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1. Introduction

Let us denote by p(n) the number of unrestricted partitions of n, by r(n, m)
the number of partitions of n whose parts are at least m, and by R(n, a) the
number of partitions of n:

n=ng+---+n,

whose subsums n; +---+n; are all different from a. Furthermore, if o« =
{ay, ..., a.}, we denote by r(n, o) the number of partitions of n with no parts
belonging to .

Let us consider now partitions of n for which each part is allowed to occur at
most once. In that case the above notations will be changed for g(n), p(n, m),

(n a), p(n, o).
Clearly we have:
r(n,m)=r(n, {1,2,...,m—1})
R(n,a)=r(n,a+1) (1)
R(n,a)=r(n, {1,2,..., |a/2], a}) ¥))
where |x/2] denotes the integral part of x.

In [4], the following estimation is given for R(n, a): when a is fixed, and n
tends to infinity,

(a)
R @) ~p)() (@) ®)

where (a)=|a/2+ 1}, and u(a) eN. The value of u(a) is computed for
1=<a =20, and it does not seem easy to get a simple formula for u(a). The results
are u(1)=1, u(2)=4, u(3)=3, u(4)=16, and u is increasing from a=3 to
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a =20. Moreover, J. Dixmier gives the following inequalities:
foraeven (la/3] —1)!a*“"*<u(a)=<2""al/(a/2—1)! 4)
foraodd (la/3] —1)!a”***<u(a)=<2"?a!/(la/2])! 5)

It follows from (3), the definition of vy, and the behaviour of u, that for n large
enough,

R(n, 1)>R(n, 2)>R(n,3)>R(n, 4) 6)
and fora=2b, 2<b =<9,
R(n,2b +2)<R(n,2b)<R(n,2b +1)<R(n, 2b —1).

At the end of the paper, a table of R(n, a) is given. It has been calculated by
J. Dixmier, H. Epstein and O.E. Lanford, using the induction formula.

fln,p, )= f(n—i i, 4U A —i).
i=p
Here, f(n, p, 4) denotes the number of partitions of n in parts <p such that no
subsum belongs to &, and & —i={a—i;aesf,a—i>0}. It has been inde-
pendently calculated by F. Morain and J.P. Massias. They have used computer
algebra systems MAPLE and MACSYMA to compute polynomials mentioned by
Diximier (cf. [4], 4.3 and 4.10). Unfortunately these polynomials are of degree
((a + 1)(a +2)/2) — 2, and it is not easy to deal with them for large values of a.

As observed in [4], R(n, 2) <R(n, 3) for 10=<n <106, which contradicts (6).
But (6) is true only for n large enough.

The aim of this paper is to study R(n, a) for a depending on s, and smaller
than AO\/Z, where A, is a small positive constant. The tools for that are an
estimation for r(n, &) (cf. Lemma 2 below), and inequalities involving R(n, a),
extending (1) and (2). We shall prove the following result.

Theorem 1. There exists )»;)>0, such that uniformly for 1<a=< AoV, we have,
when n goes to infinity,

) xog(R—If’&—“l) < (i@ tog 7= + 001V

R(n, a)

(ii) log( ()

> = y(a) log% — va.a + O(a*/\V/n)

where vy, =1 if a is odd, and, if a is even,

loga

I
Yo.=3+log3—Z%log2+c =+0.79-- - +c¢ ogd where c is a fixed constant.
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Let us observe that, when a goes to infinity, (4) or (5) gives

1+1log3
(_—i + o(l))a <logu(a) —zaloga=<(log2—3+o0(1))a )

while (3), (i) and (ii) yield that
—v.a +o(a)<logu(a)—taloga<o(a) (8)

which is better than (7) except for the lower bound when a is even.

We intend to treat the case A;Vn <a in an other paper, by a different method,
which will give also an estimation for Q(n, a). For this quantity, we here give
only a lower bound.

Theorem 2. There exists A, >0, such that, uniformly for 1 <a < A, Vn, we have:

log(—Qq(?T’)a)> = —glog?— log3+ 0(\;—;).

We thank very much J. Dixmier for several interesting remarks.

2. Preliminary Results

Let us first recall the definition of the mth Bessell polynomial y,,(x); (cf. [9]):
Yolx) =1

' 9
Y () = (1 )y 1(3) + ¥y (2). )
From that definition, it is easy to see that, if we set
F(x) = (exp (Vx))/Vx,
then we have (cf. [5], Lemma 1)
- exp Vx 1
FO) = o tsan 72 (10)

Furthermore, it follows from (9) that y,,(0) = 1.

Lemma 1. For m odd, the function x — y,,(x) is increasing for x € |—», +o[, and
its zero «,, satisfies
Y Y
m o m+1 an
where v is a constant satisfying 1.5 <y <1.51.
For m even, y,,(x) is decreasing on |—x, a, [ and increasing on |a,,, +[, and
Y ' Y

A Y D —
m+077 %S TmT 16l (12)

Proof. This is proved in [1] and [2]. O
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Lemma 2. Let us define P, by
=DER T .
k§—:0 22k(k’)2 (j=[ll+l (m +]))xk

Then we have
ym(x)ym(_x) = Pm(xz)'

Proof. It is known that y,,(x) satisfies the differential equation (cf. [9], p. 7)
x%y"+2(x+ 1)y’ —m(m+ 1)y =0. (13)
If we set w(x) = y,,(—x), it satisfies
*w"+2(x — Dw' —m(m + )w =0. (14)

Now we set Y = yw. It is known that Y satisfies a linear differential equation, and
with some calculation this equation writes:

Y+ 6x°Y" — (dm(m + 1) = 6)x* + 4)Y' — d4m(m + 1)xY = 0. (15)

We can easily check that Y satisfies (15), by calculating Y” and Y” in terms of
yw, y'w, yw', y'w’ by (13) and (14).

Now, we are looking for polynomial solutions of (15). It turns out that these
solutions are of the form cP,,(x?), and considering x = 0 yields Lemma 2. O

We are very pleased to thank A. Salinier for this proof of Lemma 2. This result
is somewhat curious. We would expect that, in the product y,,(x)y,.(—x) the
coefficient of x** is a polynomial of degree 4k in m. Indeed, it follows from (9),
cf. [9], p- 13, that

Ymx) =1+ > af™x*
k=1
with

k

1
M= _—— +j).
ax 2kk! j=l—_1!+1 (m ]) (16)

Lemma 3. For x such that 0<m <1/V?2, we have

= em( - ﬁ(r—"z—il—) o+ O(xz))>.

Proof. From the obvious inequality (m — i + 1)(m + i) < (m + 1)m, (16) implies

k
(m) M) 1
Ak s( 2 k!
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which gives

m(m+1)x>.

Ym(x) < exp( 2 an

Now, let us write the polynomial P,,, defined in Lemma 2, in the form
P.(x)= D, dix*.
k=0

Then we have

dk+1

et (m+k+1)(m—k)2k + 1)S2m2.
k

B (2k +2)

Thus, the absolute value of the general term of y,,(x)y,(—x), that is |d.x**| is
decreasing, and, as it alternates in sign, for mx <1/ V2, we have

_m(m+1)

! 2

X2 S Y)Y (—x) = Po(x?) <1,
which, with (17) completes the proof of Lemma 3. 0O

More accurate estimations have been obtained by M. Chellali, using Agarwal’s
integral representation

1 (" x\"
- " it -t
Ym(x) n!J; (1+2> e "dt
and the saddle point method (cf. [3]).

Proposition. There exists A,>0 such that, if s{ ={a,, ..., a;} satisfies s=a, +
a,+ - -+ +a, < An, then, when n tends to infinity, we have

0) r(n, )< <lj a,.)p(n)(—\/%)k<1 + 0(%))
G)  r(n, )= (E[1 a,.)p(n)<7’;_;)kexp(0(s/\/ﬁ)).

Proof. It is very similar to the proof of Theorem 1 of [5]. First we introduce the

operator D, Letf:R—-R, m=1, u,, ..., u, be positive. We set
D(l)(ul;f, x)=f(x)—f(x—uy)
D™ (uy, ..., Ui, X)=D" Duy, ..., Uy 1;f x)
_D(m—l)(ul’ DRI} um—l;fr X = um)'

From the generating functions, we observe

r(n, {ay, ..., a})=D%®(ay,...,a;p,n). (18)
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Now, with F(x) = (exp(Vx))/Vx, the classical result of Hardy and Ramanujan
can be written (cf. [5]) as follows:

C3
p(n)= 2n\/EF’(CZ(n —1/24)) + fi(n) (19)
with C = n\/m, and
) =2 exp( V7).

Furthermore, using Lemma 3 of [5], (18) and (19) give

k C2k+3 2k C\/I_l
Aay, s a)=(I1a FED(CY(E - 1/24)) + (— < >>
r(n, {a, a}) (’:l_ll a ) V2 (C(E-1/24))+ O —exp{~

20

with (20)
n—ss&=sn (21)

: k+1)( 2 . exp(\/;) .
We now use (10) to estimate F (C*(E — 1/24)). The function X— s s
x

increasing for x = (k +2)%. As s=a,+---+a,=k(k +1)/2=k?*/2, which im-
plies k <V/2s, for A, small enough, from (21) we have

exp(CVn—s—1) - exp(CVE —1/24) - exp(CVn)

(n 5 1)(k+2)/2 = (E _ 1/24)(k+2)/2 == pk+22 (22)

Now let us turn to the proof of (i). By (22), the main term of (20), is at most

(1) sy
L&) aavaykrick pternm Yie+1 CVE—1/24/

For 4, small enough, we have

-1 _ y
CVE—-1/24 k+3

and thus Lemma 1 gives

-1
— | =< 1.
y"“(c E 1/23) (23)
Using the estimation

p(n) =%\%\F”) (1+ O(1/Vm)),

the main term of (20) is at most

k

(,=Hl a,)p(n)(ﬁ;)%l + 0(%)) (24)
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To complete the proof of (i), it remains to check that the error term of (20) is
included in the above error term. First, (24) is

exp(C\/_)( C \ exp(C\/_)( Y‘

\AV \zZevn/

> k!

by Stirling’s formula. So it is enough to show that

() =enl5ve)

But the left hand side of the above inequality is an increasing function on k, for
4
k=— c Vn, and we know that k <V2s <V2A,n. To conclude, we observe that for

A, small enough, we have:

(evm) ™ =el5 Vo)
cvar,) SR\ V)

In order to prove (ii), first we apply Lemma 3, to obtain

neevrmmm) = ool - sevnmst (1 0(5)
which with (23) yields

-1
yk+l<T\/—Tﬁ> = O(s/Vn). (25)
Then we observe that

exp(CVn —s — 1) = exp(CVn + O(s/Vn))

and

)(k +2)/2 _

exp(k +2 (logn + O(s/n)))

= D2 exp(O(s Vi)

(n—s—

since k = O(Vn).
Furthermore, by (10), (22) and (25), the main term of (20) is at least

(ﬁl “") @kﬂ % exp(O(s/Vn)).

The end of the proof of (ii) goes in the same way as for (i). O

Remark. A similar proposition is given in [7] in the case of restricted partitions.
A more general estimation is given by J. Herzog (cf. [10] and [11]), using a
Tauberian theorem.
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3. The upper bound in Theorem 1

First let us say that a partition n =n, + - - - + n, of n represents a if there is a
subsum n;, . . ., n,, 1<i,<---<i;<t which is equal to a. Thus R(n, a) counts
the number of partitions of n which do not represent a.

Clearly if b <a, b and a —~ b cannot be together parts of a partition which
does not represent a.

Let us suppose first that a is odd. From the above remark, we deduce that for
all integers, i, with 1<i= |a/2], at most one of i and a —i can be a part, and
thus

R(n,a)< S r(n,(lgjlj {is‘(a—i)l_e"})u{a}) (26)

where in the summation ¢; € {0, 1}.
Now we apply our proposition, with k = y(a), and S <Y.n<j<a), and we
obtain that

R(n, a)sP(n)(\/%)w(a)<1+o<i)) 3o ﬁj i“(a — i)==,

But this summation is exactly

lar2f

a [l ((+(@a—-i))=a¥®

which proves (i) for a odd. When a is even, the part a/2 can occur but only once.
Thus we have

R(n,a)< D, r(n, (l’@lj {i%a — i)“e"}) U {a})

e S
2 (eer)uw) e

where the first summation counts partitions without any part equal to a/2, and
the second counts partitions with one part equal to a/2.
For the second sum we obtain the upper bound

p(n— a/2)<6(n%a/2))w(a)<l + 0(%))
<[t (Z8) a+ oarvay.

But, as already observed, the function x— expVx/x* is increasing for x = k2,
and for A, small enough, the expression between brackets is smaller than

exp(CVn)
4-\/§n y(a)2+1

=p(n)n~*@%1 + O(1/Vn)).
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So, the second sum in (27) is not bigger than the first one, which was already
estimated when a is odd. This completes the proof of (i). O

4. The lower bound in Theorem 1

Let us suppose first that a is odd. Then
R(n,a)=r(n, {1,3,5,...,a})
and, observing that y(a) = (a +1)/2, by the Proposition we have

y(a)
R, 0)> e o)) expO(@ V)

By Stirling’s formula, (2u)!/2"u!=u"2"¢™, and since y(a) = a/2, we obtain (ii).
Let us suppose now that a is even. In fact, the following reasoning works also

for a odd, but it gives a worse estimation than the preceding one. For real
numbers x and y, let us denote the set of integers belonging to the real interval
Jx, y[ by Jx - - - y[. We set

A=[1--+-a/3]U[a/2---2a/3]U {a}.
Then, it is not difficult to see that

R(n,a)=r(n, A)
(which is slightly bettter than (2)), and considering the three possible cases
a=0, 2, 4mod 6, that card s = y(a). By the proposition, we get
la/3]! |(2a — 1)/3]! < 7 )“’(“) ,

[a/2=1]1 p)7e=)  exp(O(a®/Vn)).

Using Stirling’s formula in the form
[+ O)]! = u*e™ exp(O(log u))

we obtain (ii) with an effectively computable constant c. [

R(n,a)=a

5. Proof of Theorem 2

We consider now only partitions without any repetition, and we look at a
subset of [1 - - - (a — 1)], say & with the following property:

no element j € [1 cee g] belongs to &

for eachj e ]g - ;—1[ , there are 3 possibilities:

jedanda—-j¢d,j¢sdanda—~jed, j¢ danda—j¢ oA

2a
foreachje [? cea—- 1] , there are 2 possibilities, j € of orj ¢ .
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For any such &, we have:
Card o < c,a>

How many such «’s are there? As

a a a
R = - —
Card(]3 2[) 6 1 and Card([

there are more than

3(a/6)— 120/3

2a

3

es))=3

such sets &f. Further, to build a partition of n, we choose such a set &, and we
complete by a partition of n-Card &/, without any part smaller than a + 1. Thus,
since p(n, m) is non-decreasing in # (cf. [8]),

Q(n, a) =3""2"%p(n — c,a%, a +1).

Using Theorem 1 of [8], which gives p(n, m)=q(n)/2™"', and the classical

estimation

4(0) = g SXPTVATS),

Table of R(n,-a)

n p(n) la= 1 2 3 4 5 10 11 12
1 1 0

2 2 1

3 3 1

4 5 2l 2

5 7 2l 2

[ 19 4] 3 5

7 15 4] 4 4

8 22 71 5 7 8

9 30 8l 7 7 8

10 42 121 9 12 9 17

11 56 141 11 12 12 13

12 77 21 15 19 15 21 24

13 101 24| 19 20 18 21 22

14 135 34| 23 30 24 30 25 46

15 178 41| 30 32 30 32 30 36

16 231 55| 38 46 35 50 36 50 64

17 297 66| 46 51 45 49 44 51 54

18 385 88| 58 70 55 72 50 73 63 107

19 490 105| 72 78 65 77 67 69 76 81

20 627 137| 88 105 81 103 80 103 81 112 | 147

21 792 165] 109 | 119 98 112 95 104 { 101 105 126

22 | 1002 210] 133 | 156 | 116 | 154 | 111 151 119 | 149 134 | 242

23 [ 1255 253] 161 177 | 143 | 163 | 133 | 158 { 134 | 147 161 173

24 | 1575 320] 198 | 228 | 170 ] 218 | 158 | 214 | 157 | 198 { 180 | 239 | 302
25 1| 1958 383] 240 | 262 | 202 | 241 187 | 219 | 209 | 195 | 200 | 236 | 250
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Table of R(n, a) (continued).
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n o Ia- { 2 3 4 5 6 7 8 9 10
i 12 13 14 15 16 17 18 19 2
6] 243 478 288 332 244 307 218 301 234 204 PR}
303 276 488
27] 3010 574 349 381 291 343 261 309 279 268 273
295 304 361
%] s 708 221 476 343 440 308 403 329 397 305
414 338 457 629
29] 4565 847 503 550 410 483 362 438 371 395 374
385 385 448 497
0] 5604 1039 £04 680 48 B11 20 565 43 534 402
533 423 584 550 922
3| 6842 1238 72 785 574 638 494 597 519 540 513
529 494 549 624 662
2] 834 1507 859 96+ 677 846 581 n 579 710 618
697 542 755 £63 g7 1m
33 10143 1794)  1024] 11 798 954 676 831 §77 730 696
69 623 706 750 801 930
34] 12310 2167]  1216] 1349 A IEREi 783] 1043 800 943 m
1024 707 938 837f  *1050 95| (745
35| 14883 2573 iade]  1seo]  veoo] 1318 96| 139 909 973 926
983 825 933 902 9s3] 1120 1223
36l 17977 3094 1706]  1e80] 12871 1e08]  tos3|  1a08]  t0s8] tods[ 1046
1302 g0l  vo26] 1043  t2e2] "m0l 577l 2108
a7l 21837 3660]  o014]  2175)  1s03)  1821]  1235]  1534]  1239] 298| 118
ass] sl T reel 21e)  217] teetl vasel 1650
38 26015 48| oanif 2603  17ed]  2t8e] 1423  1905]  1395]  ts62} 137
1705] 130s] g7 vevel 1637]  1amv] T 1sss]  i7ia] 3104
390 31185 5170] 2794|3008 20s2]  2¢83]  tes2{  2079]  ief7] 1735|154
78] ts02]  1m29] 472} 1ee7]  1s92f 1764 19p9]  21M
0 37338 §153] 2285 3581  2384] 2980  19t1]  255] 877 2178 1762
o053t 84| 2177 17230 20t0]  troa] 23st]  2096] 2708|3737
which implies
2
—-ca
401 0) _ exp(0@ V),
q(n)

we obtain Theorem 2. [
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