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1 Introduction

The sum-of-divisors function o is defined by
o(n) = Z d.
dln

For example, o(4) = 7.
In 1913, Gronwall [7] found the maximal order of o.

Theorem 1 (Gronwall) The function

o(n)
G(n) = 1
(n) nloglogn (n>1)
satisfies
limsup G(n) = 7 = 1.78107.. . ,

n—oo

where vy is the Euler-Mascheroni constant.

In 1915, Ramanujan proved an asymptotic inequality for Gronwall’s func-
tion G, assuming the Riemann Hypothesis (RH). Ramanujan’s result was
shown in the second part of his thesis. The first part was published in 1915
[12] while the second part was not published until much later [13].

Theorem 2 (Ramanujan) If the Riemann Hypothesis is true, then
G(n) <€’ (n>1).

Here, n > 1 means for all sufficiently large n.
In 1984, Robin [I4] proved that a stronger statement about the function G
is equivalent to RH.

Theorem 3 (Robin) The Riemann Hypothesis is true if and only if
(1) G(n) <€’ (n > 5040).

The condition () is called Robin’s inequality. Table [ gives the twenty-
six known numbers r for which the reverse inequality G(r) > €7 holds (see
[17, Sequence A067698|), together with the value of G(r) (truncated). (The
“a(r)” column is explained in §] and the “Q(r)” column in §7.11)

In [14] Robin also proved, unconditionally, that

0.6482. ..

2



r SA CA GA1l GA2 Factorization o(r)/r G(r) a(r) Q(r)

3 v 3 1.333 14.177 0

4 v v v 22 1.750 5.357 0 —0.763
5 v 5 1.200 2.521 0

6 v Vv v 2-3 2.000 3.429 0 4.134
8 v 23 1.875 2561 0  2.001
9 32 1444 1.834 4  7.726
10 v 2.5 1.800 2.158 0  1.168
12 v V v 22.3 2333 2563 0 2.090
16 24 1.937 1.899 3  1.348
18 v 2-32 2166 2.041 0  1.679
20 22.5 2.100 1913 3  2.799
24 v v 23.3 2500 2162 0  1.185
30 2-3-5 2400 1960 2  1.749
36 v v 22.32 2527 1980 0  1.294
48 v v 2.3 2583 1.908 0  1.132
60 vV v 22.3.5 2.800 198 0  1.290
72 v 23.32 2708 1.863 0  1.160
84 22.3.7 2.666 1.791 10 1.430
120 vV v 28.3.5 3.000 1915 0 1.128
180 v v 22.32.5 3.033 1.841 0 1.078
240 v v 2*.3.5 3.100 1.822 0  1.051
360 v vV v 23.32.5 3.250 1.833 0 1.044
720 v 24.3%2.5 3.358 1.782 7  1.028
840 v 28.3.5.7 3428 1.797 3  1.065
2520 vV v 23.32.5.7 3714 1804 0 1.015
5040 vV v 24.32.5.7 3838 1.790 0  1.007

TABLE 1 — The set R = {r <5040 : G(r) > e = 1.781 ...}, which contains
the subset Ry = {N < 5040 : N is GA2}.



with equality for n = 12. This refines the inequality limsup,,_,.. G(n) < €”
from Gronwall’s theorem.

Recently, the authors [3] used Robin’s results to derive another reformu-
lation of RH. Before recalling its statement, we give three definitions and an
example.

A positive integer N is a GA1 number if N is composite and the inequality
G(N) = G(N/p)
holds for all prime factors p of N. The first few GA1 numbers are
N = 4,14, 22,26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, . .
(see [IT7, Sequence A197638]), and (see §5.3)) the smallest odd GA1 number is

N = 1058462574572984015114271643676625.

An integer N > 1 is a GA2 number if
G(N) > G(aN)

for all multiples aN of N. The nineteen known GA2 numbers (see Theorem [0l
and [17, Sequence A197369|) are

N =3,4,5,6,8,10, 12, 18, 24, 36, 48, 60, 72, 120, 180, 240, 360, 2520, 5040.

Every GA2 number > 5 is even. (Proof. If N is odd, then o(2N) = 30(N),
and if N is also GA2, we get

< 3G(N) _ loglog2N
~ 2G(2N)  loglog N

3
2

which implies N < 7.)
Finally, a composite number is eztraordinary if it is both GA1 and GA2.

For example, the smallest extraordinary number is 4. To see this, we first
compute G(4) = 5.357.... Then, as G(2) < 0, it follows that 4 is a GAl
number. Since Robin’s unconditional bound (2]) implies

0.6483

Y R
Gln) <&’ + (loglog5)?

—4643...<G4)  (n>5),

we get that 4 is also GA2. Thus 4 is an extraordinary number.
We can now recall our results from [3, Theorem 6 and Corollary §|.
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Theorem 4 (Caveney-Nicolas-Sondow) (i). The Riemann Hypothesis is
true if and only if 4 is the only extraordinary number.

(ii). If there is any counterexample to Robin’s inequality, then the mazimum
p o= max{G(n) : n > 5040} exists and the least number N > 5040 with
G(N) = u is extraordinary.

If there exists an extraordinary number N > 4, then N is even (as 5 is not
GA1, and no GA2 number > 5 is odd) and N > 10**7® (since no GA1 number
lies in the interval [5,5040], and no GA2 number lies in [5041, 108576]—sce
Corollary [IJ).

In the present paper, we study GA1 numbers and GA2 numbers separa-
tely.

Preliminary facts about GA1 numbers and GA2 numbers were given in
[3]. We recall two of them and make a definition.

Fact 1 (proved by elementary methods in [3, §5]|). The GAI numbers with
exactly two (not necessarily distinct) prime factors are precisely 4 and 2p,
for primes p > 7.

We call such GA1 numbers improper, while GA1 numbers with at least
three (not necessarily distinct) prime factors will be called proper.

The smallest proper GA1 number is v := 183783600 (see §0.3] and [17,
Sequence A201557]). The number v was mentioned in [3, equation (3)] as
an example of a (proper) GA1 number that is not a GA2 number (because

G(v) < G(19v)).
Fact 2 (see [3, Lemma 10]). If ng is a positive integer, then

limsup G(ang) = €7,
a—ro0

which yields the implication
(3) Nis GA2 — G(N)>¢€".

An application is an alternate proof that any GA2 number N > 5 is even.
Namely, as 7 and 9 are not GA2, and as Theorem 2 in [4] says that an integer
n > 9 is even if G(n) > €7, the result follows from (3]).

By the method of [3], §5], one can prove two additional properties of GA1
numbers.

Fact 3. The only prime power GA1 number N = p* is N = 4.

Fact 4. A product of three distinct primes pipsps cannot be a GA1 number.
(See §6.2] for a more general result proved by other methods.)



The rest of the paper is organized as follows. The next subsection esta-
blishes notation. In §2lwe recall the definitions of superabundant (SA) and co-
lossally abundant (CA) numbers and review some of their properties. In §3lwe
prove six lemmas needed later. In §4l we give an analog of Theorem [l for GA2
numbers ; in particular, of RH is false, then infinitely many GA2 numbers
exist, and any number N > 5040 for which G(N) = max{G(n) : n > 5040}
is both GA2 and CA. In the final four sections we study proper GA1 num-
bers : §8l compares them with SA and CA numbers, §6lis concerned with their
prime factors, §7l gives algorithms for computing them, and §8§ estimates the
number of them up to x.

1.1 Notation

We let p always denote a prime.
Let v,(n) denote the exponent on p in the prime factorization

n = H p”p(”) .
p

For n > 1, we denote the number of prime factors of n counted with

multiplicity by
Qn) = va(n).
P

For n > 1, we denote the largest prime factor of n by
P(n) :==max{p:p|n}=max{p: v,(n) > 0}.

As usual, Chebychev’s function is defined as

O(x) = Z log p.

2 Review of properties of SA and CA numbers

Superabundant and colossally abundant numbers were first introduced
by Ramanujan, who called them generalized highly composite and generali-
zed super highly composite numbers, respectively (cf. [13 §59]). They were
rediscovered later by Alaoglu and Erdés [1].

A superabundant (SA) number is a positive integer N such that

> —= (0<n<N).



The first few SA numbers are (see [17, Sequence A004394])
N =1,2,4,6,12,24,36, 48,60, 120, 180, 240, 360, 720, 840, 1260, 1680, . . . .

A colossally abundant (CA) number is a positive integer N for which
there exists an exponent € > 0 such that

() Pl

(n>1).

Such an exponent ¢ is called a parameter of N. The sequence of CA numbers
(compare [I7, Sequence A004490|) begins

N =1,2,6,12,60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, . . . .

From (), it is easy to show that every CA number is also SA.
Now let NV denote an SA or CA number. Then (see [I, Theorems 1 and 3]
or [13], §59])

(5) N=2k.3k 5k phr = k> ks> ks> >k
with k, = 1 unless N =4 or 36, and [I, Theorem 7]
(6) p=P(N)~logN (N — oc0).

We recall some properties of CA numbers (see |1} 2], 3], 6, 9, 13}, 14} [15]).
Note first that for any fixed positive integer k, the quantity

1
log ( 1
Og( +t+t2+---+tk)

logt

F(t k) =

is decreasing on the interval 1 < ¢t < oo, and the function t — F'(¢, k) maps
the interval onto the positive real numbers. Hence, given ¢ > 0, we may
define z = x1(e) > 1 by

(7) F(xy, k) = e.

(See [14, p. 189] and [13, §61 and §69].) In particular, when k = 1 we set
r = 1x = x1(€), so that

(8) F(z,1) = F(xy,1) o8 (1 ’ i)

B log x -



It is convenient to set xy = +o00. From the decreasingness of F(¢, k) with
respect to both ¢ and k, it follows that the sequence (xy)g>o is decreasing.

If N is a CA number of parameter ¢ and p divides N with v,(N) = k,
then applying () with n = Np yields

e>F(p,k+1) ie. p>
while, if £ > 0, applying () with n = N/p yields
9) e < F(p k) ie. p<uap.

Let K be the largest integer such that xx > 2. Then from (@), for all p’s we
have 2 < p < x; and
k=uv,(N) < K.

Now define the set
€ :={F(p,k) : pis prime and k > 1}.
Its largest element is

log(3/2)

max & = F(2,1) = log 2

=0.5849 ...,

and its infimum is
inf £ :klim F(p,k)=0
—00

for any fixed prime p.

If ¢ ¢ £, then no xj is a prime number and there exists a unique CA
number N = N(e) of parameter ¢; moreover, N is given by either of the
equivalent formulas

N = Hpkp with zp, 11 <p <y,
p<z

or

(10) N=]I II»

In particular, if ¢ > max &, then z = 27 < 2, K =0 and N(¢) = 1.

If e € £, then some z;, is prime, and it is highly probable that only one z;,
is prime. But (see [6, Proposition 4]), from the theorem of six exponentials
it is only possible to show that at most two x;’s are prime. (Compare [9,



p. 538|.) Therefore there are either two or four CA numbers of parameter ¢,

defined by

(11) N=1T II»

Here, if x;, is a prime p for some k, then p may or may not be a factor in the
inner product. (This can occur for at most two values of k.) In other words,
if 251 < p < xy, then the exponent v,(N) of p in N is k, while if p = x4, the
exponent may be k or k — 1. In particular, if N is the largest CA number of
parameter €, then

(12) F(p,1)=e = P(N)=p.

Note that, since if € ¢ £, then z, is not prime, formula (I0) gives the same
value as (I]). Therefore, for any ¢, formula (1] gives all the possible values
of a CA number N of parameter €. (Thus N is a product of “primorials” [17,
Sequence A002110].)

3 Six lemmas
The case k = 2 of the following lemma was proved in [14, p. 190].

Lemma 1 For k > 2, we have the upper bound

zy, < (kx)*.

Proof. Since the function ¢ — F\(t, k) is strictly decreasing on 1 < ¢ < oo, to
prove x;, < z := (kx)Y/* it suffices to show F(z,k) < F(xy, k). As (7) and

[®) imply F(zy, k) = e = F(x,1), this reduces to showing F(z, k) < F(x,1).
Since z > 1 and k£ > 2, we have

1 1
F(z, k) = log(1+z+z2+---+zk)logz
1 B k
= (24224 +2F)logz (242244 2F)logkx
k k 1
< < =

§+kx) log x (a:—i—%)loga:

1
< log (1 + —) = F(z,1),
x ) logx




using the lower bound log (1 + %) > (t + %)_1, valid for ¢ > 0. This proves
the desired inequality. O

In the proof of Theorem [ (iii), we will need the following result (see [11],
Lemma 4]).

Lemma 2 Given a CA number Ny of parameter g, let N > Ny be a number
satisfying

o(n) _ o(N)

(13) n Z N() — n1+6 ~ Nl"’_e

for some fixed € > 0. Then N is CA of parameter €.
Proof. Since Ny is CA of parameter gy, we have
o(N) _ (N)”’f“
O'(NQ) - NQ '

On the other hand, (I3)) yields
O'(No) - NO '
Hence € < ¢q.

In view of (I3)), to prove that N is CA of parameter e, we only need to
show that

o(n) _ o(N)
nlte = Nlte

n < Ny -
If n < Ny, then since Ny is CA and (I3) holds, we have

on)  o(n)n®° < o(Ng)no—¢ < a(No)N* ™= a(Ny) < a(N)
nlte _ nlteo — Né-f—&o — Né-f—&o _ N01+6 — Nlite’

This completes the proof of Lemma 2 O
The next lemma provides an estimate for a CA number of parameter ¢.

Lemma 3 Let N be a CA number of parametere < F(2,1) = log(3/2)/ log 2
and define x = z(e) by ([{).
(). Then

log N < (2) +evw

for some constant ¢ > 0.

10



(ii). Moreover, if N is the largest CA numberl] of parameter ¢, then

(z) <log N < (x) + ¢z
Proof. (i). It follows from formula (1)) for NV that if x; is defined by (), then
(14) log N < (1) + (22) + - - + (7k),

where K is the largest integer such that zx > 2. (Note that vy(N) = K or
K —1, and that ¢ < F'(2,1) implies x > 2 and K > 1.)
As t — F(t, k) is decreasing and (7)) holds, we have

F2,K)> Frg,K) =¢ = Flagsy, K +1) > F(2, K + 1),

On the other hand,

1 1 1 1 2
F2,K)=1 1 < < < —
(2, K) Og( +2K+1—2) log2 ~ (2K _2)log2 — 2Klog2 ~ 2K

and, from (),

log(1+ 1) 1 1 1
€= > > —.
log « (x+1)logze ~ (x+1)(x—1) 22
Thus
2 1
2_K>F(2’K)Ze>ﬁ’
implying
15 K <1 log z.
(15) gz 87

Since k — xy is decreasing, from (I4]) we have (compare [13, equation
(368)])
log N < (1) + (22) + K(x3).

Using x5 < v/2x and x3 < v/3z (from Lemma [II), together with (IH) and the
Prime Number Theorem in the form (¢) ~ ¢, we deduce (i).

(ii). From (IIJ), the largest CA number of parameter ¢ is

V=11 II»

k=1 p<zy

1. Note that Ramanujan’s definition of CA number of parameter ¢ in [I3] is not exactly
the same as that of Robin in [14] pp. 189-190]|. Ramanujan’s definition corresponds to the
largest CA number of parameter € for Robin.
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which implies (z) < log N, and (ii) follows from (i). O

In the next lemma, we recall the oscillations of Chebychev’s function
studied by Littlewood.

Lemma 4 There exists a constant ¢ > 0 such that for infinitely many
primes p we have

(16) 0(p) < p — cy/plogloglogp,
and for infinitely many other primes p we have
(17) 8(p) > p + ¢y/plogloglog p.

Proof. From Littlewood’s theorem (see [10]), we know that there exists a
constant ¢ > 0 such that for a sequence of values of x going to infinity we
have

(18) 0(x) < x — '/zlogloglog z,
and for a sequence of values of 2’ going to infinity we have
(19) &' + V' logloglog ' < 6(x").

Let us suppose first that x is large enough and satisfies (I8). If x = p is
prime, then (I8) implies (I6). Now assume x is not prime, and let p be the
prime following x. As the function t — t — cv/tlogloglogt is increasing, we
get

0(p) = 0(x) +logp < v — ¢/wlogloglog x + log p
< p—d\/plogloglogp + logp,

which implies ([I6]) with ¢ < ¢ for = large enough.
The proof of (I7) is easier. Let z’ satisfy (I9) and choose the largest prime
p < 2. For ¢ < ¢, we have

0(p) = 0(z') > 2’ + ¢Va'logloglogz’ > p + cy/plogloglogp,
which proves (IT]). O

Lemma 5 Chebychev’s function (x) satisfies

() < (1 +a)z,

where
0 if v < 8- 101,
a=al@)=3 1 000028 otherui
m < U. otherwise.
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Proof. Schoenfeld (cf. [16], p. 360]) proved (z) < 1.000081 z for all z, and he
mentioned that Brent had checked that (z) < z for z < 10''. The stronger
results stated here are due to Dusart—see [3], p. 2 and Table 6.6]. 0

Lemma 6 Let € be a positive real number. Fort > e, let us set

(20) g(t) = g:(t) :==elogt — logloglog t.
Then there ezists a unique real number to = to(e) > e such that

1
logt, loglogty c

(21)
Moreover, g(t) is decreasing for e < t <ty and increasing for t > t.

Proof. The derivative of ¢ is

/(t)—l ;
FW=73\° logt loglogt )’

For t > e, both logt and log log t are positive and increasing, and the function
t — 1/(logt loglogt) is a decreasing bijection from (e, +00) onto (0, +00).
Therefore, one can define ty > e by (21)).

Then we have ¢'(t) < 0 for e < t < to, and ¢'(t) > 0 for ¢ > t;, which
completes the proof of Lemma O

4 GA2 numbers

We first study GA2 numbers. Compare the following result on them with
Theorem M] on extraordinary numbers.

Theorem 5 (i). The set of GA2 numbers < 5040 is
Rs :={3,4,5,6,8,10,12, 18,24, 36, 48, 60, 72, 120, 180, 240, 360, 2520, 5040}.

(ii). If the Riemann Hypothesis is true, then no GA2 number exceeds 5040.
(iii). If the Riemann Hypothesis is false, then infinitely many GA2 numbers
exist ; moreover, the inequality

p=max{G(n) : n > 5040} > "
holds, and any integer A > 5040 for which G(A) = p is both GA2 and CA.
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Proof. (i). Setting
R':={N <5040 : N is GA2},

we have to prove that R’ = Ro.
To show R’ C Ry, choose N € R'. From (3], we have G(N) > €”, so that

NeR:={r<5040:G(r) > €}
— {3,4,5,6,8,9,10, 12, 16, 18, 20, 24, 30, 36, 48, 60, 72, 84, 120, 180,
240, 360, 720, 840, 2520, 5040},

by calculating the “r” column of Table [Il To show that N belongs to the
subset Ry C 'R, define for r € R the integer

a(r) = min A,, if A, :={a:G(ar) > G(r), ar € R} #0,
~ 1o if A, = 0.

A computation (see the “a(r)” column of Table [I)) shows that
(22) (reR:A #£0} = {9,16,20,30,84, 720, 840}.
Since N is GA2, it must lie in the complement

(23) R\ {9, 16,20, 30, 84, 720, 840} = R..

This shows R’ C Rs.
To prove Ry C R/, choose r € Ry. To get r € R, we need to show that
G(r) > G(ar), for any multiple ar of r. We consider two cases.

Case 1 : ar < 5040. If ar € R, then since r € Ry, relations (23] and (22))
imply G(ar) < G(r). On the other hand, if ar € R, then G(ar) < ¥ < G(r).
Thus G(r) > G(ar) whenever ar < 5040.

Before considering Case 2, we recall that in [14] p. 204 (c)] Robin proved
that if C' is the largest CA number with P(C) < 20000, then there is no
counterexample < C' to his inequality (I). From the property (B) of CA
numbers, we have log C' > (20000), where (z) is Chebychev’s function.

We also recall that in [16, p. 359, Corollary 2|, Schoenfeld proved that

() >z

— > 19421).
8logx (v 2 19421)

A calculation then gives the inequalities

20000
20000) > 20000 — — - 19747
(20000) > 20000 = = =500 ~ 1

14



which, together with Robin’s result on C', yield the implication

(24) 5040 < n < ™ = G(n) < €.

Case 2 : ar > 5040. If log ar < 19747, then (24) gives G(ar) < e < G(r).
On the other hand, if log ar > 19747, then from (2)) we get

.648
0.6483 =1.787...<1.790... = min G(r') < G(r).

G < Y -
(ar) < &'+ g io7am)2 VER, =

Thus G(r) > G(ar) whenever ar > 5040.

This shows that, in both Cases 1 and 2, all elements r of Ry are GA2
numbers, so that Ry C R'. Finally, since we already have Ry D R/, we get
Ry = R'. This proves (i).

(ii). If RH holds, then by Robin’s theorem there is no number n > 5040 with
G(n) > €7, while from ([B) a GA2 number N must satisfy G(N) > €.

(iii). Let us assume that RH fails. Set

© := sup R(p)
((p)=0
so that
1/2<0<1.

Let N denote a CA number of parameter ¢, and define z = z(¢) by (8).
If p:= P(N) and if p* is the prime following p, then from (III) we have

p <r=x< p+7
which implies z ~ p as N — oo. Further, from (@), we get p ~ log NV, which

implies
z~logN (N — o0).

In [I5] p. 241], it is proved that as N — oo
GIN)=e" (1494 (z7") (1-6<b<1/2)
which implies that
GIN)=¢ (1+Q: (logN)™) (1-©<b<1/2).

(Here the notation “ f(N) = Q,(g(N)) as N — oo” means that f(N) > g(N)
infinitely often, and should not be confused with the notation 2(n) in §I.11)
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Therefore, there exist infinitely many CA numbers N satisfying G(N) > €7,
and, for all ¢, we have max,,>; G(n) > €.

Now we construct two sequences Ai, Ao, ... and A}, A), ..., as follows.
Let A; (resp., A}) be the smallest (resp., largest)@ integer > 5040 such that
GlA) = G(A) = .

Given i > 2, assume that A;, Ay, ... A,y and A}, A, ... A | have
been defined. Set y; := max, >4 G(n) and let A; (resp., A}) be the smallest
(resp., largest) integer > A, | with G(4;) = G(A,) = ;. Since we have
w; > €7 = limsup G(n), infinitely many A;’s can be found. The numbers A;
are such that

n>A, = G(n) <GA)

and, therefore, are GA2.

In the same way, A is proved to be GA2, using A > 5040 and G(A) = u.
To show that A is CA, we apply Lemma 2 with Ny = 55040, ¢y = 0.03,
N = A, and € = 1/(log Aloglog A) ; since A is GA2 and A > 5040, from
24) and (@) we obtain that N = A > 977 > Ny. For n > Ny, from the
definition of A we have G(n) < G(A). Since e < Ny < A holds, it follows
from Lemma [l that, on the interval [Ny, +00), the function g(t) (defined by
[20)) attains its minimum at ¢ = A. Thus, for n > Ny, we have

o(n) loglogn —aln —oln o 0(A)
e — (n) = G(n)e 9™ < G(A)e 9™ < G(A)e 9N = e
and so (I3]) holds. Applying Lemma [2] completes the proof of (iii). O

Here is a corollary of the proof of Theorem

Corollary 1 There is no GA2 or extraordinary number between 5041 and
108576.

Proof. Since 10376 < ¢!977 this follows from (24]). O

5 Comparison between CA and GA1 numbers

In this section, we study GA1 numbers. We begin by comparing them
with CA numbers.

2. It is highly probable that A; = A). A difficult question is whether G is injective.
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5.1 CA and GA1l

By revisiting the proof of [15, Theorem 3, p. 242|, we shall prove the
following results.

Lemma 7 Let N be a CA number of parameter ¢ > 0 and assume that
p:=P(N)>5.If

1
g > 3
log(N/p) loglog(N/p)
then N is also a GA1 number.

(25)

Proof. Let q be a prime factor of N. It follows from () that 6p divides N
and that N/qg > N/p > 6 > e, which implies loglog(N/q) > logloge = 0.
Since N is a CA number, from () one has

o(N/g) _ o(N)

2 (NJa+ = W
so that

o(N/g) _ 1
(27) o(N) < gite

Since loglog N and loglog(NN/q) are positive, it follows that

G(N/q) < loglog N (N/q)*loglog N
G(N) ~ ¢ loglog(N/q)  N*loglog(N/q)

(28) exp(g(N/q) — g(N)),

where ¢(t) is defined by (20)). By Lemma [0l using (21]) to define ¢y > e, we
have that ¢(t) is increasing for t > t,. Now from (25]) we deduce that

N N
e<ty< —<—< N
p q

and from (28) we get G(N/q) < G(N). This shows that N is GAL. O

Theorem 6 Infinitely many CA numbers are GA1.

Proof. Choose a sufficiently large prime p satisfying (7)), and set ¢ := F(p, 1)
(so that x = p, by (8)). Let N be the largest CA number of parameter ¢ (so
that p divides N, by (I2])). From Lemma [ part (ii) and (), we get

log N > (z) = (p) > p+ ¢y/plogloglogp,

17



so that
log(N/p) > p + ¢y/plogloglogp —logp > p + 1.
Using the lower bound log(1 +1¢) > ¢/(1 +t), we get

log <1 + %) 1
— F(p.1) = >
© 1) logp  ~ (p+1)logp
1 1

(p+ Dlog(p+ 1)~ log(N/p)loglog(N/p)

and Lemma [7] implies N is GA1. Since, by Lemma [, there are infinitely
many primes p satisfying (7)), the theorem is proved. O

5.2 CA and not GA1l

To study CA numbers that are not GA1, we need a lemma.

Lemma 8 Given a prime p > 3, let N be the largest CA number of parame-
ter e := F(p,1). If

1
<
© log Nloglog N’

(29)
then N 1s not GA1.

Proof. As ¢ = F(p,1), we have p* = (p+ 1)/p = o(p)/p. Hence, by (12,
inequality (28) becomes an equality when ¢ = p, and so do inequalities (27))

and (28)). Therefore, with g and ¢y defined by (20) and (2I]) as in the proof
of Lemma [7, we get that

= exp(g(N/p) — g(N))

and, from Lemma [6, that g(¢) is decreasing for ¢t < ty,. Then (29)) implies
N/p < N < tg, so that G(N) < G(N/p). Thus N is not GAL. O

The CA numbers N such that P(N) € {2,3,5,7,11,13,29,59, 149} are
not GA1l. There are two CA numbers such that P(/N) = 23; the larger one
is not GA1, while the smaller one is GA1. All other CA numbers satisfying
P(N) < 300 are GA1. (These statements follow by computing all CA num-
bers N with P(N) < 300, and calculating those that are GAl—see §7.)

Theorem 7 Infinitely many CA numbers are not GAI.

18



Proof. Choose a sufficiently large prime p satisfying (I6]), and set ¢ := F(p, 1)
(so that, from (§), = p). Let N be the largest CA number of parameter ¢
(so that, from (I2), p = P(N)). From Lemma B part (i) and (I6]), we get

log N < (p) + ¢y/p < p—cy/plogloglogp + ¢\/p < p,
and so

log(1+ 3) 1 1
E =

< < .
logp plogp  log Nloglog N

Then Lemma 8 implies N is not GA1. Since there are infinitely many primes p
satisfying (I0), the theorem is proved. O

5.3 0Odd GA1l numbers

We show that there are infinitely many odd GA1 numbers, and we com-
pute the smallest one.

Let us denote by Py = {2,3,5,7,11,13,17,...} the set of all primes, and
by P a subset of Py. To P, we attach the set

Np={n>1:p|n = peP}

and the function

plz):= Y logp.

p€EP, p<x

A number N € Np is said to be colossally abundant relative to P (for
short, CAp) if there exists € > 0 such that

o(N) _ o(n)
Nl-i—e — nl-i—e

(TL € Np)

If M= HpE'Po p® is an ordinary CA number of parameter ¢, then the factor
N = Hpep p?? is CAp, for the same parameter ¢, and all CAp numbers can
be obtained in this way.

Theorem 8 There exist infinitely many odd GA1 numbers.

Proof. First, we observe that Lemma [ remains valid if we replace CA with
CAp, for any set P with at least 2 elements.

We set P = Py \ {2}. The proof of Theorem [0 remains essentially valid.
We just have to change the lower bound for log N to

log N > p(p) = (p) —log 2
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and the inequality log(N/p) > p+1 still holds, so that we may conclude that
N is GAL. U

The smallest CAp\ (9 number that is GA1 is

w := 1058462574572984015114271643676625
= 3*.5%.72.11%2.13-17-19-23-29-31-37-41-43-47-53-59-61-67-71-73.

From our computation (see §7.0)), w is also the smallest odd GA1 number.

Corollary 2 There exist infinitely many GA1 numbers that are not SA.

Proof. This folllows immediately from (B]) and Theorem [ O

Of course, the proof of Theorem [§ works for any set of primes P such
that Py \ P is finite.

6 Prime factors of GA1 numbers

Here we study prime factors of proper GA1 numbers.

6.1 An upper bound
We need the following upper bound.

Theorem 9 Given a GA1 number N with Q(N) > 3, let p be a prime factor
of N. Then for any positive integer r < v,(N) we have

p < (rlog N)V/" <log N.
Proof. We have G(N/p) < G(N), which implies

o(N/p)N _ loglog(N/p) _ log(log N —logp)
(30) (N/p)a(N)S loglogN loglog N

Note that loglog N > loglog(/N/p) > loglog4 > 0. We also have

1
log(log N — logp) = log <logN (1 _ 08D ))

log N
logp

= loglog N +1 1—
og log —l—og( logN)
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so that

lo
(31) log(log N —logp) _ —log (1 - ﬁ)
loglog N N loglog N

Further, setting v = v,(IV), the left side of (30) can be written as

o(N/p)N 1+ p+---+p!

(Npe™N) — P atp+ 4
(32) -

1

1- >1-— :
l+p+---+p° I+p+---+p"

From (B0), (3I)), and ([B82), one deduces
log log N < log N loglog N

(33) P <1+4p+---+p < 1 < S
—log (1_ loggjl\’[> gp

which yields

(34) p"logp <log Nloglog N.

Let us assume, ab absurdum, that p > (rlog N)*/". Then we would have

1
p"logp > (rlog N)—log(rlog N) = log N log(rlog N) > log N loglog N
r

contradicting (34). Therefore, p < (rlog N)¥" holds. Finally, by calculus,
(rlog N)Y/" is decreasing for 7 > 1 (because Q(N) > 3 implies N > 8 and

log N > 2) and the theorem follows.

6.2 Study of (V) where N is GAl

We show that there are only finitely many proper GA1 numbers N that

have a fixed value of Q(N).
Theorem 10 If k > 3, then
I, :=#{N : N is GA1 and Q(N) =k} < 0.

Proof. For a GA1 number N with Q(N) =k > 2, let us write N = p1ps -+ - pg
with p; < py < -+ < pp. We have N < pf, so that p, > N'VE holds. But

Theorem [ yields p; < log N, whence

log N
loglog N —
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and N is bounded. Thus Il is finite. O

Since log’i?fgﬁo = 28.03..., a table of GA1 numbers up to 10% (see §7))

allows us to calculate 11 for k& < 28.
We have I, = 0 if 3 < k < 12, and the following table gives II; when

13 < k < 28 (see [IT, Sequence A201558]).

kE=|13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
y=(2 4 2 1 1 2 4 1 2 3 7 7 7 1 4 7

6.3 The exponent of the largest prime factor

First, we observe that the function ¢ +— 2!/t is an increasing bijection of
the interval |2, +00) to itself. Let us introduce the inverse function h defined
for x > 2 by

(35) h(z) =t = r=—
We shall need the following lemma.

Lemma 9 Let = satisfy x > 2. Then we have 2 < h(x) < 3.08 log x.

Proof. The lower bound results from the definition of h. Let us set ¢t = h(x),
so that z = 2'/t. By noting that (logt)/t < 1/e holds, we get

h(x) t
logz  tlog2—logt log2— (logt)/t — log2—1/e
which proves Lemma O O

Theorem 11 Let N be a GAI number with Q(N) > 3. Set R = h(log N),
so that 2% /R =log N. Then N divides the number M = M(N) defined by

LR

(36) M::H H = ﬁ H p.

r=1 " ((r+1)log N)¥/ "+ <p<(rlog N)1/7 r=1 p<(rlog N)V/r

Proof. Since the function r +— (rlog N)'/" is decreasing, this follows from
Theorem O

For example, if N = v = 183783600, we compute R = h(logr) = 7.072. ..
and find that M = T2v.
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Theorem [I1] allows the computation of proper GA1 numbers—see §7.2
and §7.5.

For the exponent v,(N) of a prime p in the standard factorization of IV,
Theorem [Tl provides the upper bound v,(N) < v,(M), which only depends
on the size of N.

We now study the exponent of the largest prime factor of a GA1 number.

Theorem 12 Let N be a GAI number with Q(N) > 3, and let p = P(N) be
its largest prime factor. Then v,(N) = 1.

Proof. Suppose on the contrary that v := v,(/N) > 2. Then Theorem @ implies
that N divides the number

v

| ]
M, = M,(N) := II » 1II I »

p<(vlog N)1/v r=vtl p<(rlog N)/r

with R defined by 2%/R = log N. Thus, from the function r ~ (rlog N)/"
being decreasing,
LR
logN < log M, = v (vlog N)"/?) 4 Z ((rlog N)V7)
r=v+1
< 2((2log N)V%) + R((3log N)'/3).

From Lemmas [9 and [ it follows that
log N < 1.000028 (2\ /21og N + 3.08log log N (3 log N)1/3>
< 2.83+/log N + 4.45loglog N (log N)'/3.

Therefore, we have
2.83 4.45
+ >1
VIog N (log N)2/3loglog N
which implies log N < 15.03, N < Ny := 3336369 and R < 6.65, so that
N must divide M,(Ny) for some v in the range 2 < v < 6. But the table

v = 2 3 4 5 1 6
(vlog No)'/v = 5.48 3.56 2.78 |2.37|2.12
M,(Ny) = | 43200 = 263352 | 1728 = 2633 | 64 =20 | 64 | 64

shows that if v > 2, then the number M, (Ny) divides My(Ny) = 43200,
contradicting the easily-checked fact that none of the 84 divisors of 43200 is
a proper GA1 number. (In fact, we will see in §7.5] that there is no proper
GA1 number < 183783600.) This proves the theorem. U
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6.4 The largest prime factor of a GA1 number

For a GA1 number, we now study the largest prime factor itself.

Theorem 13 For GA1 numbers N with Q(N) > 3, the largest prime factor
satisfies
P(N)~logN (N — o0).

Proof. Let N be a GA1 number satisfying Q(N) > 3 and let p := P(N) be
its largest prime factor. From Theorem [0 we know that

(37) p <logN.

It remains to get a lower bound for p. The proof resembles that of Theorem [121
Since N divides M given by (36]) and p = P(N), by Lemma [l we have

R
(p) +)_ ((rlog N)!/")

r=2

< (p) + ((210g N)'?) + O(R(log N)'/?)
(38) < (p) + O(y/log N).

From the Prime Number Theorem and from (37), we get

(p) =p+ O(pexp(—cy/logp)) = p+ O(log N exp(—cy/loglog N)).
Therefore, (38)) becomes

log N < p+ O(log N exp(—cy/loglog N)),

which, together with (B7), completes the proof of the theorem. O

log N

VAN

7 Computation of GA1l numbers

In this section we give several versions of an algorithm to compute GA1
numbers.

7.1 The Gronwall quotient

We begin with a lemma and a definition.
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Lemma 10 Let n be a positive integer with Q(n) > 3. Let ¢ and p be prime
factors of n satisfying ¢ < p and vy(n) < v,(n). Then we have

G(n/q) < G(n/p).

Proof. We have

o(n/q)/(n/q) _ qa(n/Q) _ g™ 1
o(n)/n on)  1+q+--+gu Ltg+-+qum
1_ 1 _a(n/p)/(n/p)
L+p+---+p® o(n)/n
which implies % < %.
The lemma follows from loglog(n/q) > loglog(n/p), since (n) > 3 im-
plies loglog(n/p) > loglog4 > 0. OJ

We define the Gronwall quotient Q(n) of a composite integer n to be the
number

o) G(n/p) p*™MF —p  loglogn
n) .= max = Imax .
pn  G(n) pln pr™*tL —1 loglog(n/p)
p prime p prime

GA1 numbers N are characterized by Q(N) < 1. For example, the “Q(r)”
column in Table [Il shows that the only GA1 number r € R is r = 4.

Let us introduce a subset S(n) of the set of the prime divisors of n. The
elements of S(n) are defined by induction. The largest prime factor of n is the
first element ¢; of S(n). Now let us assume that ¢ > 2 and that the elements
G542, - -, Gi—1 € S(n) are known.

If, for all primes p that divide n and are smaller than ¢;_;, we have
vp(n) < v, ,(n), then there are no further elements of S(n), and we get
S(n)={q1, g, g1}

If not, then the element ¢; € S(n) is defined as the largest prime factor
of n that satisfies ¢; < ¢;—1 and vy, (n) > vy, (n).

From Lemma [I0, if 2(n) > 3 we get

o) G(n/p) p»™H —p  loglogn
n) = max = max :
pesn) G(n) pes(n) p»(M+1 — 1 loglog(n/p)
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7.2 A first algorithm

To compute all proper GA1 numbers N < z for a given x, we first calcu-
late M = M(z), defined by

LR

Mr:H H j2

r=1p<(rlogz)t/r

with R such that (Rlogz)"® = 2. Any GA1 number N < x with Q(N) >3
is a divisor of M (see Theorem [IT]).

Thus a first version of the algorithm computes all composite divisors N
of M, and for each of them calculates G(N/p)/G(N) for all p € S(N). If
for some p € S(IV) we have G(N/p)/G(N) > 1, we stop : N is not GAl. If
not, we compute the Gronwall quotient Q(N) (which involves all primes p
dividing N) : N is GA1 if and only if Q(V) < 1.B.

7.3 A second algorithm

A more elaborate version of the algorithm tests only a small number of
the divisors of M. First, we define

me=11 11 »

=2 p<(rlogz)!/"

so that My := M /M is squarefree. Let us write My = pips---ps where
P1, P2, - - -, Ps are consecutive primes in ascending order.

As a first step, we compute the set Dy of all the composite divisors of M;
and test each of them for GA1 by the method described above.

A divisor of M whose largest prime factor is p; is equal to d p;, where d is
a divisor of M whose largest prime factor is < p;. Therefore, we construct by
induction on i = 1,2,...,s the set D} containing those divisors of M whose
largest prime factor is p;, and the set D; containing the divisors of M whose
largest prime factor is < p;. Then D, is equal to p;D;_; and D; = D, U D;_;.
From Theorem [ for i = 1,2,..., s, we only have to test the elements of D]
that are greater than exp(p;).

3. To avoid roundoff errors, we carry out our computation in floating point arithmetic
with 20 decimal digits and choose a small ¢ (typically, e = 10~°). In the first step, we keep
the N’s satisfying Q(IN) < 1 + e. For these N’s, we start the computation again with 40
digits.
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7.4 A third algorithm

Let us say that a divisor d € D; (with 0 < i < s) is bad if, for every
J satisfying ¢ < j < s, all multiples of d belonging to D; are smaller than

exp(p;)-
The largest multiple of d belonging to D; is d p;y1pit2 - - - pj, so that d is
bad if and only if

logd < &; == (p;) + min (p; — (p;)).

1<j<s

Therefore, we write G; C D; for the set obtained from D; by removing the
bad divisors, i.e., those divisors d satisfying d < A; := exp(d;).
Furthermore, we construct G;,, and G,;; by removing from p;{1G; and
pi+1G: U G;, respectively, those divisors d that satisfy d < A; 11 = exp(di41)-
For + = 1,2,...,s, it remains to test the elements of G; whose largest
prime factor is equal to p;, that is, the elements of G!.

7.5 Results
The smallest proper GA1 number is

v = 183783600 = 2*-3%-52.7-11-13 - 17.

We compute that M = M(v) = 8-19- v and we find that there is no proper
GA1 number N < v.

Using the third algorithm, we have computed all GA1 numbers N < 10%
with Q(N) > 3.

These results as well as the Maple code can be found on the web site
http://math.univ-lyonl.fr/"nicolas/GAnumbers.html.

We hope to present soon a fourth algorithm, more sophisticated, and able
to compute GA1 numbers up to 1012,

8 The number of GA1 numbers up to x

Let Q1(x) be the number of proper GA1 numbers N < z. From (36]) we
know that @1(x) does not exceed the number 7(M) of divisors of

LR)
M = M(x) ::H H D

r=1p<(rlogz)l/"

27


http://math.univ-lyon1.fr/~nicolas/GAnumbers.html

with (Rlogz)/® = 2. It is easy to see that log M ~ logx as x — oo, and
from the estimation of the large values of the function 7 (cf. [§] or [I1]), it

follows that !
ogx
<
@) < exp <C log log x)

for some positive c¢. By estimating the number of good divisors of M (that
is, divisors that are not bad—see §7.4)), it might be possible to improve the
above estimate.

It seems more difficult to get a lower bound for Q;(x). We hope to return
to these questions in another article.
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