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1. Introduction 

Let us denote by p(n) the number of unrestricted partitions of IZ, by r(n, m) 
the number of partitions of it whose parts are at least m, and by R(n, a) the 
number of partitions of it: 

whose subsums ni, + * * - + ni, are all different from a. Furthermore, if & = 

{ai, . . . , ak}, we denote by r(n, a) the number of partitions of 12 with no parts 
belonging to &. 

Let us consider now partitions of n for which each part is allowed to occur at 
will be changed for q(n), p(n, m), most once. In that case the above notations 

Q<n, a), dn, 4. 
Clearly we have: 

r(12, m) = r(n, {1,2, . . . , m - 1)) 

R(n, a) 3 r(n, a + 1) 

R(n, a)2r(n, {1,2,. . . , LuL21, a>) 

where 1x/2] denotes the integral part of x. 

(1) 
(2) 

In [4], the following estimation is given for R(n, a): when a is fixed, and n 
tends to infinity, 

(3) 

where q(a) = ]a/2 + l], and u(a) E N. The value of u(a) is computed for 
1s a s 20, and it does not seem easy to get a simple formula for U(U). The results 
are u(1) = 1, u(2) =4, u(3) =3, u(4) = 16, and u is increasing from a =3 to 
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a = 20. Moreover, J. Dixmier gives the following inequalities: 

for a even (lu/3] - l)! ua’6+3 G u(a) G 2”“a!/(u/2 - l)! (4) 

for a odd ([u/3] - l)! u~‘~+’ =G u(u) s 2”“u!/( [u/2])! (5) 

It follows from (3), the definition of 1+9, and the behaviour of u, that for IZ large 

enough, 

R(n, 1) > R(n, 2) > R(n, 3) > R(n, 4) (6) 

andforu=2b, 2sbc9, 

R(n, 2b + 2) < R(n, 2b) < R(n, 2b + 1) < R(n, 2b - 1). 

At the end of the paper, a table of R(n, a) is given. It has been calculated by 

J. Dixmier, H. Epstein and O.E. Lanford, using the induction formula. 

f(n, p, a) = 2 f(n - i, i, & u ti - i). 
i-p 

Here, f(n, p, ~4) denotes the number of partitions of II in parts <p such that no 

subsum belongs to &, and ti - i = {a - i; a E a, a - i > O}. It has been inde- 

pendently calculated by F. Morain and J.P. Massias. They have used computer 

algebra systems MAPLE and MACSYMA to compute polynomials mentioned by 

Diximier (cf. [4], 4.3 and 4.10). Unfortunately these polynomials are of degree 

((a + l)(u + 2)/2) - 2, and it is not easy to deal with them for large values of a. 

As observed in [4], R(n, 2) < R(n, 3) f or 10 <n G 106, which contradicts (6). 

But (6) is true only for IZ large enough. 

The aim of this paper is to study R(n, a) for a depending on a, and smaller 

than &,fi, where A0 is a small positive constant. The tools for that are an 

estimation for r(n, &) (cf. Lemma 2 below), and inequalities involving R(n, a), 

extending (1) and (2). We shall prove the following result. 

Theorem 1. There exists Ai > 0, such that uniformly for 1 s a c A,fi, we have, 

when n goes to infinity, 

(9 log(F) s (V(u) log%) + 0(1/G) 

(ii) log(!$.$) 2 l/+2) log%- ‘/aa + o(a”,fi) 

where ya = 4 if a is odd, and, if a is even, 

y,=f+log3-~log2+c10gu 
log a 

-=+0.79*~~+c- where c is a fixed constant. 
U U 



Partitions of n without a given subsum 157 

Let us observe that, when a goes to infinity, (4) or (5) gives 

( 
- l +:Op3+0(l))a G log u(a) - +a log a S (log 2 - 4 + o(l))a 

while (3), (i) and (ii) yield that 

(7) 

-Y& + o(a) =S log u(a) - &z log a =S o(u) (8) 

which is better than (7) except for the lower bound when a is even. 
We intend to treat the case A,,fi G a in an other paper, by a different method, 

which will give also an estimation for Q(n, a). For this quantity, we here give 
only a lower bound. 

Theorem 2. There exists A, > 0, such that, uniformly for 1 G a 6 A,fi, we have: 

log(Qgq P-~log~-log3+0 !C 
( > fi’ 

We thank very much J. Dixmier for several interesting remarks. 

2. Preliminary Results 

Let us first recall the definition of the mth Bessel1 polynomial y,(x); (cf. [9]): 

Y&) = 1 

y,(x) = (1+ m)Y,-I(X) + X’YA(X). 

From that definition, it is easy to see that, if we set 

F(x) = (exp (fi))/Vk 

(9) 

then we have (cf. [5], Lemma 1) 

F’“)(x) = exp ti 
2nzx’“+““Y~ 

( > 
- _lc . 

$ 

Furthermore, it follows from (9) that ~~(0) = 1. 

Lemma 1. For m odd, the function x+ym(x) is increasing for x E 1-00, +m[, and 
its zero a;, suttifies 

-y<a,,<-- Y 
m m+l (11) 

where y is a constant satisfying 1.5 < y < 1.51. 
For m even, y,(x) is decreasing on 1-00, cwL[ and increasing on ]a&, +m[, and 

Y <a:,<- Y 

-m +0.77 m + 1.61. (12) 

Proof. This is proved in [l] and [2]. Cl 
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Lemma 2. Let us define P,,, by 

P. Erd& et al. 

li 
j=-k+l 

(m +i))Xk. 
Then we have 

Y,(x)Y,(-x) = P,(x’). 

Proof. It is known that y,&) satisfies the differential equation (cf. [9], p. 7) 

x2y” + 2(x + 1)y’ - m(m + 1)y = 0. (13) 

If we set w(x) = y,(-x), it satisfies 

x2w” + 2(x - 1)w’ - m(m + 1)w = 0. (14) 

Now we set Y = yw. It is known that Y satisfies a linear differential equation, and 
with some calculation this equation writes: 

x4Y”’ + 6x3Y” - ((4m(m + 1) - 6)x2 + 4)Y’ - 4m(m + 1)xY = 0. (15) 

We can easily check that Y satisfies (15), by calculating Y” and Y”’ in terms of 
yw, y’w, yw’, y’w’ by (13) and (14). 

Wow, we are looking for polynomial solutions of (15). It turns out that these 
solutions are of the form cP,(x’), and considering x = 0 yields Lemma 2. Cl 

We are very pleased to thank A. Salinier for this proof of Lemma 2. This result 
is somewhat curious. We would expect that, in the product y,(x)y,(-x) the 
coefficient of x2k is a polynomial of degree 4k in m. Indeed, it follows from (9), 
cf. [9], p. 13, that 

y,(x) = 1 + $J aim”?lck 
k=l 

with 

aim) = &j ._Q+, (m +i). 
‘I 

Lemma 3. For x such that 0 =Z m s l/a, we have 

y,(-x) 3 (1 - m(m2+ l)*,)exp( - m(m2+ “x) 

(16) 

C =exp - ,(y+ l) (x + 0(x2))). 
\ L 

Proof. From the obvious inequality (m - i + l)(m + i) s (m + l)m, (16) implies 
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which gives 

( m(m + 1) 
y,(x) sexp 2 r . > 

159 

(17) 

Now, let us write the polynomial P,, defined in Lemma 2, in the form 

P,(x) = 2 d/J! 
k=O 

Then we have 

d I I k+l = cm + k + l)(m - kW + 1) ( 2m2 

dk (2k +2) . . 

Thus, the absolute value of the general term of y,(x)y,,,(-x), that is (dkx2kl is 
decreasing, and, as it alternates in sign, for mx G l/fi, we have 

l_m(m+l) 
2 

x2 G y,(x)yJ -x) = P,(x’) S 1, 

which, with (17) completes the proof of Lemma 3. Cl 

More accurate estimations have been obtained by M. Chellali, using Agarwal’s 
integral representation 

y,,,(x) = $ $t”( 1 + 4)ne-f dt 

and the saddle point method (cf. [3]). 

Proposition. There exists A2 > 0 such that, if .& = {a,, . . . , ak} satisfies s = a, + 

a,,+-** + ak s A,,n, then, when n tends to infinity, we have 

(9 

(ii) 

r(n, drs) s I? ( ) ci=, “JP n k&J1 + o(+l)) 
r(n, 4 2 (l!J .i)p(n)($=)*exp(o(s/fi)). 

Proof. It is very similar to the proof of Theorem 1 of [5]. First we introduce the 
operator DC”‘. Let f: R + R, m 3 1, ul, . . . , u, be positive. We set 

D (1) (4;fi x) =f(x) -f(x - 4) 

P)(U1, . . . ) u,;f, x) = P-‘)(L& . . . , u,_,;f, x) 

_ #m-l) (u,, . . . 3 u,-1;f, x - &J. 

From the generating functions, we observe 

r(n, (4, . . . , ak}) = D(k)(a19 . . . ) ak;pJ n>. w-9 
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Now, with F(x) = (exp(G))/J&, the classical result of Hardy and Ramanujan 

can be written (cf. [5]) as follows: 

p(n) = & F’(C’(n - l/24)) +fi(n) 

with C = srm, and 

(19) 

Ifi( S y exp(q). 

Furthermore, using Lemma 3 of [5], (18) and (19) give 

F@+‘)(C’(E - l/24)) + 0(cexp(T)) 

with 
(20) 

fl-.YGECn. 
(21) 

We now use (10) to estimate F (k+1)(C2(E - l/24)). The function x+ 
exp(G) . 
X(k+2)/2 1s 

increasing for x 2 (k + 2)2. As s = a, + . . . + uk > k(k + 1)/2 2 k2/2, which im- 

plies k s a, for A2 small enough, from (21) we have 

exp( CVFFi) ~ exp( CVFTZ) ~ exp( CVi) 
(n _ s _ l)V+W (E _ 1/24)W+W n(k+2)/2 ’ (22) 

Now let us turn to the proof of (i). By (22), the main term of (20), is at most 

exp(Clh) 

For A2 small enough, we have 

and thus Lemma 1 gives 

( -1 
Ykfl (-&rqjj > sG l. 

Using the estimation 

the main term of (20) is at most 

(23) 

(24) 
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To complete the proof of (i), it remains to check that the error term of (20) is 

included in the above error term. First, (24) is 

by Stirling’s formula. So it is enough to show that 

But the left hand side of the above inequality is an increasing function on k, for 

4 
k c - fi, and we know that k s fi s m. To conclude, we observe that for 

C 

& small enough, we have: 

4e ( > VZA,n 

CVZ 
S exp 

( > 
@. 

In order to prove (ii), first we apply Lemma 3, to obtain 

( -1 

yk+l cV= > ( aexp - 2c.\/ns-l 
(k+l)(k+2)(1++))) 

which with (23) yields 

( -1 

Yk+l cj/m ) 
= O(slfi). 

Then we observe that 

exp(CVn-s-l) = exp(Cfi + O(s/fi)) 

and 

(n - s - l)(k+2)‘2 = exp 
( 
q (log n + O(sln))) 

= n(k+2)‘2 exp(O(s/fi)) 

since k = O(G). 
Furthermore, by (lo), (22) and (259, the main term of (20) is at least 

The end of the proof of (ii) goes in the same way as for (i). 0 

(25) 

Remark. A similar proposition is given in [7] in the case of restricted partitions. 

A more general estimation is given by J. Herzog (cf. [lo] and [ll]), using a 

Tauberian theorem. 
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3. The upper bound in Theorem 1 

First let us say that a partition n = n, + . . . + n, of n represents a if there is a 
subsum nit,. . . ,ni,, lsir<*. . < ij 6 t which is equal to a. Thus R(n, a) counts 
the number of partitions of n which do not represent a. 

Clearly if b <a, b and a - b cannot be together parts of a partition which 
does not represent a. 

Let us suppose first that a is odd. From the above remark, we deduce that for 
all integers, i, with 1 G i s La/2j, at most one of i and a - i can be a part, and 
thus 

Wh 4 c .,,.%,,,, r(n, (F {i”(a - i)‘-‘1)) U {a}) (26) 

where in the summation ci E (0, l}. 

NOW we apply our proposition, with k = q(a), and s s &2<j_j, and we 
obtain that 

W, 4 “_pW($==)v’a‘( 1 + O(&)) E, ..5,0,2, a Fl’ i”‘(a - i)lPq. 

But this summation is exactly 

a l-J (i + (a -i)) =av@) 
i=l 

which proves (i) for a odd. When a is even, the part a/2 can occur but only once. 
Thus we have 

R(n, a) C .,,JI_ r(n, (y {i”(a - i)“9) U {a}) 

+ . . . ..z. ,2, + - f > P L? 
(y {P(a - i)‘-‘l}) U {a}) (27) 

where the first summation counts partitions without any part equal to a/2, and 
the second counts partitions with one part equal to a/2. 

For the second sum we obtain the upper bound 

P(n -.i4&)Vb)(1 + o(&)) 

G [ 

exp( Cm) 

4jh(n - a/2)*(a)n+1 G I( > 
na ‘@)(l + 0(1/I/$). 

But, as already observed, the function x--, expfilxk is increasing for x 2 k2, 
and for A, small enough, the expression between brackets is smaller than 

exp( CG) 

4tin ly(a)/Z+l =p(n)n-v’(a)n(l + 0(1/G)). 
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So, the second sum in (27) is not bigger than the first one, which was already 
estimated when a is odd. This completes the proof of (i). 0 

4. The lower bound in Theorem 1 

Let us suppose first that a is odd. Then 

R(n, a) 3 r(n, { 1, 3, 5, . . . , a}) 

and, observing that r/~(u) = (a + 1)/2, by the Proposition we have 

R(n, a) 3 

By Stirling’s formula, (2u)!/2”u! 2 u”2ueC‘, and since ~(a) 3 u/2, we obtain (ii). 
Let us suppose now that a is even. In fact, the following reasoning works also 

for a odd, but it gives a worse estimation than the preceding one. For real 
numbers x and y, let us denote the set of integers belonging to the real interval 

1x9 Y [ by lx - . . y[. We set 

&=[l** * u/3] u [u/2 * * * 2u/3] u {a}. 

Then, it is not difficult to see that 

R(n, a) 2 r(n, d) 

(which is slightly bettter than (2)), and considering the three possible cases 
a = 0, 2,4 mod 6, that card .& = ~(a). By the proposition, we get 

R(n, u) ~ u la/31 ! l@ - I)/31 ! p(n) Jd v(a) 
]u/2-l]! - ( > 6 

exp(O(a2/G)). 

Using Stirling’s formula in the form 

[u + O(l)]! = u”eeu exp(O(log u)) 

we obtain (ii) with an effectively computable constant c. 0 

5. Proof of Theorem 2 

We consider now only partitions without any repetition, and we look at a 
subset of [l . * . (a - l)], say d with the following property: 

noelementje l*..i 
[ 1 belongs to & 

a a 
foreachje 3**.2 , 1 I there are 3 possibilities: 

jEJBandu-j$.$ j$&andu-jE&, j$&andu-j$& 

.*a-1 , 1 there are 2 possibilities, j E .& or j 4 A 
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For any such &, we have: 

Card L& s c1a2. 

How many such d’s are there? As 

Card(]i.**i[)si--1 and Card([$...(a--l)])a$ 

there are more than 

3(a/6)-lp 

such sets &. Further, to build a partition of n, we choose such a set .&, and we 
complete by a partition of n-Card J&?, without any part smaller than a + 1. Thus, 
since p(n, m) is non-decreasing in n (cf. [8]), 

Q(n, a) 2 3n’6-*2a’3~(n - cla2, a + 1). 

Using Theorem 1 of [8], which gives p(n, m) 2 q(n)/2”-‘, and the classical 
estimation 

4(n) 
1 

- 7 exp(xG), 
4(3n3)z 

Table of R(n,.a) 
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Table of R(n, a) (continued). 

which implies 

we obtain Theorem 2. Cl 
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