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Let n be an integer. We write its standard factorization into
primes

. J x o,

) .
n=qy 4y eeeq with QY < A { via Q-
~ We define:

k-1 k-1

f{n) = .Z 9,79 4 ; Fim) = _E (1 -q;/q,,4)-
izl i=1
k-1 n

hin} = & —1 hin) = & —L1
i=1 %417 i€icick 95 Y4

and #(n) = k. When k = I, the above empty sums are 0. Moreover, we
say that n is a champion for the function f (or an f-champion) if

m<n = fim) < fin).

In [Erd 2], it was shown that n{x) = H p was a f-champion for x
péx
large enough, but was not & F-champion for all x large enocugh. We
shall consider here the. following problem. Is n{x} a h-champion?

a h-champion?
In [Erd 3] and [De K], function h is studied. It is shown that

log n(x) << h(n(x)) << log nix} log log éog nix} . (1)
{log log ni{x)) {log log ni{x))
For all n, we have:
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h(n) € #(n) << h;’% .
let t1 = 3, t2 = 5, t3 =17, t__1 = 11, ts = 13, ... be the sequence of
twin primes, and let us assume that this sequence is infinite and that
tk K k logzk. Then for the sequence o = t tz e tk’ it is not
difficult to see that
log nk
h(nk) log log ny

" With (1), this relation shows that, for x large enough, n(x) is not a
h—champion. But we have assumed a strong hypothesis about twin primes.
. Wlthout any conJecture, we shall prove: .

Theorem 1.  Let n{x) = Il p. For x large encugh, n{x) is not a )
. . B PSX :
h-champion, i.e. there exists m < n(x) with h{m} > h{n(x)). i
Proof. - It follows from Maier’s result (cf [Mai]) that there exists g
an absolute constant D > !, such that for all k and for x large enough ;
I/D ]

there ex1st betweeri x and x, k consecutive prlmes PyresesPy and a

. constant dependlng on k, say a(k), with the property

Py TP 2 ak(log x) plx), 1<£i€k-1,
where p(x) is a function goihg to infinity with X
We apply this result with k' = 2D + 3. Moreover between x and 2x,
there certainly exist 2 prime 9y and a9, such that the difference
9y - < %% log x. We consider
) n(x),qlqz 4x2

m = -
Py Popan - (ZDFI)/D

n{x).

Thus m is smaller than n{x) for x large enough. Further:

2D+2

. : 1 1
h{m) > hi{n{x}) + - 3 — 0
Q795 j=1 Pi41Py - i
> hinfx)) + —10 _ (2D + 2)

11 log x aklog x pix)
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which is bigger than h{n(x)) for x large encugh.
-~ Unfortunately we were not able to prove the same theorem than

‘theorem 1 for the function h. To get the same result we need 2 very
gtrong conjectures: .

(#1) Ye>o, Vo, 3x0 suchtimtforxkxoandyZXE,

(o) L E € - ax -y S (L4 ) i

{H2} There exists a fixed § < 1/100 such that, for x large enough,

it is always possible to find between x and x + xﬁ s four primes
ql!qzzq1+2l q3=q1+61 q4=q1+8'

Hypothesis (H1) has been partially proved by Hoheisel for a fixed
¢ < 1. The Riemann hypothesis implies (H1) for all € > 1/2. We shall
prove:

Theorem 2. Under the assumption of {H1) and (H2), for x large
enough, n{x) = NI p is never a h-champion number.
px
To prove theorem 2, we need 3 lemmas.
lemma 1. There is an absolute constant K such that for all
xxwv,d€L 2¢y<x,
£ 1<K Y 0 (1 + i/p).
q prime log™y p'd
x-y<alx

|a—d| is prime

Moreover
> % I (1+ 1/p) <K log x.
1€d¢x © pld

Proof . The first part is a classical application of sieve’s method,

(cf{Hal], Cor. 2.4.1, or [Sie] for an effective value of K). For the

second fact, let us call w(d) = % 1+ 1/p). It is a multiplicative
pjd
function, and,

Lwtd) €0 (1 + wip) +...4 w(pk) + o)
dex pix
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=“(1+%+2—2+“2§+-..)
péx P D
1 1 1
<O ¢ Y (1 + =5 + =+ ...).
= I-1 2 3
p<x 1TL/P P P

We complete the proof by using Mertens formula {cf [Har]) to
estimate the first product and observing that the second product is
convergent .

Lemma 2. Let 0 ¢ & < f €1 be fixed real numbers.
We define

L
# x-p'

U(xlﬁnﬂ) = ﬂ b
x-x"<plx-x

Under the assumption of hypothesis (Hl), we have for x going to
infinity:

Uix,e,f) = f - 2+ o(1).
Proof. We apply (H1) with ¢ = o, ¥ xand y = x - p. We get for

p £ x-xa, and x large enough :

(1-7) (x-p) x-
Tog w2 < wt) - x(p) € (1o B

and

1 -n ¢ 1 ¢ 17 1
log x(x{x)-7(p)} = x-p -~ Tog x (#(x)-7(p)7T °

Further, we apply (H1) with € = o, B, X, ¥ = <

1~ P x, 1+! &
(2) E’E-“S""’“""“x’slogx"“

The same inequality holds with f instead of e,
Then we have

1w .ﬂ_ _'—1_‘—
Uix, o, ) £ Toz ~ b . Tx)-z{p)

x—x" <plx—x

log x r(x)—r(x-xﬁ)<JST(X)"(x"xa’
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1+I .
$ log x 2 173
J
D (1-p)x® . (1epsd
-Where j runs between Tog \ and Tog % °

We deduce:
Ulx,a,f) € t1+g} (f-ato(l)).

In the same way we can obtain the lower bound
Uix,a,8) 2 (i-g)(f-ato(1)}),

and choosing § as small as we want completes the proof of lemma 2.

Lemma 3. For g prime, and real x, we define:
1
Vig) = ¥ — and W{q,x) = & —
pq T p qepsx P9

Then we have under the assumption of (H1}:
(3) lim V(q) 2 1,

and for 0 < & < 1,

(4} b C V{g) + Wig,x) € {l+a+o(1)) log < -

x—x'(qs.\:
Proof. With the notation of lemma 2, we get:
vi{g} 2 U{g,a,1)

for all & > 0, and thus lim V{q) 2 1. We observe that replacmg
hypothesis {H1) by Hoheisel’s theorem: will give

lim V(q) > O.

We have now to prove (4). We choose € > 0, and € < a. Then, we have:

=PI

¥ Ulg,€,1) + ( T},

b
x—x'(q_(x déxt x—x’(q_(x
q~d prime

Lerma 2 tells us that first sum is
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(x(x) - .?(x-xa)) {1-€e+0(1})

a
- which, by (H1} is smaller than (1+g} lﬁg < {(1+o{1)). Applying lemms |

to the second sum shows that it is bounded above by

KT 2 (el cme £ X
p - a210gx

d¢x® daflogix Pld

And, since we can choose ¢ as small as we want, this completes the
proof of

a
L Vigq) = (1+0(1}} l—f)‘?; .

x—x’(qsx
It remains to evaluaste

)

- L 1
) Wig,x) = % ( % so+ L —

x-—x'(quc x-xa<q_(x q<p<q+x€ q+x€<p<x

< ¥

dx x-xa<q$x x—x'(pﬁx x—x'(q(p—xf
q+d prime

1
a ( ¥ 1) + { ¥ E PTCE).

We treat the first sum by lemma 1 as above. The second sum is smaller
than

L U (p,€,a)
x—x'(pr
by observing that p—p' < x-x¥ and p—xf £ p—pf. This sum is, as above,

a
smaller than o ng—x {1+yto(1)}, which ends the proof of lemms 3.

Proof of theorem 2.

We firat choose & = 1/100. Let T = x(x) - #(x-x") and N the

mmber of primes q verifying x-x"<q¢x and V{(q) + W(g,x) > 1+2a. It
follows from lemme 2 that

N(1+2a) + (1+o(1)){T-N) € (l+a+o(1))T

which implies
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N < (1/2 + o(1))T

and then it is possible to find 5 primes p;r 1 € i £ 5 between x - <"
and x and such that

W(p.l} + W(pi,x) €1+ 2a.

since V(p;) 2 1 +0(1), this implies W(p,,x) < 2a+o(1).

n

wesetn= I pandm = ——mM—
péx P PyP3PsPg
We have:
. . 5 L
hin) = him) + X (V(pi) + W(pi,x)} + E -
i=1 1€i¢j¢s P3Py
- 5
him) + E (V(pi) + 2W(pi,x)}
i=1

{5) hin) €hi{m) + 5 + 20 & + o(1}.
Further, we use hypothesis {HZ) to get four primes Qyse-+rly such that

a 2a _ _ - )
KX ﬁqisxﬂ{ a.ndqz-q1+2,q3-q1+6,q4-q1+8. We set
;.
BT 939,

Then

. R 4
hin‘) =h(m) + £ (% 22— ) - I 1,4
i=1 p&x 4P 1<i<s 47P1
1<;5¢4
hm) + 4 & (—3=—) + 51 + o(1)
s 24
plx  x+x“"-p

> him) + 4U(x+x2", 2a,1) + % + of1)

1A

= h(m) + 4(1-2a) + g_i + o(1).

With (5), we obtain:
-~ - 17 “
h{n’) 2 h(n) + 5z - 28a + o(1) 2 h(n)

for x large enough., And since
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(x+x2")4

(x-x7)°

n” <n <n

n cannot be a champion number for h.
let x = 41, n = 0 p. J. Selfridge has observed that

ps4l

C 43n N
h(g'-;.-—) > hin}).
But it seems much more difficult to find the smallest x such that

B p is not a champion for h.
p&x
We shall end this paper with some remarks and problems. It is

loen 4,010y, 1In

well kmown that the maximal order of #(n) is Tog log n

[Erd 11, it is proved that

) c log x _ _1l-c+o(l)
Card {n & x; #(n) 2 ;252 ) =«

for 0 < c < 1. 1In [Erd 2], it is proved that the maximal order of F(n)
is {1 + o(1)) J{og n. It is interesting to study:

ic(x) = Cardin £ x: F(n) 2 cyflog ¥ }
for 0 < ¢ < 1. For small ¢, it is easy to get a lower bound for ic(.\').
We define k as the largest integer such that

2k(k+1)/2 < x

and for vk € i < k, we consider a random prime 1 belonging to

[a21,21], where # is a fixed real number, -21- < a<l. We set
Clearly n € x and

n =

I p,.
ViSige
Fin) > (k - ¥ - 2)(1 - 52 ) > 'I§§“2 (1~ 53+ 0 (1)) Jiog x.

How many such n’s do we have?
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B (rzh-riezh)) 2 M ppsts =
VieCick JECick log 2" 1

where 7 is a fixed constant. An estimation of this last product shows

that for ¢ < JE§_§ (1 - %&- ) we have

ic(x) 2 x exp (- 1+ o(l) v Iog x loglog x).

J 2log 2

It is possible to improve the above reascnning, and for instance to get
a lower bound for !C(x) for all ¢, 0 < ¢ ¢ !, by using the technics of

[Erd 2].
As observed by G. Tenenbaum, an upper bound of the same form, but

with a different constant, can be obtained: Since F(n} £ #(n}, we
have:

!C(x) < cardin € x; #(n) 2 ¢/ log x }

<z oy Tog x (3 zu{n)

nx

for all z 2 1. The above sum can be evalued by convolution method, and
we get

ic(x) ¢ gmo log % x(log x)z_l.

Choosing z = (c\/ log x)/loglog x gives:
(6) ic(x) £ x exp{-(c/2 + o{1))yTog x loglog x).

It is possible to improve slightly the constant c/2 in the above
expression. Using optimization results of [Erd 2] show that if «{n) £

cf Tog n, with 0 < ¢ < 2, then F(n) £ A(c)c y Tog n (1 + o(1)), where

2
,‘(Q):l—%exp_(w_:.é_g_&)(l-
a7

So, (8) is valid with ic](c) instead of ic on the left hand side.

Let us denote by r{n) the number of divisors of n, we write the
divisors
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dy = L dy .. degpy =0

and we define

rin)-1 T(n)-1
g(n) = i§1 di/djy; 5 Gl =i§1 (1-d;7d; )
Tén)—l 1 ~ 5 i
H(n} = g .+ Hin) =
-t %9 o iGgsrm

From the obvicus inequality

1 - di/di+1 < log (d,

1+1/diJ

we easily deduce
{(7) 7{n} - 1 - log n € g(n) € r{n) - 1.

In {Nicl, (r+f)-champion numbers were considered when f is a slowly
increasing function, By the same method, it is not difficult to prove
that a r-champion number large enough is a g~champion, and that if n is
a g-champion, it is largely composite {i.e. m { n 3 7(m) € 7{n)).

In fact, the calculation of T-champions and g-champions shows that
they exactly coincide from the very begimming up to 8 millions. We do
not see how to prove that they coincide up to infinity,

The calculation of G-champions up to 6 millions shows that all
r-champions are G champions, and that largely composite numbers look
like G-champions with a few exceptions. For instance 672 is a
G-chempion and is not largely composite, and 630 and 660 are largely
composite but not G-champions. We do not see at all how to prove
something about that. 1In fact, (7) tells us that
G{n) = r{n) ~ 1 - g{n) € log n, which is very small comparatively to
high values of r{n).

Computing H(n) gives 14 values of n, the largest of which is 5040,
for which H(n) > 7{n). We conjecture that for n » 5040, we have
H{n) < r{n).

More information about these functions can be found in [Bal}, (Erd
51, [Ten], [Vose].

We thank very much G. Tenenbaum, and the referees for several valuable
suggestions.
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