1)

The elements of the set A = A(P ) have been determined in some special cases but
not for all P ’s, and it seems that the general case is a deep problem.

In fact the set A = A(P ) is constructed (cf. [12]) by recursion; we write An =
A ∩ {1, . . . , n} so that

p(AN , n) ≡ εn (mod 2), n = 1, . . . , N.
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Further, assume that n ≥ N + 1 and An−1 has been defined so that p(A, k) is even
for N + 1 ≤ k ≤ n− 1. Then set

n ∈ A if and only if p(An−1, n) is odd.

It follows from the construction that for n ≥ N + 1, we have{
if n ∈ A, p(A, n) = 1 + p(An−1, n)
if n /∈ A, p(A, n) = p(An−1, n).

(1.2)

which implies that p(A, n) is even for n ≥ N + 1. By computer, J.-L. Nicolas and
A. Sárközy (see [13]) have studied all sets A = A(P ) for degree(P ) ≤ 5; for all of
these sets, by using (1.2), they have computed the values of the first elements (up
to 1000). As examples,

A(1 + z + z4) = {1, 2, 5, 6, 7, 10, 11, 13, 14, 16, 21, 22, 24, 28, 29, 33, . . .} (1.3)

and

A(1 + z3 + z4) = {3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 20, 21, 26, 29, 30, 32, . . .}. (1.4)

Let c ≥ 2 be an integer and Pc(z) = P (zc). By the algorithm (1.2), it is possible
to see that the elements of A(Pc) are c-times the elements of A(P ). Indeed, From
(1.1), ∏

a∈A(P )

1

1− zca
≡ P (zc) (mod 2). (1.5)

Let β ≥ 3 be an odd positive integer and let P (z) ∈ F2[z] be irreducible of order
β; that is, β is the smallest positive integer such that P (z) divides 1 + zβ in F2[z].
Let m be an odd positive integer and δA is the characteristic function of the set A;
that is, {

δA(n) = 1 if n ∈ A
δA(n) = 0 if n /∈ A.

Throughout this paper, we denote by A<m> the set of integers of the form 2km
belonging to A = A(P ). One of the main problems that arise in the study of the
set A = A(P ) is whether a positive integer n = 2jm is or is not in A<m>? An
answer can be given by the algorithm (1.2) but for fairly large values of j. In order
to overcome this difficulty, it has been convenient to consider the 2−adic integer
S(A,m) given by the expansion

S(A,m) = δA(m) + 2δA(2m) + 22δA(22m) + · · · =
∞∑
k=0

2kδA(2km), (1.6)

Indeed, it is clear that by knowing the expansion S(A,m), one can compute S(A,m) mod
2j+1 then deduce δA(2km) for all k, 0 ≤ k ≤ j and obtain all the elements of the
set A<m>. Furthermore, it was proved in [2] that the 2−adic integer S(A,m) is
algebraic. Here and throughout

Gm,A(x) denotes the minimal polynomial of S(A,m). (1.7)
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The method of proving that S(A,m) is algebraic is briefly recalled at the end of
Section 2. To specify which root of Gm,A(x) corresponds to S(A,m), one just have
to compute some first few elements of the set A. For more clarity, it might be
worthwhile to give an example illustrating how the polynomial Gm,A(x) provides a
way to determine the set A<m>.
Example: β = 15. The only irreducible polynomials in F2[z] of order β = 15 are
1 + z + z4 and 1 + z3 + z4; we take A = A(1 + z + z4), A′ = A(1 + z3 + z4). For
instance, we aim to determine A<7> and A′<7>. In Theorem 5.1 below, with m = 7,
we obtain

G7,A(x) = G7,A′(x) = x2 +
15

49
.

By using the function polrootspadic of PARI, it turns out that roots of x2 + 15
49 are

x1 = 1 + 2 + 22 + 23 + 24 + 210 + 211 + 212 + · · ·+ 2996 + 2998 + · · ·

and

x2 = 1 + 25 + 26 + 27 + 28 + 29 + 213 + 214 + · · ·+ 2997 + 2999 + · · · .

From (1.3) (resp. (1.4)) we observe that 7 ∈ A and 14 = 2 × 7 ∈ A (resp. 7 ∈ A′
and 14 = 2 × 7 /∈ A′), so that from (1.6), S(A, 7) ≡ 3 (mod 4) (resp. S(A′, 7) ≡ 1
(mod 4) ) and therefore S(A, 7) = x1 (resp. S(A′, 7) = x2). Hence

A<7> = {7, 14, 28, 56, 112, . . . , 2996 × 7, 2998 × 7, . . .} (1.8)

and
A′<7>

= {7, 224, 448, 896, . . . , 2997 × 7, 2999 × 7, . . .} (1.9)

For a positive integer n, denote by ñ the square-free kernel of n; that is,

ñ =
∏

p |n, p prime

p with 1̃ = 1, (1.10)

and we denote by ω(n) the number of prime factors of n without multiplicity; that
is,

ω(n) =
∑

p prime, p |n

1. (1.11)

For an odd positive integer d, denote by s(d) the order of 2 modulo d; that is, s(d)
is the smallest positive exponent for which

2s(d) ≡ 1 (mod d), (1.12)

and denote by r(d) the positive integer satisfying

ϕ(d) = s(d)r(d) (1.13)

where ϕ is Euler’s function.
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For A = A(P ), the problem of determining the elements of the set A<m> has
been solved when the order β of the irreducible polynomial P is a prime number p
such that s(p) = (p− 1)/2 (see [1]), s(p) = (p− 1)/3 (see [4]) and s(p) = (p− 1)/4
(see [3]). If s(p) = p− 1, it turns out that P (z) = 1−zp

1−z = 1 + z + · · ·+ zp−1 is the
only irreducible polynomial of order p; in this case we have

FA(z) ≡ 1− zp

1− z
(mod 2)

≡ 1

1− z
1

1− zp
1

1− z2p

1

1− z4p
. . .

1

1− z2kp
. . . (mod 2),

which means that
A = {1, p, 2p, 4p, . . . , 2kp, . . .}.

In the present paper, we aim to treat the case P is irreducible of order β such that

s(β) = ϕ(β)/2.

An observation (cf. [10, Theorem 2.47]) of big importance is that there exist only
two irreducible polynomials in F2[z] of order β. Moreover, it turns out (cf. Section
3) that one also have s(β̃) = ϕ(β̃)/2 which will allow us to restrict our study to the
case β square-free. Indeed, if β is not square-free and β̃ is the square-free kernel of
β defined by (1.10) then (cf. Section 3)

A(P ) = c · A(R), (1.14)

where c = β/β̃ and R is an irreducible polynomial in F2[z] of order β̃. This may be
interpreted as asserting that{

A(P )<m> = ∅ if c - m
A(P )<m> = c · A(R)<m/c> if c |m.

It will be proved in Lemma 3.1 below that ω(β) = 1 or 2. As has been mentioned
above the case β square-free with ω(β) = 1 (that is, β = p is prime) was already
treated, then we need only concern ourselves with the situation in which β is square-
free with ω(β) = 2. Hence, it is convenient to consider the set L defined by

L = {d ≥ 3, d odd, square-free and not prime such that s(d) = ϕ(d)/2}; (1.15)

the first elements (up to 100) of L are: 15, 21, 33, 35, 39, 55, 57, 69, 77, 87, 95. The
first part of Section 3 will be devoted to the study of the set L.

For purpose of determining the set A(P )<m>, where P is irreducible of order
β ∈ L, we explicitly compute Gm,A(x) for all odd positive integers m: this result is
given below in Theorem 5.1. Depending on the values of m, the polynomial Gm,A(x)
is either x (which means that S(A,m) = 0; that is, A(P )<m> = ∅) or a quadratic
polynomial. We will start by recalling in Section 2 some of the main properties of
the set A = A(P ). In Section 4, we give a brief survey on Dirichlet characters, Gauss
sums and Ramanujan sums. We end this paper by giving a numerical example with
β = 15 = 3× 5 and m = 3a5b7 (a ≥ 0 and b ≥ 0); we first determine the sets A<m>
and A′<m> where A = A(1 + z + z4) and A′ = A(1 + z3 + z4) and then deduce the
sets A(P )<m>, for any irreducible polynomial P of order 45 = 32 × 5.
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2 Some results on the set A = A(P )

Let β ≥ 3 be an odd positive integer. We shall call a prime number p ≥ 3 a β-bad
prime if there exists a positive integer t such that

p ≡ 2t (mod β). (2.1)

In what follows we denote by Mβ the set of all odd positive integers m for which
there does not exist a β-bad prime p such that p |m.

Remark 2.1. Let P (z) ∈ F2[z] be irreducible of order β and let A = A(P ) be the
even partition set satisfying (1.1). It turns out (see [2] and [6, Theorem 1, III and
IV]) that if m /∈ Mβ or β̃β | m then S(A,m) vanishes. Consequently, the elements
of the set A are of the form

2km, where m ∈Mβ and β̃β - m. (2.2)

Let s = s(β) and r = r(β) be the integers defined by (1.12) and (1.13). Let
P1, P2, . . . , Pr be all the distinct irreducible polynomials in F2[z] of order β (see [10,
Theorem 2.47]); it is also important to point out that each of these polynomials is
of degree s. For all `, 1 ≤ ` ≤ r, let A` = A(P`) be the even partition set satisfying
(1.1), and let S(A`,m) be the 2-adic integer given by (1.6). Let the polynomial
Hm(x) defined by

Hm(x) = mr(x− S(A1,m))(x− S(A2,m)) · · · (x− S(Ar,m)). (2.3)

Interestingly(see [2, Proposition 3.1]), the polynomial Hm(x) has integer coefficients,
which means that for all `, 1 ≤ ` ≤ r, the minimal polynomial Gm,A`(x) of the
algebraic number S(A`,m) (cf. (1.7)) is a factor of Hm(x).

Let (Z/βZ)∗ be the group of invertible residues modulo β, and let < 2 > be its
subgroup generated by 2. Then < 2 > acts on the set Z/βZ by usual multiplication.
Given such action and denoting the orbit of some n by Oβ(n), it follows that Z/βZ
is partitioned as follows

Z/βZ = Oβ(y1) ∪Oβ(y2) ∪ · · ·Oβ(yf ) ∪Oβ(β),

with y1 = 1. We will say that Oβ(yi) is an invertible orbit if gcd(yi, β) = 1; then
clearly, r is the number of invertible orbits and so (Z/βZ)? may be represented in
the form

(Z/βZ)? = Oβ(y1) ∪Oβ(y2) ∪ · · ·Oβ(yr), (2.4)

where Oβ(y1),Oβ(y2), . . . ,Oβ(yr) are the invertible orbits. For r + 1 ≤ i ≤ f the
orbits Oβ(yi) are those for which yi is not coprime with β, but not a multiple of
β. Here and throughout this paper we adopt the extension that the orbits are also
considered as part of Z: n ∈ Oβ(y) if there exists t ≥ 0 such that

n ≡ 2ty (mod β). (2.5)
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One can easily observe that β-bad primes (defined in (2.1)) are elements of Oβ(1).
Furthermore, it should be noted that (cf. [2, formula (2.11)])

|Oβ(y)| = s

(
β

gcd(β, y)

)
. (2.6)

Example: When β = 15, we obtain

Z/15Z = O15(1) ∪O15(7) ∪O15(3) ∪O15(5) ∪O15(15),

so that s = s(15) = 4, r = 2, f = 4, y1 = 1, y2 = 7, y3 = 3, y4 = 5 and

O15(1) = {1, 2, 4, 8}
O15(7) = {7, 11, 13, 14}
O15(3) = {3, 6, 9, 12}
O15(5) = {5, 10}

O15(15) = {15}.

We define the polynomial Dm(z) (cf. [2, formula (3.8)]) by

Dm(z) =

f∑
h=1

λ(m, yh)B(yh, z) + sγ(m),

where B(n, z) is the polynomial given by

B(n, z) =
s−1∑
j=0

z2jn mod β; n ∈ Z, (2.7)

λ(m,n) =
∑
d | m̃

m
d
∈Oβ(n)

µ(d), (2.8)

γ(m) =
∑
d | m̃

m
d
≡0 (mod β)

µ(d),

µ is the Möbius’s function, s = s(β) is defined in (1.12) and m̃ is defined by (1.10).
We shall note that B(n, z) is stable on the orbits of Z/βZ; that is,

if n1 ∈ Oβ(n2) then B(n1, z) = B(n2, z). (2.9)

Consequently, using the fact that B(β, z) = s, we get

Dm(z) =

f∑
h=1

 ∑
d | m̃

m
d
∈Oβ(yh)

µ(d)B(
m

d
, z)

+
∑
d | m̃

m
d
≡0 (mod β)

µ(d)B(
m

d
, z),
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whence
Dm(z) =

∑
d | m̃

µ(d)B(
m

d
, z). (2.10)

Let ζ be a β-th primitive root of unity over the 2-adic field Q2. It was proved
in [2, formula (3.13)] that, for all `, 1 ≤ ` ≤ r, S(A`,m) can be expressed in terms
of ζ. More precisely, the sets A` can be arranged so that,

mS(A`,m) = −Dm(ζy`); 1 ≤ ` ≤ r. (2.11)

Knowing this, we may rewrite the polynomial Hm(x) (cf. (2.3)) as

Hm(x) = (mx+Dm(ζy1))(mx+Dm(ζy2)) · · · (mx+Dm(ζyr)). (2.12)

Example: By way of illustration, we take β = 15. In this instance, we find that
B(1, z) = z+z2 +z4 +z8, B(7, z) = z7 +z11 +z13 +z14, B(3, z) = z3 +z6 +z9 +z12,
B(5, z) = 2z5 + 2z10 and B(15, z) = 4. Next, choosing m = 7, we obtain

D7(ζ) = B(7, ζ)−B(1, ζ) = ζ7 + ζ11 + ζ13 + ζ14 − ζ − ζ2 − ζ4 − ζ8,

D7(ζ7) = −D7(ζ),

and

H7(x) = (7x+D7(ζ))(7x+D7(ζ7)) = 49x2 − (D7(ζ))2

= 49x2 + ζ14 + ζ13 − 2ζ12 + ζ11 − 4ζ10 − 2ζ9 + ζ8 + ζ7 − 2ζ6 − 4ζ5 +

ζ4 − 2ζ3 + ζ2 + ζ + 8.

3 A description of L
Recall that L (cf. (1.15)) is the set of all odd integers d ≥ 3 square-free and not

prime satisfying s(d) = ϕ(d)
2 , where s(d) is defined by (1.12) and ϕ is Euler’s function.

In Theorem 3.1 below, we will give a description of the set L; more precisely, by
description, we mean necessary and sufficient conditions under which a given integer
is in L. From now on, we always use the letters p and q to denote distinct odd prime
numbers, while η and ν will always denote positive integers.

Lemma 3.1. Let β be an odd positive integer, and let ω be the arithmetic function
given by (1.11). Then,

s(β) = ϕ(β)/2 =⇒ ω(β) = 1 or 2.

Proof. 1. Let the decomposition of β into irreducible factors be

β = qk11 q
k2
2 · · · q

k`
` ,

with ` = ω(β). Since ϕ(qk11 ), ϕ(qk22 ), · · · , ϕ(qk`` ) are even, one can consider the integer
Qi given by

Qi =
∏̀
j=1
j 6=i

ϕ(q
kj
j )

2
, 1 ≤ i ≤ `.
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By Euler’s theorem we have for all i, 1 ≤ i ≤ `,

2
ϕ(β)

2`−1 =
(

2ϕ(q
ki
i )
)Qi
≡ 1 (mod qkii ).

Together with the fact that the modulus are relatively prime, these congruences
imply that

2
ϕ(β)

2`−1 ≡ 1 (mod β),

which means that

s(β) ≤ ϕ(β)

2`−1
. (3.1)

Finally, by taking s(β) = ϕ(β)/2 in (3.1) it follows that ` = ω(β) ≤ 2, as desired.

Lemma 3.2. Let u ≥ 3 and v ≥ 3 be relatively prime odd integers.

1) If s(uv) = ϕ(uv)/2 then gcd(s(u), s(v)) = 1 or 2.

2) If gcd(s(u), s(v)) = 1 then

s(uv) = ϕ(uv)/2⇐⇒


s(u) = ϕ(u) and s(v) = ϕ(v)/2
or
s(u) = ϕ(u)/2 and s(v) = ϕ(v)

3) If gcd(s(u), s(v)) = 2 then

s(uv) = ϕ(uv)/2⇐⇒ s(u) = ϕ(u) and s(v) = ϕ(v).

Proof. Using the fact that gcd(u, v) = 1, it follows that s(uv) is the lcm of s(u) and
s(v), so that one can write

s(uv) =
s(u)s(v)

gcd(s(u), s(v))
. (3.2)

But gcd(u, v) = 1, ϕ is multiplicative and s(uv) = ϕ(uv)/2, whence

ϕ(u)ϕ(v)

2
=
ϕ(uv)

2
= s(uv) =

s(u)s(v)

gcd(s(u), s(v))

and
ϕ(u)

s(u)

ϕ(v)

s(v)
=

2

gcd(s(u), s(v))
.

As s(u) divides ϕ(u) and s(v) divides ϕ(v), the product of the two integers ϕ(u)/s(u)
and ϕ(v)/s(v) must be ≥ 1. The only possibility is that ϕ(u)/s(u) and ϕ(v)/s(v)
are both equal to 1, which proves 3) or one of them is equal to 2 and the other one
is equal to 1 which proves 2).
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Thanks to Lemma 3.1, the set L can be rewritten as follows

L = {pq such that s(pq) = (p− 1)(q − 1)/2}. (3.3)

Let us associate to the couple (p, q) the integer ϑ(p, q) defined by

ϑ(p, q) = gcd(s(p), s(q)).

Let us define the sets P1 and P2 containing odd primes with the restrictions:

P1 : s(p) = p− 1 (3.4)

P2 : s(p) = (p− 1)/2; (3.5)

the first elements (up to 100) of P1 are: 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83 while
those of P2 are: 7, 17, 23, 41, 47, 71, 79, 97. Thanks to Euler’s criterion, 2 is a square
modulo p ∈ P2 but not a square modulo p ∈ P1.

Theorem 3.1.

pq ∈ L ⇐⇒


p ∈ P1, q ∈ P1 and ϑ(p, q) = 2
or
((p ∈ P1, q ∈ P2) or (p ∈ P2, q ∈ P1)) and ϑ(p, q) = 1.

(3.6)

Proof. The proof is an immediate consequence of (3.3) and Lemma 3.2.

We now change focus somewhat and take up the study of the sets A(P ) (cf.
(1.1)), when P is irreducible in F2[z] of order an odd positive integer β such that
s(β) = ϕ(β)/2. More particularly, we aim asserting that we shall restrict the de-
termination of A(P )<m> (the set of the elements of A(P ) of the form 2km) to the
more interesting situation, that where β is square-free. Before going further, it is
worth noting that there exist exactly 2 different irreducible polynomials in F2[z] of
order β.

Lemma 3.3. Let n ≥ 3 be an odd positive integer, s the function defined in (1.12),
and let p be such that p |n. Then for all k ≥ 0,

s(pkn) | pks(n). (3.7)

Proof. When k = 0, the stated conclusion obviously holds, whereas when k = 1
then from (1.12), we may write 2s(n) = 1 + gn, for some positive integer g. Raising
to the pth power, we obtain

2ps(n) = (1 + gn)p = 1 +

(
p

1

)
(gn) +

(
p

2

)
(gn)2 + · · ·+

(
p

p− 1

)
(gn)p−1 + (gn)p

≡ 1 +

(
p

1

)
(gn) (mod n2).

But pn |n2 and p |
(
p
1

)
; therefore the last congruence becomes

2ps(n) ≡ 1 (mod pn),

which means that s(pn) | ps(n). Next, by induction on k, we show that 2p
ks(n) =

1 + gkp
kn for some integer gk.
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.

Lemma 3.4. Let β be an odd positive integer such that s(β) = ϕ(β)/2. Then

(i) s(β̃) = ϕ(β̃)/2.

(ii) If p2 |β then s(pβ̃) = ϕ(pβ̃)/2.

Proof. We assume that s(β) = ϕ(β)/2 and recall that from Lemma 3.1, one have
ω(β) = 1 or 2. We treat the case ω(β) = 2; that is, β = pηqν (the proof of the case
ω(β) = 1 is quite analogous).
(i) It follows from Lemma 3.3 and (3.1) that

ϕ(pηqν)

2
= s(pηqν) ≤ pη−1qν−1s(pq) ≤ pη−1qν−1ϕ(pq)

2
=
ϕ(pηqν)

2

whence s(pq) = ϕ(pq)
2 as claimed.

(ii) If p2 |β then η ≥ 2, which as in (i), gives

ϕ(pηqν)

2
= s(pηqν) ≤ pη−2qν−1s(p2q) ≤ pη−2qν−1ϕ(p2q)

2
=
ϕ(pηqν)

2

whence s(p2q) = ϕ(p2q)
2 as claimed.

Lemma 3.5. ([10, Theorem 3.35]) Let R1(z), R2(z), . . . , RN (z) be all the distinct
irreducible polynomials in F2[z] of degree u and order e, and let t ≥ 2 be an integer
whose prime factors divide e but not (2u − 1)/e. Then R1(zt), R2(zt), . . . , RN (zt)
are all the distinct monic irreducible polynomials in F2[z] of degree ut and order et.

Corollary 3.1. Let β be an odd positive integer such that s(β) = ϕ(β)/2 and let
P̃ (z) and Q̃(z) be all the distinct irreducible polynomials in F2[z] of order β̃. If
c = β/β̃ then P̃ (zc) and Q̃(zc) are all the distinct irreducible polynomials in F2[z]
of order β.

Proof. If β = β̃, there is nothing to prove. Assume then, that c = β/β̃ 6= 1 and let p
be a prime factor of c = β/β̃. Clearly, p divides β̃, p2 divides β and s(pβ̃) = ϕ(pβ̃)/2

(as seen in (ii) of Lemma 3.4). Suppose that p divides (2s(β̃)−1)/β̃; that is, 2s(β̃) ≡ 1
(mod pβ̃). Thus, s(pβ̃) ≤ s(β̃), whence ϕ(pβ̃)/2 = pϕ(β̃)/2 ≤ ϕ(β̃)/2, which is
impossible. For the rest of the proof, we just apply Lemma 3.5.

Let β be an odd positive integer such that s(β) = ϕ(β)/2 and let P (z) and Q(z)
be all the distinct irreducible polynomials in F2[z] of order β. In agreement with
the last corollary, P (z) and Q(z) can be arranged so that P (z) = P̃ (zc) and Q(z) =
Q̃(zc), which with (1.5), yields

A(P ) = c · A(P̃ ) and A(Q) = c · A(Q̃).

Therefore, the elements of A(P ) and A(Q) must be multiple of c. Moreover, if c |m
then the elements of A(P )<m> (resp. A(Q)<m>) can be deduced from those of
A(P̃ )<m/c> (resp. A(Q̃)<m/c>);

A(P )<m> = c · A(P̃ )<m/c> and A(Q)<m> = c · A(Q̃)<m/c>. (3.8)
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Example: As a concrete example, we take β = 45. We have s(β) = s(45) = 12 =
ϕ(45)/2, β̃ = 15 and c = β/β̃ = 3. The only irreducible polynomials in F2[z] of
order β = 45 are

P (z) = 1 + z3 + z12 and Q(z) = 1 + z9 + z12.

Here, for instance, we aim to determine the sets A(P )<21> and A(Q)<21>. To this
end, we just need to determine the sets A(P̃ )<7> and A(Q̃)<7> with

P̃ (z) = 1 + z + z4 and Q̃(z) = 1 + z3 + z4

Indeed, since P (z) = P̃ (z3) and Q(z) = Q̃(z3) then, from (3.8),

A(P )<21> = 3 · A(P̃ )<7> and A(Q)<21> = 3.A(Q̃)<7>.

Recalling that the sets A(P̃ )<7> and A(Q̃)<7> are those corresponding to those
given respectively by (1.8) and (1.9), we obtain

A(P )<21> = {21, 42, 84, 168, 336, . . . 2996 × 21, 2998 × 21, . . .}

and
A(Q)<21> = {21, 672, 1344, 2688, . . . , 2997 × 21, 2999 × 21, . . .}

4 Dirichlet character and Gauss sums

We begin by recalling some basic facts concerning the theory of Dirichlet characters
and Gauss sums. Let β ≥ 3 be an odd positive integer and let χ be a Dirichlet
character mod β. Let κ be a positive divisor of β: we say that a character χ? mod
κ induces χ if

χ(n) =

{
χ?(n) if gcd(n, β) = 1;
0 otherwise.

In this case κ is called an induced modulus for χ; and the smallest induced modulus κ
for χ is called the conductor of χ. The Dirichlet character χ is said to be primitive
mod β if it has no induced modulus κ < β. The following characterization of
primitive Dirichlet characters will be useful (see [9, Theorem 9.4] for a more general
version of this result).

Lemma 4.1. Under the above notation, the following are equivalent:

(1) χ is primitive.

(2) If d |β and d < β, then there is an integer n such that n ≡ 1 (mod d),
gcd(n, β) = 1 and χ(n) 6= 1.

Let ζ be a β-th primitive root of unity, and let n be a positive integer. The sum

τ(n, χ) =
∑
ν

χ(ν)ζnν , (4.1)
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where ν runs through a full (or reduced) system of residues modulo β, is called the
Gauss sum associated with χ. It turns out that, if χ is induced by the primitive
character χ? modulo κ then (see [9, Theorem 9.12]),{

τ(n, χ) = 0 if κ - ρ
τ(n, χ) = χ?(n/ gcd(β, n))χ?(ρ/κ)ϕ(β)

ϕ(ρ)µ(ρ/κ)τ(χ?) if κ | ρ (4.2)

where τ(χ?) = τ(1, χ?) is the normed Gaussian sum, χ? is the complex conjugate of
χ? and

ρ = ρ(β, n) =
β

gcd(β, n)
.

If χ is the principal character mod β (χ assumes the value 1 for all n coprime
with β) then τ(n, χ) reduces to the Ramanujan sum c(n, β);

c(n, β) =
∑
ν

ζnν , (4.3)

where ν runs through a reduced system of residues modulo β. It is known that the
Ramanujan sum satisfies Hölder’s formula (see [9], p.110 ),

c(n, β) =
ϕ(β)

ϕ(ρ)
µ(ρ), (4.4)

which when taking n = 1 reduces to the Möbius function: c(1, β) = µ(β).
From now on, we assume that β is an element of L and recall that, in this case,

r = r(β) = 2 where r(β) is that integer defined by (1.13). From (2.4), one may
write

(Z/βZ)? = Oβ(1) ∪Oβ(y). (4.5)

where y is a positive integer coprime with β, but does not belong to Oβ(1). Under
these assumptions, one can define the map χ by

χ(n) = 1 if n ∈ Oβ(1)
χ(n) = −1 if n ∈ Oβ(y)
χ(n) = 0 if gcd(n, β) > 1.

(4.6)

We may easily verify that χ is indeed a quadratic Dirichlet character mod β. More-
over, the Gauss sum associated with χ (cf. (4.1)) may be written as

τ(n, χ) =

s−1∑
j=0

(ζn)2j −
s−1∑
j=0

(ζn)2jy,

where s = s(β) = ϕ(β)
2 . The last equality can be rewritten as

τ(n, χ) = B(n, ζ)−B(ny, ζ), (4.7)

where B(n, z) is the polynomial defined by (2.7). On the other hand, the Ramanujan
sum c(n, β) (cf. (4.3)) can be written as

c(n, β) = B(n, ζ) +B(ny, ζ). (4.8)

The following Lemmas will be needed in the proof of Theorem 5.1.
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Lemma 4.2. Let χ be the quadratic Dirichlet character mod β defined by (4.6), and
let χ? be the primitive Dirichlet character mod κ that induces χ. Let P1 and P1 the
sets defined respectively by (3.4) and (3.5).

1. If β = pq where p ∈ P1 and q ∈ P1 , then

κ = pq and χ? = χ (4.9)

2. If β = pq where p ∈ P2 and q ∈ P1, then

κ = p and χ?(n) =

{
1 if n ∈ Op(1)
−1 if n ∈ Op(y)

(4.10)

Proof. 1. We assume that β = pq where p ∈ P1, q ∈ P1 and we shall prove that χ
is primitive. In anticipation of a contradiction, we suppose (cf. Lemma 4.1 ) that
there exists a positive integer d < β = pq dividing β such for all integers n satisfying

n ≡ 1 (mod d) and gcd(n, pq) = 1, (4.11)

we have χ(n) = 1. For instance, let us take d = p and then let R be the set of all
residues modulo pq satisfying (4.11); that is,

R = {1 + kp, k = 0, 1, . . . , q − 1 and gcd(1 + kp, q) = 1}.

For t, 0 ≤ t ≤ p− 2, we define the set Rt by

Rt = {2tn mod pq, n ∈ R}.

If n ∈ R, we have χ(n) = 1 and thus n ∈ Opq(1), which implies that 2tn ∈ Opq(1);
that is,

p−2⋃
t=0

Rt ⊂ Opq(1). (4.12)

From (2.6) and the fact that β = pq ∈ L, it follows that | Opq(1) |= s(pq) =
(p− 1)(q − 1)/2, which with (4.12) yields

|
p−2⋃
t=0

Rt |≤ (p− 1)(q − 1)/2. (4.13)

We claim that for all t, 0 ≤ t ≤ p− 2, we have

| Rt |=| R |= q − 1 or q.

For a fixed t (0 ≤ t ≤ p − 2), it is clear that if n and n′ are distinct elements of R
then 2tn and 2tn′ are incongruent modulo pq; therefore, | Rt |=| R |. Now, we shall
prove that | R |= q − 1 or q; in other words at most one term of the progression
1, 1 + p, . . . , 1 + (q − 1)p is divisible by q. Suppose to the contrary, that there exist
two distinct integers k and k′, 0 ≤ k < k′ ≤ q − 1 such that the numbers 1 + kp
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and 1 + k′p are divisible by q. Then q divides their difference (k′ − k)p. But p and
q are distinct prime numbers, and thus q | (k′ − k) which is nonsense in light of the
inequality 0 < k′ − k < q.

We shall now prove that the Rt’s are pairwise disjoint. If it happened that

2tn ≡ 2t
′
n′ (mod pq),

where 0 ≤ t, t′ ≤ p− 2, n ∈ R and n′ ∈ R, then, by passing to a congruence modulo
p, we would have

2t ≡ 2t
′

(mod p).

Therefore, since s(p) = p− 1, it follows that t ≡ t′ (mod p− 1) which implies that
t = t′ (since |t− t′| ≤ p− 2) establishing the result claimed. Consequently,

|
p−2⋃
t=0

Rt |=
p−2∑
t=0

| Rt |= (p− 1) | R |≥ (p− 1)(q − 1),

which contradicts (4.13).
2. We assume that β = pq where p ∈ P2 and q ∈ P1. According to Theorem 3.1,

gcd((p− 1)/2, q− 1) = 1, and thus (p− 1)/2 must be odd, which implies that −1 is
not a square modulo p. But, p ∈ P2, and thus 2 is square modulo p; hence 2 and −1
can not lie in a same orbit of (Z/pZ)?. Consequently, (Z/pZ)? can be partitioned
as follows

(Z/pZ)? = Op(1) ∪Op(−1).

From (4.5), it follows that −1 /∈ Oβ(1) which with the fact that gcd(−1, β) = 1
yields −1 ∈ Oβ(y), say y ∈ Op(−1). Hence,

(Z/pZ)? = Op(1) ∪Op(y). (4.14)

It now follows that the Dirichlet character χ? mod κ with κ = p (cf. (4.10)) is
well-defined; moreover, it clearly induces the character χ given by (4.6). The proof
is completed by noting that the modulus p is prime which makes χ? primitive.

Remark 4.1. As it can be seen in the last Lemma, χ? is a primitive quadratic
character modulo κ; hence (cf. [8, Theorem 7, p. 392]){

τ(χ?) =
√
κ if χ?(−1) = 1

τ(χ?) = i
√
κ if χ?(−1) = −1,

(4.15)

where τ(χ?) = τ(1, χ?) is the normed Gaussian sum (cf. (4.1)) and i is the imaginary
unit.

Lemma 4.3. For a positive integer n, let ψ(n) and φ(n) be the expressions defined
by

ψ(n) = B(n, ζ) and φ(n) = B(ny, ζ) (4.16)

where B(n, z) is the polynomial defined by (2.7) and ζ is a β-th primitive root of
unity. Let χ be the quadratic Dirichlet character mod β given by (4.6), and let χ?

be the primitive character mod κ inducing χ. With τ(χ?) = τ(1, χ?) as defined by
(4.1), a and b positive integers, we have
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� β = pq, p ∈ P1 and q ∈ P1:

1. ψ(1) =
1 + τ(χ?)

2
and φ(1) =

1− τ(χ?)

2

2. If b ≥ 1, then ψ(qb) = φ(qb) = −(q − 1)

2
and ψ(pqb) = φ(pqb) = ϕ(β)/2

3. If a ≥ 1, then ψ(pa) = φ(pa) = −(p− 1)

2
and ψ(paq) = φ(paq) = ϕ(β)/2

� β = pq, p ∈ P2 and q ∈ P1:

1. ψ(1) =
1− χ?(q)τ(χ?)

2
and φ(1) =

1 + χ?(q)τ(χ?)

2
2. If b ≥ 1, then

• ψ(qb) = −(q−1)
1− χ?(qb−1)τ(χ?)

2
, φ(qb) = −(q−1)

1 + χ?(qb−1)τ(χ?)

2
• ψ(pqb) = φ(pqb) = ϕ(β)/2

3. If a ≥ 1, then ψ(pa) = φ(pa) = −(p− 1)

2
and ψ(paq) = φ(paq) = ϕ(β)/2.

Proof. From (4.7) and (4.8), we obtain

ψ(n) + φ(n) = c(n, β) and ψ(n)− φ(n) = τ(n, χ),

whence

ψ(n) =
1

2
(c(n, β) + τ(n, χ)) and φ(n) =

1

2
(c(n, β)− τ(n, χ)).

For the rest of the proof, we just have to apply (4.2) and (4.4).

5 The minimal polynomial Gm,A(x) of S(A,m)

Let L be the set defined by (1.15), and let β = pq be an element of L. Let P̃ and Q̃
be all the distinct irreducible polynomials in F2[z] of order β; and let A = A(P̃ ) and
A′ = A(Q̃) be the even partition sets satisfying (1.1). For an odd positive integer
m, we recall that A<m> (resp. A′<m>) denotes the set of the elements of A (resp.
A′) of the form 2km. Let S(A,m) and S(A′,m) be the 2−adic integers defined
by (1.6) and we recall that Gm,A(x) and Gm,A′(x) (cf. (1.7)) denote the minimal
polynomials of S(A,m) and S(A′,m), respectively. In this Section, for purpose of
determining the sets A<m> and A′<m>, we aim to obtain formulae for Gm,A(x) and
Gm,A′(x).

Let P1 and P2 be the sets of odd primes defined by (3.4) and (3.5). In what
follows, we always use the letters a and b to denote non negative integers and we
take p as the prime number dividing β that may belong to P2. As it has already
been mentioned in Section 2 (cf. (2.2)), if m /∈ Mβ or if β2 |m then S(A,m) and
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S(A′,m) vanish; in other words, A<m> = A′<m> = ∅. Thus, we may hereafter
restrict our study to odd integers of the form

paqbm such that gcd(m, pq) = 1 and (a ≤ 1 or b ≤ 1), (5.1)

where m ∈Mβ (cf. Remark 2.1).

Theorem 5.1. Let β = pq ∈ L defined in (1.15), m 6= 1 be an odd positive integer
belonging to Mβ such that gcd(m,β) = 1, and let α(m) be the integer defined by

α(m) = 2ω(m)−1,

where ω(m) is given by (1.11). We let χ, χ? as in Lemma 4.3, κ is the conductor
of χ and we define the integer i? by

i? = χ?(−1).

1. G1,A(x) = x2 + x+
1− i?κ

4
and Gm,A(x) = x2 − α2(m)

m2
i?κ.

2. Gq,A(x) = x2 − x+
q2 − (q − 1 + χ?(q))2g i?κ

4q2
and

Gqm,A(x) = x2− α2(m) (q − 1 + χ?(q))2g

q2m2
i?κ, where g = 0 if p ∈ P1 and g = 1

if p ∈ P2.

3. Gp,A(x) = x2 − x+
p2 − i?κ

4p2
and Gpm,A(x) = x2 − α2(m)

p2m2
i?κ.

4. Gpq,A(x) = x2 + x+
p2q2 − (q − 1 + χ?(q))2g i?κ

4p2q2
and

Gpqm,A(x) = x2 − α2(m) (q − 1 + χ?(q))2g

p2q2m2
i?κ.

5. If a ≤ 1, b ≥ 2 and p ∈ P1 then Gpaqb,A(x) = x and Gpaqbm,A(x) = x.

6. If a ≤ 1, b ≥ 2 and p ∈ P2 then

� Gpaqb,A(x) = x and Gpaqbm,A(x) = x when χ?(q) = 1.

� Gpaqb,A(x) = x2− (q − 1)2

p2aq2b
i?κ and Gpaqbm,A(x) = x2− 4α2(m)(q − 1)2

p2aq2bm2
i?κ

when χ?(q) = −1.

7. If a ≥ 2 and b ≤ 1, then Gpaqb,A(x) = x and Gpaqbm,A(x) = x.

Proof. We let m ∈Mβ such that gcd(m, pq) = 1 and we shall look for formulae for
Gpaqbm,A(x) and Gpaqbm,A′(x). For this purpose, we shall make explicit the polyno-
mial Hpaqbm(x) defined by (2.3); this interest comes from the fact (cf. Section 2)
that Gpaqbm,A(x) and Gpaqbm,A′(x) are irreducible factors of Hpaqbm(x).
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Let Dpaqbm(z) be the polynomials given by (2.10), and let y be an integer defined
by (4.5). From (2.12), we know that there exists a β-th primitive root of unity ζ
such that

Hpaqbm(x) = (paqbmx+Dpaqbm(ζ))(paqbmx+Dpaqbm(ζy));

so that
Hpaqbm(x) = a2x

2 + a1x+ a0, (5.2)

where

a2 = p2aq2bm2, a1 = paqbm
(
Dpaqbm(ζ) +Dpaqbm(ζy)

)
and a0 = Dpaqbm(ζ)Dpaqbm(ζy).

From (2.10), it follows that

Dpaqbm(z) =
∑
d | m̃

µ(d)Um
d

(z), (5.3)

where U`(z) is the polynomial given by

U`(z) = B(paqb`, z)−ε(a)B(pa−1qb`, z)−ε(b)B(paqb−1`, z)+ε(a)ε(b)B(pa−1qb−1`, z),

where ε(n) = 0 or 1 according as n = 0 or not, and B(n, z) is the polynomial

defined by (2.7). But, for all d dividing m̃, one easily see that
m

d
∈ Oβ(1) or

m

d
∈ Oβ(y), so that (5.3) becomes

Dpaqbm(z) = λ(m, 1)U1(z) + λ(m, y)Uy(z), (5.4)

where λ(m,n) is the integer given by (2.8).

In order to obtain formulae for λ(m, 1) and λ(m, y), we first note that λ(1, 1) = 1
and λ(1, y) = 0. Next, we assume that m 6= 1 and recall that all prime divisors of
m lie in Oβ(y). By observing that the product of two elements of Oβ(1) or Oβ(y)
is an element of Oβ(1) whereas the product of an element of Oβ(1) with another of
Oβ(y) gives an element of Oβ(y), we obtain for d | m̃

m

d
∈ Oβ(1)⇐⇒ Ω(

m

d
) is even,

m

d
∈ Oβ(y)⇐⇒ Ω(

m

d
) is odd,

where Ω(n) denotes the number of prime factors of n counted with multiplicity.
Hence, from (2.8),

λ(m, 1) =
∑
d | m̃

Ω(m
d

) is even

µ(d) =
∑
d | m̃

Ω(m)−Ω(d) is even

µ(d).
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Since, in the last sum, d is square-free then Ω(d) = ω(d) along with the fact that∑
d | m̃

ω(d) is even

1 =
∑
d | m̃

ω(d) is odd

1 = 2ω(m)−1,

yields
λ(m, 1) = (−1)Ω(m)2ω(m)−1 = (−1)Ω(m)α(m).

Similarly, we obtain

λ(m, y) = −(−1)Ω(m)2ω(m)−1 = −(−1)Ω(m)α(m).

Now, by replacing in (5.4), z first by ζ and then by ζy, we obtain

Dpaqb(ζ) = U1(ζ) and Dpaqb(ζ
y) = Uy(ζ)

and

Dpaqbm(ζ) = −Dpaqbm(ζy) = (−1)Ω(m)α(m) (U1(ζ)− Uy(ζ))) , if m 6= 1,

with

U1(ζ) = ψ(paqb)− ε(a)ψ(pa−1qb)− ε(b)ψ(paqb−1) + ε(a)ε(b)ψ(pa−1qb−1)

and

Uy(ζ) = φ(paqb)− ε(a)φ(pa−1qb)− ε(b)φ(paqb−1) + ε(a)ε(b)φ(pa−1qb−1),

where ψ and φ are defined by (4.16).

Lastly, the calculations leading to the expressions of the terms a1 and a0 are
a bit long but straightforward, so it is convenient that we omit them. With-
out embarking on the details, we apply Lemma 4.3 to calculate U1(ζ) and Uy(ζ),
which will allow us to obtain the coefficient a1, a0 and make explicit the polynomial
Hpaqbm(x). It turns out that Hpaqbm(x) is either p2aq2bm2x2 (which means that
Gpaqbm,A(x) = Gpaqbm,A′(x) = x) or an irreducible quadratic polynomial (which

means that Gpaqbm,A(x) = Gpaqbm,A′(x) =
1

p2aq2bm2
Hpaqbm(x)). In fact, this may

be interpreted as asserting that S(A, paqbm) and S(A′, paqbm) are conjugate.

Example: We take β = 3 × 5 = 15. The irreducible polynomials of order
β = 15 over F2[z] are P̃ (z) = 1 + z+ z4 and Q̃(z) = 1 + z3 + z4. Let A = A(P̃ ) and
A′ = A(Q̃) be the sets defined by (1.1). For m ≥ 3, recall that the 2−adic integer
S(A,m) can be written as follows

S(A,m) = ε0 + ε1 · 2 + ε2 · 22 + ε3 · 23 + · · ·

where εk ∈ {0, 1}. We also recall that by knowing the last expansion, one can deduce
the elements of the set A<m> since

2km ∈ A<m> ⇐⇒ εk = 1.
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We begin by looking for the elements of the sets A<3a5b7> and A′<3a5b7>. For that,
we first have to calculate G3a5b7,A(x) (for all values of a and b), and then determine

its roots; namely the expansions S(A, 3a5b7) and S(A′, 3a5b7) . In order to specify
which root of G3a5b7,A(x) corresponds to S(A, 3a5b7), we just need to compute the
first few elements of the sets A and A′.
• (a ≤ 1 and b ≥ 2) or (a ≥ 2 and b ≤ 1): G3a5b7,A(x) = G3a5b7,A′(x) = x.

A<3a5b7> = A′<3a5b7> = ∅ .
• G7,A(x) = x2 + 15

49 .
A<7> = {7, 14, 28, 56, 112, 210×7, 211×7, 212×7, 215×7, 217×7, 218×7, 222×7, . . .}
A′<7> = {7, 224, 448, 896, 1792, 29 × 7, 213 × 7, 214 × 7, 216 × 7, 219 × 7, 220 × 7, . . .}

• G35,A(x) = x2 + 3
245 .

A<35> = {35, 140, 280, 1120, 8960, 29 × 35, 210 × 35, 214 × 35, 219 × 35, 220 × 35, . . .}
A′<35> = {35, 70, 560, 2240, 4480, 211 × 35, 212 × 35, 213 × 35, 215 × 35, 216 × 35, . . .}

• G21,A(x) = x2 + 5
147 .

A<21> = {21, 42, 168, 1344, 28× 21, 213× 21, 216× 21, 217× 21, 220× 21, 223× 21, . . .}
A′<21> = {21, 84, 336, 672, 27 × 21, 29 × 21, 210 × 21, 211 × 21, 212 × 21, 214 × 21, . . .}

• G105,A(x) = x2 + 1
735 .

A<105> = {105, 1680, 3360, 26 × 105, 27 × 105, 29 × 105, 212 × 105, 215 × 105, . . .}
A′<105> = {105, 210, 420, 840, 28× 105, 210× 105, 211× 105, 213× 105, 214× 105, . . .}

Recall that P (z) = P̃ (z3) = 1 + z3 + z12 and Q(z) = Q̃(z3) = 1 + z9 + z12 are
all the distinct irreducible polynomials in F2[z] of order 45. Let A(P ) and A(Q)

be the sets defined by (1.1). Looking for the elements of the sets A(P )<3a5b7> and

A(Q)<3a5b7>, it turns out that if 3 - 3a5b7 (a = 0) then

A(P )<3a5b7> = A(Q)<3a5b7> = ∅.

From (3.8), it follows that if 3 | 3a5b7 (a ≥ 1 ) then

A(P )<3a5b7> = 3 · A<3a−15b7> and A(Q)<3a5b7> = 3 · A′<3a−15b7>
,

which can be expressed in more detail by:
• (a ≤ 2 and b ≥ 2) or (a ≥ 3 and b ≤ 1): A(P )<3a5b7> = A(Q)<3a5b7> = ∅
• A(P )<21> = 3 · A<7> and A(Q)<21> = 3 · A′<7>;
A(P )<21> = {21, 42, 84, 168, 336, 210 × 21, 211 × 21, 212 × 21, 215 × 21, 217 × 21, . . .}
A(Q)<21> = {21, 672, 1344, 2688, 5376, 29×21, 213×21, 214×21, 216×21, 219×21, . . .}

• A(P )<3.5.7> = 3 · A<35> and A(Q)<3.5.7> = 3 · A′<35>

A(P )<105> = {105, 420, 840, 3360, 26880, 29×105, 210×105, 214×105, 219×105, . . .}
A(Q)<105> = {105, 210, 1680, 6720, 13440, 211×105, 212×105, 213×105, 215×105, . . .}

• A(P )<63> = 3 · A<21> and A(Q)<63> = 3 · A′<21>

20



A(P )<63> = {63, 126, 504, 4032, 28 × 63, 213 × 63, 216 × 63, 217 × 63, 220 × 63, . . .}
A(Q)<63> = {63, 252, 1008, 2016, 27 × 63, 29 × 63, 210 × 63, 211 × 63, 212 × 63, . . .}

• A(P )<315> = 3 · A<105> and A(Q)<315> = 3 · A′<105>.
A(P )<315> = {315, 5040, 10080, 26× 315, 27× 105, 29× 315, 212× 315, 215× 315, . . .}
A(Q)<315> = {315, 630, 1260, 2520, 28 × 315, 210 × 315, 211 × 315, 213 × 315, . . .}.

Conclusion Let β ≥ 3 be an odd positive integer and let P (z) ∈ F2[z] be ir-
reducible of order β. It can now be stated that the problem of determining the
elements of the set A<m> is solved for the case s(β) = ϕ(β)/2 and it will be in-
teresting to envisage extending the cases β = p a prime with s(p) = (p − 1)/3 or
(p− 1)/4 to all β such that s(β) = ϕ(β)/3 or ϕ(β)/4.
In the following table we give s(β) for all values of β < 100.

β s(β)

3 2 = ϕ(3)

5 4 = ϕ(5)

7 3 = ϕ(7)/2

9 6 = ϕ(9)

11 10 = ϕ(11)

13 12 = ϕ(13)

15 4 = ϕ(15)/2

17 8 = ϕ(17)/2

19 18 = ϕ(19)

21 6 = ϕ(21)/2

23 11 = ϕ(23)/2

25 20 = ϕ(25)

27 18 = ϕ(27)

29 28 = ϕ(29)

31 5 = ϕ(31)/6

33 10 = ϕ(33)/2

35 12 = ϕ(35)/2

37 36 = ϕ(37)

39 12 = ϕ(39)/2

41 20 = ϕ(41)/2

43 14 = ϕ(43)/3

45 12 = ϕ(45)/2

47 23 = ϕ(47)/2

49 21 = ϕ(49)/2

51 8 = ϕ(51)/4

53 52 = ϕ(53)

55 20 = ϕ(55)/2

57 18 = ϕ(57)/2

59 58 = ϕ(59)

61 60 = ϕ(61)

63 6 = ϕ(63)/6

65 12 = ϕ(65)/4

67 66 = ϕ(67)

69 22 = ϕ(69)/2

71 35 = ϕ(71)/2

73 9 = ϕ(73)/8

75 20 = ϕ(75)/2

77 30 = ϕ(77)/2

79 39 = ϕ(79)/2

81 54 = ϕ(81)

83 82 = ϕ(83)

85 8 = ϕ(85)/8

87 28 = ϕ(87)/2

89 11 = ϕ(89)/8

91 12 = ϕ(91)/6

93 10 = ϕ(93)/6

95 36 = ϕ(95)/2

97 48 = ϕ(97)/2

99 30 = ϕ(99)/2

The values of β < 100 for which the problem of determining the elements of the set
A<m> is solved by Theorem 5.1 are

β = 15, 21, 33, 35, 39, 45, 55, 57, 69, 75, 77, 87, 95, 99.

On the other hand the values of β < 100 for which the problem remains unresolved
are

β = 51, 63, 65, 73, 85, 89, 91, 93;

it should be noted that the case β = 31 has been treated in [7].
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