

DISCRETE MATHEMATICS

Discrete Mathematics 200 (1999) 27-48

Sur les ensembles représentés par les partitions d'un entier n^{1}

Marc Deléglise, Paul Erdős, Jean-Louis Nicolas*

Institut Girard Desargues (UPRES-A 5028 du CNRS) UFR de Mathématiques, Université Lyon 1, 43 Bld du 11 Novembre 1918, 69622 Villeurbanne cedex, France

Received 27 May 1997; revised 11 December 1997; accepted 12 December 1997

Marc Deléglise et Jean-Louis Nicolas dédient cet article à la mémoire de Paul Erdős

Abstract

Let $n = n_1 + n_2 + \cdots + n_j$ a partition Π of n. One will say that this partition represents the integer a if there exists a subsum $n_{i_1} + n_{i_2} + \cdots + n_{i_l}$ equal to a. The set $\mathscr{E}(\Pi)$ is defined as the set of all integers a represented by Π . Let \mathscr{A} be a subset of the set of positive integers. We denote by $p(\mathscr{A}, n)$ the number of partitions of n with parts in \mathscr{A} , and by $\hat{p}(\mathscr{A}, n)$ the number of distinct sets represented by these partitions. Various estimates for $\hat{p}(\mathscr{A}, n)$ are given. Two cases are more specially studied, when \mathscr{A} is the set $\{1, 2, 4, 8, 16, \ldots\}$ of powers of 2, and when \mathscr{A} is the set of all positive integers. Two partitions of n are said to be equivalent if they represent the same integers. We give some estimations for the minimal number of parts of a partition equivalent to a given partition. © 1999 Elsevier Science B.V. All rights reserved

1. Introduction

Soit

$$n = n_1 + n_2 + \cdots + n_j$$

une partition Π de n, ou, plus généralement, (n_1, n_2, \ldots, n_j) une suite finie d'entiers. On dit que cette suite représente l'entier naturel a s'il existe $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_j \in \{0, 1\}$ tels que $a = \sum_{i=1}^{j} \varepsilon_i n_i$. L'ensemble $\mathscr{E}(\Pi)$ représenté par la partition Π est l'ensemble des nombres a représentés par la suite (n_1, n_2, \ldots, n_j) . Il est évidemment contenu dans [0, n], et symétrique (si il contient a, il contient n - a). On dira aussi que deux suites finies (x_1, x_2, \ldots, x_i) , (y_1, y_2, \ldots, y_j) sont équivalentes si elles représentent les mêmes entiers.

0012-365X/99/\$ - see front matter © 1999 Elsevier Science B.V. All rights reserved PII: S0012-365X(98)00330-6

^{*} Corresponding author. E-mail: jlnicola@in2p3.fr.

¹ Recherche partiellement financée par le CNRS et le contrat européen COPERNICUS CT92-4022.

On dira qu'une partition est k-réduite si chaque sommant apparait au plus k fois.

Nous désignerons par $\mathbb{N} = \{0, 1, 2, ...\}$ l'ensemble des entiers naturels, par $\mathbb{N}^* = \{1, 2, 3, ...\}$ l'ensemble des entiers naturels non nuls, et par \mathscr{A} un sous ensemble de \mathbb{N}^* , et nous utiliserons les notations suivantes:

- $p(\mathcal{A}, n)$ est le nombre des partitions dont les sommants sont dans \mathcal{A} ,
- $q(\mathcal{A}, n, k)$ est le nombre des partitions k-réduites dont chaque sommant appartient à \mathcal{A} .

Les séries génératrices sont donc:

$$\sum_{n=0}^{\infty} p(\mathcal{A}, n) x^n = \prod_{m \in \mathcal{A}} \frac{1}{1 - x^m},$$

$$\sum_{n=0}^{\infty} q(\mathcal{A}, n, k) x^n = \prod_{m \in \mathcal{A}} (1 + x^m + \dots + x^{km}) = \prod_{m \in \mathcal{A}} \frac{1 - x^{(k+1)m}}{1 - x^m}.$$

Lorsque k = 1, nous noterons

$$q(\mathcal{A}, n) = q(\mathcal{A}, n, 1),$$

et lorsque $\mathcal{A} = \mathbb{N}^*$, nous poserons

$$p(n) = p(\mathbb{N}^*, n),$$

 $q(n) = q(\mathbb{N}^*, n), \quad q(n, k) = q(\mathbb{N}^*, n, k).$

On dit qu'une partition Π est *pratique* si elle représente tout entier a compris entre 0 et n, autrement dit si $\mathscr{E}(\Pi) = \{0, 1, 2, ..., n\}$. Nous noterons $\tilde{p}(\mathscr{A}, n)$ le nombre des partitions de n à sommants dans \mathscr{A} qui sont pratiques. Lorsque $\mathscr{A} = \mathbb{N}^*$, nous noterons $\tilde{p}(n) = \tilde{p}(\mathbb{N}^*, n)$. Il a été démontré par Erdős et Szalay (cf. [7,3]) que lorsque $\mathscr{A} = \mathbb{N}^*$ presque toutes les partitions de n sont pratiques, autrement dit on a

$$\tilde{p}(n) \sim p(n), \quad n \to \infty.$$
 (1)

Nous désignerons par $\hat{p}(\mathcal{A}, n)$ (resp. $\hat{q}(\mathcal{A}, n, k)$) le nombre d'ensembles distincts représentés par les $p(\mathcal{A}, n)$ (resp. $q(\mathcal{A}, n, k)$) partitions (resp. partitions k-réduites) de n. Avec la notion d'équivalence de partitions définie ci dessus, $\hat{p}(\mathcal{A}, n)$ (resp. $\hat{q}(\mathcal{A}, n, k)$) est aussi le nombre des classes d'équivalence des partitions de n à sommants dans \mathcal{A} (resp. à sommants dans \mathcal{A} et k-réduites). Il sera commode de poser

$$\hat{p}(\mathcal{A},0) = \hat{q}(\mathcal{A},0,k) = 1.$$

Comme précédemment nous poserons $\hat{p}(n) = \hat{p}(\mathbb{N}^*, n)$ et $\hat{q}(n) = \hat{q}(\mathbb{N}^*, n, 1)$. Il résulte de (1) que $\hat{p}(n) = o(p(n))$, et il est prouvé dans [12] que

$$p(n)^{0.361} \leqslant \hat{p}(n) \leqslant p(n)^{0.948} \tag{2}$$

pour n assez grand.

Soit $\mathcal{B} = \{1, 2, 4, 8, ...\}$ l'ensemble des puissances de 2. Nous noterons pour simplifier

$$b(n) = p(\mathcal{B}, n), \quad \hat{b}(n) = \hat{p}(\mathcal{B}, n), \quad \tilde{b}(n) = \tilde{p}(\mathcal{B}, n).$$

Dans [4] il est démontré que

$$\tilde{b}(n) \sim b(n), \quad n \to \infty$$
 (3)

et

$$\tilde{b}(n) = b(n), \quad \text{pour } n = 2^j - 1, \quad j \ge 1,$$
 (4)

et de plus on donne un exemple d'ensemble A dû à D. Hickerson qui vérifie

$$\lim\inf \tilde{p}(\mathcal{A},n)/p(\mathcal{A},n)=0.$$

Nous avons commencé à travailler au présent article lors du séjour à Lyon de Paul Erdős en avril 1996, séjour qui devait être le dernier. Paul était très intéréssé à comparer $\hat{p}(\mathcal{A},n)$ à $p(\mathcal{A},n)$ pour différents ensembles \mathcal{A} , et particulièrement par le cas $\mathcal{A} = \mathcal{B}$.

On dit que l'ensemble \mathscr{A} est k-stable (cf. [9]) si $a \in \mathscr{A} \Rightarrow ka \in \mathscr{A}$.

Nous commençons par remarquer que

Lemme 1.1. Si $\mathscr A$ est un ensemble k-stable, avec $k \ge 2$, toute partition de n à sommants dans $\mathscr A$ est équivalente à une partition (2k-2)-réduite.

Démonstration. Il suffit de remarquer que la suite (x, x, x, ..., x) de longueur 2k-1 est équivalente à la suite (x, x, ..., x, kx) obtenue en remplaçant les k derniers sommants par le sommant unique kx, ces deux suites représentant toutes deux le même ensemble $\{x, 2x, 3x, ..., (2k-1)x\}$. Tant que la partition considérée contient des sommants qui sont répétés au moins 2k-1 fois, on la remplace par une partition équivalente plus courte en substituant au (2k-1)-uplet (x, x, x, ..., x) le k-uplet (x, x, ..., x, kx). \square

De ce lemme résulte immédiatement le théorème:

Théorème 1. Soit \mathcal{A} un ensemble k-stable avec $k \ge 2$, on a

$$\hat{p}(\mathcal{A}, n) = \hat{q}(\mathcal{A}, n, 2k - 2) \leqslant q(\mathcal{A}, n, 2k - 2). \tag{5}$$

Comme N* est 2-stable, il s'ensuit que

$$\hat{p}(n) \leqslant q(n,2) \tag{6}$$

et les estimations classiques de p(n) et de q(n,2) rappelées ci dessous au paragraphe 3, en (19) et (20), améliorent (2) en

$$\hat{p}(n) \leqslant p(n)^{0.8165} \tag{7}$$

pour n assez grand.

Dans le cas des partitions binaires ($\mathcal{A} = \mathcal{B}$, qui est 2-stable), nous démontrons que (5) devient une égalité avec k = 2:

Théorème 2. Soit $\mathcal{B} = \{1, 2, 4, 8, ...\}$. On $a \hat{b}(n) = q(\mathcal{B}, n, 2)$.

L'équation (4) entraine que pour $n=2^j-1$, on a $\hat{b}(n)=1$. La table des valeurs de $\hat{b}(n)$ donnée en annexe montre que cette fonction est assez oscillante. Nous démontrerons le

Théorème 3. Pour $n \ge 11$ on a

$$\hat{b}(n) \le n^{\alpha}$$
, avec $\alpha = \log\left(\frac{1+\sqrt{5}}{2}\right) / \log 2 = 0.69424...$ (8)

et la constante a est optimale.

De l'estimation connue de b(n) (cf. [1])

$$\log b(n) \sim \frac{1}{2\log 2} (\log n)^2$$

et du Théorème 3 il résulte:

$$\lim_{n\to\infty}\frac{\log \hat{b}(n)}{\log b(n)}=0.$$

Existe-t-il un ensemble A tel que l'on ait

$$\limsup_{n \to \infty} \frac{\log \hat{p}(\mathscr{A}, n)}{\log p(\mathscr{A}, n)} = 1?$$

Peut on trouver d'autres exemples que (4) de valeurs de n et d'ensembles $\mathcal A$ tels que

$$\tilde{p}(\mathcal{A},n) = p(\mathcal{A},n)$$

ou, ce qui est équivalent $\hat{p}(\mathcal{A}, n) = 1$?

Les démonstrations des Théorèmes 2 et 3 seront données au paragraphe 2. Au paragraphe 3, nous donnerons une majoration simple de q(n,k), et au paragraphe 4, nous démontrerons le

Théorème 4. Pour n suffisamment grand, on a:

$$q(n)^{0.51} \le \hat{q}(n) \le q(n)^{0.96} \tag{9}$$

et

$$\hat{p}(n) = \hat{q}(n,2) \leqslant p(n)^{0.773}.$$
(10)

La démonstration de (9) reprend pour les partitions sans répétition la majoration de $\hat{p}(n)$ donnée dans [12]. La majoration de $\hat{q}(n,2)$ dans (10) suit la même idée. La table

des valeurs de $\hat{p}(n)$ donnée dans [12] laisse penser que $\log \hat{p}(n)/\log p(n)$ est inférieur à 0.7 pour n assez grand.

Soit $E = \mathscr{E}(\Pi)$ l'ensemble représenté par une partition Π ; il existe en général plusieurs partitions Π' équivalentes à Π c'est à dire représentant le même ensemble E. Il serait intéressant de définir dans cette classe d'équivalence une partition canonique; nous ne savons pas le faire. On note l(E) le nombre de sommants d'une partition ayant un minimum de sommants parmi toutes les partitions équivalentes à Π .

Dans le paragraphe 5 on s'intéresse au maximum de $l(\mathscr{E}(\Pi))$ lorsque Π décrit l'ensemble des partitions de n, ceci dans le cas $\mathscr{A} = \mathbb{N}^*$. Puisque \mathbb{N}^* est 2-stable, par le Lemme 1.1 toute partition de n est équivalente à une partition 2-réduite, $n = n_1 + n_2 + \cdots + n_j$; si on suppose que la suite des n_i est croissante, elle est minorée terme à terme par la suite $1, 1, 2, 2, 3, 3, \ldots$ c'est à dire que pour tout i on a $n_i \ge \lfloor (i+1)/2 \rfloor$; il en résulte

$$n \geqslant \sum_{i=1}^{j} \left\lfloor \frac{i+1}{2} \right\rfloor \geqslant \frac{j^2}{4},$$

ce qui entraine $j \le 2\sqrt{n}$; ceci montre que, pour toute partition Π de n on a $l(\mathscr{E}(\Pi)) \le 2\sqrt{n}$.

Le Théorème 5 donne une majoration un peu meilleure, et aussi une minoration du maximum des $l(\mathscr{E}(\Pi))$ lorsque Π décrit l'ensemble des partitions de n:

Théorème 5. On suppose que $\mathscr{A} = \mathbb{N}^*$.

1. Pour tout ensemble E représenté par une partition de n on a

$$l(E) \leqslant \sqrt{3n}. \tag{11}$$

2. Pour tout n, il existe un ensemble E_n tel que, pour $n \to \infty$, on ait

$$l(E_n) \geqslant \sqrt{\frac{2n}{3}}(1 + o(1)).$$
 (12)

Nous remercions A. Sárközy pour les discussions que nous avons eues sur ces questions et l'arbitre pour ses remarques très pertinentes, en particulier pour le calcul de $\Phi_0(c,\lambda)$ au paragraphe 4.

2. Le cas des partitions binaires

Dans ce paragraphe on étudie le cas des partitions binaires c'est à dire le cas $\mathcal{A} = \mathcal{B} = \{1, 2, 4, 8, \ldots\}$. L'ensemble \mathcal{B} est 2-stable et, par le Lemme 1.1 toute partition est équivalente à une partition 2-réduite. On va voir que dans ce cas on a beaucoup mieux; chaque classe d'équivalence contient exactement une partition 2-réduite, et ceci est exactement l'énoncé du Théorème 2. Dans la suite, nous appelerons *réduite* une partition 2-réduite.

Démonstration du Théorème 2. Soient deux partitions binaires réduites, distinctes:

$$n = \sum_{0 \leqslant i \leqslant p} x_i 2^i, \quad n = \sum_{0 \leqslant i \leqslant q} y_i 2^i.$$

avec tous les x_i , y_i entiers au plus égaux à 2. Il faut montrer que leurs ensembles de sous-sommes sont distincts. Soit r le premier entier tel que $x_r \neq y_r$. Alors,

$$x_r 2^r \equiv n - \sum_{i \le r} x_i 2^i = n - \sum_{i \le r} y_i 2^i \equiv y_r 2^r \mod 2^{r+1};$$

 x_r et y_r sont donc de même parité. Comme ils sont entre 0 et 2, on a par exemple $x_r = 2$, $y_r = 0$. Posons alors

$$x_i' = \min(1, x_i)$$
 $0 \le i \le r$ et $a = \sum_{i \le r} x_i' 2^i$.

L'entier a est représenté par la première partition. Supposons qu'il le soit aussi par la seconde. Alors

$$a = \sum_{0 \leqslant i \leqslant r} y_i' 2^i, \quad y_i' \leqslant y_i.$$

Si $y_0' > 0$, on a aussi $y_0 = x_0 > 0$, et donc $x_0' = 1$. a est donc impair et ceci implique $y_0' = 1 = x_0'$. Si $y_0' = 0$ on a aussi $x_0' = 0$ car a est pair. Puis, par récurrence, en réduisant modulo $2, 4, \ldots, 2^r$, on a $y_i' = x_i'$ pour $i = 0, 1, 2, \ldots, r - 1$. En réduisant enfin modulo 2^{r+1} on voit que y_r' est impair ce qui est absurde car $y_r' \le y_r = 0$. \square

Remarque. Soit $\mathscr{A}_0 = a_0 \mathscr{B} = \{a_0, 2a_0, 4a_0, \ldots\}$. Le Théorème 2 est encore valable pour \mathscr{A}_0 . On peut montrer que les seuls ensembles \mathscr{A} , 2-stables, pour lesquels $\hat{p}(\mathscr{A}, n) = q(\mathscr{A}, n, 2)$ sont les ensembles \mathscr{A}_0 .

Dans la suite de ce paragraphe nous allons préciser le comportement de la fonction $\hat{b}(n)$.

Lemme 2.1.

$$\hat{b}(2k+1) = \hat{b}(k)$$

Démonstration. Les partitions binaires réduites de 2k + 1 contiennent exactement un sommant égal à 1. En enlevant ce sommant, et divisant tous les autres sommants par 2, on établit une bijection de l'ensembles des partitions binaires réduites de 2k + 1 sur l'ensemble des partitions binaires réduites de k. \square

Lemme 2.2.

$$\hat{b}(4k+2) = \hat{b}(2k+1) + \hat{b}(2k)$$

Démonstration. Soit n = 4k + 2. Partageons les partitions binaires réduites de n en deux sous-ensembles \mathcal{P}_1 , formé des partitions qui contiennent le sommant 1, et \mathcal{P}_2 formé des partitions qui ne contiennent pas le sommant 1. La division par 2 établit

une bijection de \mathscr{P}_2 sur l'ensemble des partitions réduites de 2k+1. Les partitions constituant l'ensemble \mathscr{P}_1 , contiennent exactement deux sommants égaux à 1, car 4k+2 est pair. En enlevant ces deux 1, et en divisant par 2 on établit une bijection de \mathscr{P}_1 sur l'ensemble des partitions réduites de 2k. \square

Lemme 2.3. Soit $n = 2^{\alpha+1}m$ avec m impair, et une partition binaire réduite de n qui contient le sommant 1. Alors les sommants plus petits que $2^{\alpha+1}$ de cette partition sont exactement $2^{\alpha}, 2^{\alpha-1}, \dots 2^{2}, 2, 1, 1$.

Démonstration. Supposons $\alpha > 0$. Puisque n est pair, en regardant modulo 2, on voit que la partition se termine par exactement 2 occurences de 1. Si $\alpha \ge 2$, en regardant modulo 4, on voit que la partition se termine par 2,1,1, le 2 étant l'unique occurence de 2. Et ainsi de suite. \square

Ce lemme permet de généraliser le Lemme 2.2 en:

Lemme 2.4. Les images par la fonction \hat{b} d'une progression géométrique de raison 2 forment une progression arithmétique. Plus précisément, pour tous α , $k \ge 0$ on a:

$$\hat{b}(2^{\alpha+1}(2k+1)) - \hat{b}(2^{\alpha}(2k+1)) = \hat{b}(2k), \tag{13}$$

$$\hat{b}(2^{\alpha}(2k+1)) = \alpha \hat{b}(2k) + \hat{b}(k). \tag{14}$$

Si $n = 2^{\alpha}(2k + 1)$ on pose j(n) = 2k, autrement dit j(n) est la partie impaire de n moins une unité, alors:

$$\hat{b}(2n) = \hat{b}(n) + \hat{b}(j(n)). \tag{15}$$

Démonstration. Il suffit de démontrer l'égalité (13). Comme dans la démonstration précédente, partageons les partitions binaires réduites de $n=2m=2^{\alpha+1}(2k+1)$ en deux ensembles, \mathcal{P}_1 , l'ensemble de celles qui contiennent un 1, et \mathcal{P}_2 , l'ensemble de celles qui ne contiennent pas de 1. La division par 2 établit une bijection de \mathcal{P}_2 sur l'ensemble des partitions de m. Il reste à compter les éléments de \mathcal{P}_1 . Par le lemme précédent, toutes les partitions de \mathcal{P}_1 , se terminent par la séquence $2^{\alpha}, 2^{\alpha-1}, \dots 2^2, 2, 1, 1$. En supprimant cette séquence, dont la somme est $2^{\alpha+1}$, et en divisant les autres sommants par $2^{\alpha+1}$ on établit une bijection de \mathcal{P}_1 sur l'ensemble des partitions binaires réduites de 2k (cf. Fig. 1). \square

Les Lemmes 2.4 et 2 permettent de calculer rapidement les valeurs de la fonction $\hat{b}(n)$. La table 1 donne les 700 premières valeurs de $\hat{b}(n)$. La proposition suivante n'est qu'une reformulation de (14).

Proposition 2.1. Soient $k_n > k_{n-1} > \cdots > k_1$. $\hat{b}(2^{k_n} + 2^{k_{n-1}} + \cdots + 2^{k_1})$ est un polynôme P_n en k_1, k_2, \ldots, k_n . Les P_n vérifient la récurrence:

$$P_n(k_n, k_{n-1}, \dots, k_1) = k_1 P_{n-1}(k_n - k_1, \dots, k_2 - k_1) + P_{n-1}(k_n - k_1 - 1, \dots, k_2 - k_1 - 1).$$

$$6 = \begin{cases} 4 & 2 \\ 4 & 1 & 1 \\ 2 & 2 & 1 & 1 \end{cases}$$

$$14 = \begin{cases} 8 & 4 & 2 \\ 8 & 4 & \boxed{1 & 1} \\ 8 & 2 & \boxed{2 & 1 & 1} \\ 4 & 4 & 2 & \boxed{2 & 1 & 1} \end{cases} \qquad 28 = \begin{cases} 16 & 8 & 4 \\ 16 & 8 & 2 & 2 \\ 16 & 4 & 4 & 2 & 2 \\ 8 & 8 & 4 & 4 & 2 & 2 \\ 16 & 8 & \boxed{2 & 1 & 1} \\ 16 & 4 & 4 & \boxed{2 & 1 & 1} \\ 8 & 8 & 4 & 4 & \boxed{2 & 1 & 1} \end{cases}$$

Fig. 1. Les partitions binaires réduites de 6, 14 = 2(6 + 1) et 28 = 4(6 + 1).

Par récurrence sur n on en déduit la suivante:

Proposition 2.2. Soit N un entier qui n'est pas une puissance de 2, $N = 2^{k_n} + 2^{k_{n-1}} + \cdots + 2^{k_1}$ avec $k_n > k_{n-1} > \cdots > k_1$. Le nombre des ensembles associés aux diverses partitions de n est encadré par

$$\hat{b}(N) \leq (k_1 + 1)(k_2 - k_1 + 1)(k_3 - k_2 + 1)\dots(k_n - k_{n-1} + 1),$$

$$\hat{b}(N) \geq (k_1 + 1)(k_2 - k_1)(k_3 - k_2)\dots(k_n - k_{n-1}).$$

Remarque. En utilisant la minoration de $\hat{b}(n)$ donnée dans la Proposition 2.2, on retrouve le résultat de [4]: si $n \neq 2^j - 1$, alors $\hat{b}(n) > 1$.

Lemme 2.5. Pour x réel $\geqslant 0$, on définit $B(x) = \max_{n \leqslant x} \hat{b}(n)$. On a, pour $n \geqslant 2$,

$$\hat{b}(n) \leq B\left(\frac{n}{2}\right) + B\left(\frac{n-2}{4}\right). \tag{16}$$

Démonstration. Notons d'abord que B est une fonction croissante, et que B(0) = 1. La démonstration distingue trois cas:

1. n est impair, n = 2y + 1. Par le Lemme 2.1 on a

$$\hat{b}(n) = \hat{b}(y) \leqslant B\left(\frac{n-1}{2}\right) \leqslant B\left(\frac{n}{2}\right) + B\left(\frac{n-2}{4}\right).$$

2. n est multiple de 4. On écrit n = 2y, avec y pair. Par le Lemme 2.4,

$$\hat{b}(n) = \hat{b}(2y) = \hat{b}(y) + \hat{b}(j(y)) \le B\left(\frac{n}{2}\right) + B\left(\frac{n-2}{4}\right)$$

car
$$j(y) \le y/2 - 1 = n/4 - 1 \le (n-2)/4$$
.

3. n = 4y + 2. On applique les Lemmes 2.1 et 2.2:

$$\hat{b}(n) = \hat{b}(4y+2) = \hat{b}(2y+1) + \hat{b}(2y) = \hat{b}(2y) + \hat{b}(y)$$

$$\leq B\left(\frac{n}{2}\right) + B\left(\frac{n-2}{4}\right). \quad \Box$$

Table 1 Les 700 premières valeurs de $\hat{b}(n)$, nombre des ensembles distincts représentés par les partitions binaires de n. L'intersection de la ligne i et de la colonne j contient la valeur de $\hat{b}(i+j)$. Les valeurs $\hat{b}(u_n) = F_{n+2}$ décrites dans le Lemme 2.6 sont précédées de ** et les autres valeurs championnes sont précédées de *

	0	50	100	150	200	250	300	350	400	450	500	550	600	650
0	**1	12	19	25	26	17	43	28	33	29	28	47	61	64
1	1	5	12	7	19	6	25	5	26	13	17	14	43	25
2	**2	13	17	24	31	13	32	27	45	36	23	51	68	61
3	1	8	5	17	12	7	7	22	19	23	6	37	25	36
4	**3	11	18	27	29	8	31	39	50	33	19	*60	57	47
5	2	3	13	10	17	1	24	17	31	10	13	23	32	11
6	3	10	21	23	22	9	41	46	43	37	20	55	39	52
7	1	7	8	13	5	8	17	29	12	27	7	32	7	41
8	*4	11	19	16	23	15	44	41	41	44	15	41	38	71
9	3	4	11	3	18	7	27	12	29	17	8	9	31	30
10	**5	9	14	17	31	20	37	43	46	41	9	40	55	* 79
11	2	5	3	14	13	13	10	31	17	24	1	31	24	49
12	5	6	13	25	34	19	33	50	39	31	10	53	65	68
13	3	1	10	11	21	6	23	19	22	7	9	22	41	19
14	4	7	17	*30	29	23	36	45	27	32	17	57 25	58	65
15	1	6	7	19	8	17	13	26	5	25	8	35	17	46
16	5	11 5	18	27	27	28	29	33 7	28	43	23	48	61	73
17	4 *7	*14	11	8 29	19	11	16		23	18	15	13	44	27
18		9	15 4		30	27	19	30	41	47	22	43	71	62
19	3 **8	13	13	21 **34	11	16	3	23 39	18	29	7	30	27	35
20		4		13	25	21	20		49	40	27	47	64	43
21	5	*15	9		14	5	17	16	31	11	20	17	37	8
22	7		14 5	31 18	17 3	24 19	31	41 25	44	37	33	38	47	45
23 24	2 7	11 *18		23			14	34	13	26	13 32	21	10	37
		7	11 6		16	33	39	34 9	47	41		25	43	66
25 26	5 8	17	7	5 22	13 23	14 *37	25 36	29	34 55	15 34	19 25	4 27	33 56	29
27	3	10	1	17	10	23	11	29	21	34 19	23 6		23	79 50
28	3 7	13	8	29	27	32	41	31	50	23	29	23 42	43 59	50
29	4	3	7	12	17	9	30	11	29	4	23		36	71 21
30	5	14	13	31	24	31	*49	24	37	21	40	19 53	49	76
31	1	11	6	19	7	22	19	13	8	17	17	34	13	55
32	6	*19	17	26	25	35	46	15	35	30	45	49	42	**89
33	5	8	11	7	18	13	27	2	27	13	28	15	29	34
34	*9	**21	16	23	29	30	35	15	46	35	39	56	45	81
35	4	13	5	16	11	17	8	13	19	22	11	41	16	47
36	*11	18	19	25	26	21	37	24	49	31	38	*67	35	60
37	7	5	14	9	15	4	29	11	30	9	27	26	19	13
38	10	17	*23	20	19	23	*50	31	41	32	43	63	22	57
39	3	12	9	11	4	19	21	20	11	23	16	37	3	44
40	11	19	22	13	17	34	**55	29	36	37	37	48	23	75
41	8	7	13	2	13	15	34	9	25	14	21	11	20	31
42	**13	16	17	13	22	*41	47	34	39	33	26	51	37	80
43	5	9	4	11	9	26	13	25	14	19	5	40	17	49
44	12	11	19	20	23	37	44	41	31	24	29	*69	48	67
45	7	2	15	9	14	11	31	16	17	5	24	29	31	18
46	9	11	*26	25	19	40	49	39	20	21	43	*76	45	59
47	2	9	11	16	5	29	18	23	3	16	19	47	14	41
48	9	16	*29	23	16	*47	41	30	19	27	52	65	53	64
49	7	7	18	7	11	18	23	7	16	11	33	18	39	23

Démonstration du Théorème 3. En calculant B(n) pour n = 11, 12, 18, 20, 34, 36 et 42 à l'aide de la table 1, on vérifie d'abord que, pour $11 \le n \le 67$, on a $B(n) \le n^{\alpha}$. On prouve ensuite par récurrence la proposition $B(n) \le n^{\alpha}$ pour $n \ge 11$. La proposition est vraie pour n = 67. Supposons la vraie jusqu'à n - 1 avec $n \ge 68$. Par le Lemme 2.5, on a

$$\hat{b}(n) \leq B\left(\frac{n}{2}\right) + B\left(\frac{n}{4}\right) \leq n^{\alpha}\left(\frac{1}{2^{\alpha}} + \frac{1}{4^{\alpha}}\right) = n^{\alpha}$$

en notant que $n/2 \ge n/4 \ge 11$.

Pour montrer que la constante α est optimale nous allons introduire une suite (u_n) où la fonction \hat{b} prend de grandes valeurs.

Lemme 2.6. Soit la suite (u_n) définie par

$$u_0 = 0$$
, $u_1 = 2$, $u_2 = 4$, $u_3 = 10$, $u_4 = 20$, $u_5 = 42$, $u_6 = 84$, ...
 $u_{2t} = 2u_{2t-1}$, $u_{2t+1} = 2u_{2t} + 2$.

Soit la suite de Fibonacci définie par $F_0 = 0, F_1 = 1, ..., F_{n+2} = F_{n+1} + F_n$. Alors on a pour tout $n \ge 0$

$$\hat{b}(u_n) = F_{n+2} \quad \text{et pour n impair on a } \hat{b}(u_n) \geqslant 0.95 u_n^{\alpha}. \tag{17}$$

Démonstration. On raisonne par récurrence sur n. A l'aide de la table 1 on constate que $\hat{b}(u_n) = F_{n+2}$ est vérifié pour les premières valeurs de n. Ensuite, par les Lemmes 2.2 et 2.1, il vient:

$$\hat{b}(u_{2t+1}) = \hat{b}(4u_{2t-1} + 2) = \hat{b}(2u_{2t-1} + 1) + \hat{b}(2u_{2t-1})$$

$$= \hat{b}(u_{2t-1}) + \hat{b}(2u_{2t-1}) = \hat{b}(u_{2t-1}) + \hat{b}(u_{2t})$$

$$= F_{2t+1} + F_{2t+2} = F_{2t+3}.$$

Puis, en appliquant le Lemme 2.4 et en remarquant que

$$j(u_{2t+1}) = j(2u_{2t} + 2) = j(u_{2t} + 1) = u_{2t}$$

on obtient

$$\hat{b}(u_{2t+2}) = \hat{b}(u_{2t+1}) + \hat{b}(j(u_{2t+1})) = \hat{b}(u_{2t+1}) + \hat{b}(u_{2t})$$
$$= F_{2t+3} + F_{2t+2} = F_{2t+4}.$$

Soit $\varphi = (1 + \sqrt{5})/2$ et $\varphi' = (1 - \sqrt{5})/2$. On sait que $F_n = (\varphi^n - {\varphi'}^n)/\sqrt{5}$. Par ailleurs, on peut voir que $u_{2t} = 4(2^{2t} - 1)/3$ et $u_{2t+1} = (4 \cdot 2^{2t+1} - 2)/3$. Pour *n* impair, on a $\hat{b}(u_n) = F_{n+2} \geqslant \varphi^{n+2}/\sqrt{5}$, et comme $u_n \leqslant 4 \cdot 2^n/3$, on a

$$\hat{b}(u_n) \geqslant \frac{\varphi^{2-\log 4/3/\log 2}}{\sqrt{5}} u_n^{\alpha} \geqslant 0.95 u_n^{\alpha}. \qquad \Box$$

Soit f une fonction arithmétique réelle, c'est à dire une fonction réelle définie sur \mathbb{N} . Un entier n est un *champion* pour la fonction f si f(i) < f(n) pour tous les i < n. La proposition suivante donne une famille de champions pour la fonction \hat{b} ; il existe d'autres champions comme on peut le voir dans la table donnée en annexe.

Proposition 2.3. Les termes de la suite (u_n) définie dans le Lemme 2.6 sont des champions pour la fonction \hat{b} .

Démonstration. On raisonne par récurrence sur n. A l'aide de la table en annexe on constate que le lemme est vérifié pour les premières valeurs de n. On observe ensuite que la suite (u_n) vérifie

$$u_{n+1} = \begin{cases} 2u_n = 4u_{n-1} + 4 & \text{si } n \text{ est impair,} \\ 2u_n + 2 = 4u_{n-1} + 2 & \text{si } n \text{ est pair.} \end{cases}$$

L'hypothèse de récurrence est: Pour $t \le n$, u_t est un champion pour \hat{b} , ce qui entraı̂ne que pour $x < u_t$, $B(x) < B(u_t)$. Il faut montrer que u_{n+1} est un champion. Soit $N < u_{n+1}$. On applique le Lemme 2.5, en observant que B(x) = B(|x|):

$$\hat{b}(N) \leq B(N/2) + B(|(N-2)/4|).$$

Si n est impair:

$$N < u_{n+1} = 2u_n$$
 entraine $N/2 < u_n$ et $B(N/2) < B(u_n) = F_{n+2}$;
de même $\frac{N-2}{4} < \frac{u_{n+1}-2}{4} = u_{n-1} + \frac{1}{2}$, donne $\left\lfloor \frac{N-2}{4} \right\rfloor \le u_{n-1}$
et $B\left(\left\lfloor \frac{N-2}{4} \right\rfloor\right) \le B(u_{n-1}) = F_{n+1}$.

Si n est pair,

$$N < u_{n+1} = 2u_n + 2$$
 entraine $\frac{N}{2} < u_n + 1$, $\lfloor N/2 \rfloor \le u_n$ et $B(N/2) = B(\lfloor N/2 \rfloor) \le B(u_n) = F_{n+2}$. Ensuite $\frac{N-2}{4} < \frac{u_{n+1}-2}{4} = u_{n-1}$ donne $\left| \frac{N-2}{4} \right| < u_{n-1}$ puis $B\left(\left| \frac{N-2}{4} \right| \right) < B(u_{n-1}) = F_{n+1}$.

Dans les deux cas on conclut

$$\hat{b}(N) < F_{n+2} + F_{n+1} = F_{n+3} = \hat{b}(u_{n+1}).$$

3. Estimations de q(n,k)

Proposition 3.1. Le nombre q(n,k) de partitions k-réduites de n est majoré par

$$q(n,k) \le \exp\left(\frac{k\pi^2}{6(k+1)}\right) \exp\left(2\pi\sqrt{\frac{kn}{6(k+1)}}\right).$$
 (18)

La démonstration, élémentaire, utilise la série génératrice. Nous montrons d'abord le lemme

Lemme 3.1. Soient n et k deux entiers naturels $\geqslant 1$. Pour x réel vérifiant $0 \leqslant x \leqslant 1$, le polynôme

$$Q(x) = k \sum_{i=0}^{n(k+1)-1} x^{i} - n(k+1) \sum_{i=1}^{k} x^{ni}$$

prend des valeurs positives ou nulles.

Démonstration (pour $n \ge 2$). Comme Q(1) = 0, on a $Q(x) = (1 - x)Q_1(x)$ avec $Q_1(1) = -Q'(1) = nk(k+1)/2$, et l'on peut écrire:

$$Q(x) = (1-x)\left(\frac{nk}{2}(k+1)x^{n(k+1)-2} + (1-x)P(x)\right)$$

où P(x) est un polynôme de degré $\leq n(k+1)-3$. Pour prouver le lemme nous allons montrer que les coefficients de P sont tous positifs. Or on a

$$P(x) = \frac{Q(x)}{(1-x)^2} + O(x^{n(k+1)-2})$$

$$= \frac{k}{(1-x)^3} - \frac{n(k+1)(x^n + x^{2n} + \dots + x^{kn})}{(1-x)^2} + O(x^{n(k+1)-2}).$$

Soit m un entier $\leq n(k+1) - 3$. On écrit m = an + r, $0 \leq r < n$. Le coefficient c_m de x^m dans P(x) s'écrit alors:

$$c_m = \frac{1}{2}k(m+2)(m+1) - n(k+1)\sum_{i=1}^{a}(m-in+1)$$
$$= \frac{1}{2}k(m^2+3m+2) - n\left(\frac{k+1}{2}\right)(2m+2-an-n)a.$$

En majorant (k + 1)a par k(a + 1), il vient:

$$c_m \ge \frac{1}{2}k[(an+r)^2 + 3(an+r) + 2 - (a+1)n(an+2r+2-n)]$$

$$= \frac{1}{2}k(an+r^2 + 3r + 2 - 2nr - 2n + n^2)$$

$$= \frac{1}{2}k\left(an + \left(n - r - \frac{3}{2}\right)^2 + n - \frac{1}{4}\right) > 0.$$

Lemme 3.2. Soit

$$F_k(x) = \sum_{n=0}^{\infty} q(n,k)x^n = \prod_{m=1}^{\infty} (1 + x^m + \dots + x^{mk}) = \prod_{m=1}^{\infty} \frac{1 - x^{(k+1)m}}{1 - x^m}.$$

On a pour x réel, $0 \le x < 1$, $\log F_k(x) \le \frac{k}{k+1} \frac{\pi^2}{6} \frac{1}{1-x}$.

Démonstration. On a:

$$\log F_k(x) = \sum_{m \ge 1} (\log(1 - x^{(k+1)m}) - \log(1 - x^m))$$

$$= \sum_{m \ge 1} \sum_{j=1}^{\infty} \frac{x^{mj} - x^{j(k+1)m}}{j}$$

$$= \sum_{j=1}^{\infty} \frac{1}{j} \sum_{m=1}^{\infty} (x^{mj} - x^{j(k+1)m}).$$

La permutation des deux signes \sum est licite puisque la famille est à termes positifs. Il vient ensuite:

$$\log F_k(x) = \sum_{j=1}^{\infty} \frac{1}{j} \left(\frac{x^j}{1 - x^j} - \frac{x^{j(k+1)}}{1 - x^{j(k+1)}} \right)$$
$$= \frac{1}{1 - x} \sum_{j=1}^{\infty} \frac{x^j}{j} \frac{1 + x^j + \dots + x^{j(k-1)}}{1 + x + x^2 + \dots + x^{j(k+1)-1}}.$$

Le lemme précédent donne

$$\log F_k(x) \le \frac{1}{1-x} \frac{k}{k+1} \sum_{i=1}^{\infty} \frac{1}{j^2} \le \frac{\pi^2}{6} \frac{k}{k+1} \frac{1}{1-x}.$$

Démonstration de la Proposition 3.1. On a pour tout n, et $0 \le x < 1$:

$$q(n,k)x^n \leqslant F_k(x) \leqslant \exp\left(\frac{a}{1-x}\right)$$

avec $a = k\pi^2/6(k+1)$. Il s'ensuit que:

$$\log q(n,k) \leqslant \frac{a}{1-x} - n\log x \leqslant \frac{a}{1-x} + n\left(\frac{1}{x} - 1\right).$$

En choisissant $x = 1/(1 + \sqrt{a/n})$, on obtient

$$\log q(n,k) \leq a + 2\sqrt{an}$$

ce qui prouve la proposition.

On sait obtenir de meilleures estimations pour q(n,k). Le théorème taubérien de Ingham (cf. [11]) dit que, si

$$f(x) = a_0 + a_1 x + \cdots + a_n x^n + \cdots$$

vérifie quand $x \to 1^-$:

$$f(x) \sim \lambda (\log(1/x))^{\alpha} \exp(A/\log(1/x))$$

alors

$$a_0 + a_1 + \cdots + a_n \sim \frac{\lambda}{2\sqrt{\pi}} \frac{A^{\alpha/2 - 1/4}}{n^{\alpha/2 + 1/4}} \exp(2\sqrt{An}).$$

Par ailleurs on sait que

$$F(x) = \sum_{n=0}^{\infty} p(n)x^{n} = \prod_{m=1}^{\infty} \frac{1}{1 - x^{m}}$$

vérifie (cf. [8])

$$F(x) \sim \frac{1}{\sqrt{2\pi}} \sqrt{\log \frac{1}{x}} \exp\left(\frac{\pi^2}{6\log(1/x)}\right), \quad x \to 1^-.$$

En appliquant le théorème taubérien ci-dessus aux séries:

$$1 + \sum_{n=1}^{\infty} (p(n) - p(n-1))x^{n} = (1-x)F(x)$$

et

$$1 + \sum_{n=1}^{\infty} (q(n,k) - q(n-1,k))x^n = (1-x)F_k(x) = (1-x)\frac{F(x)}{F(x^{k+1})},$$

on obtient

$$p(n) \sim \frac{1}{4n\sqrt{3}} \exp\left(\pi\sqrt{\frac{2n}{3}}\right) \tag{19}$$

et, pour k fixé,

$$q(n,k) \sim \frac{k^{1/4}}{2(k+1)^{3/4}6^{1/4}} \frac{1}{n^{3/4}} \exp\left(2\pi\sqrt{\frac{kn}{6(k+1)}}\right).$$
 (20)

En particulier, pour k = 1, on obtient

$$q(n) \sim \frac{1}{4(3n^3)^{1/4}} \exp\left(\pi \sqrt{\frac{n}{3}}\right). \qquad \Box$$
 (21)

Il est possible aussi, comme il est dit à la fin de [8], d'obtenir un développement en série pour q(n,k) comme pour p(n) (cf. [8,13]) ou q(n), (cf. [10]).

4. Démonstration du Théorème 4

Commençons par un lemme technique:

Lemme 4.1. (i) La fonction $y_1(x) = \frac{1}{2} \log(1+2x) - \log(1+x^2) + x^2 \log x/(2+x^2)$ est décroissante sur l'intervalle [0.3, 1]. On a $y_1(0.3) < 0.1$ et $y_1(x) < 0$ pour $x \in [0.623, 1]$.

(ii) La fonction

$$y_2(x) = \frac{1}{2}\log(1+2x+2x^2) - \log(1+x^2+x^4) + \frac{x^3(2x+1)\log x}{3+x^2+x^4}$$

vérifie $y_2(x) < 0.18$ pour $0 \le x \le 1$ et $y_2(x) < 0$ pour $0.681 \le x \le 1$.

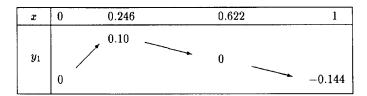
Démonstration. L'étude de ces deux fonctions se fait avec le système de calcul formel Maple. Le calcul de la dérivée de y_1 montre que, pour 0 < x < 1, y'_1 est du signe de

$$z_1(x) = \log x - \frac{x^6 + x^5 + 5x^4 + 5x^3 + 4x^2 + 6x - 4}{8x^4 + 4x^3 + 8x^2 + 4x}$$

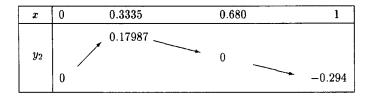
et la dérivée $z'_1(x)$ est du signe du polynôme

$$P_1(x) = -4x^9 - 5x^8 + 6x^7 + 10x^6 + 28x^5 + 47x^4 - 6x^3 + 12x^2 - 12x - 4$$

La méthode des suites de Sturm montre que P_1 n'a qu'une racine entre 0 et 1, et l'on en déduit les variations de y_1 :



L'étude de y_2 se fait de même avec une fonction auxiliaire z_2 et un polynôme P_2 plus compliqué. On obtient



Dans tout ce paragraphe, l'ensemble \mathscr{A} des sommants possibles est \mathbb{N}^* . Désignons par Q(n,a,k) le nombre des partitions de n où chaque sommant intervient au plus k fois, et qui ne représentent pas a. Lorsque k=1, on note Q(n,a)=Q(n,a,1). La fonction Q(n,a) a été étudiée dans [5,6]. Les deux lemmes suivants seront la base de la preuve du Théorème 4.

Lemme 4.2. (i) Pour a vérifiant $0.83\sqrt{n} \leqslant a \leqslant 2.49\sqrt{n}$, on a

$$\log Q(n,a) < 1.74\sqrt{n}.$$

(ii) Pour a vérifiant $0.64\sqrt{n} \le a \le 1.92\sqrt{n}$, on a $\log O(n, a, 2) < 1.982\sqrt{n}$.

Démonstration de (i). Une partition de n ne représentant pas a ne peut contenir à la fois le sommant i et le sommant a - i. Si l'on définit d(n) par la série génératrice:

$$\sum_{n=0}^{\infty} d(n)x^n = \left(\prod_{1 \le i \le a/2} (1 + x^i + x^{a-i})\right) \left(\prod_{i \ge a+1} (1 + x^i)\right),\tag{22}$$

on a donc $Q(n,a) \le d(n)$. On va majorer d(n) par la méthode de Rankin, en choisissant $x = e^{-s}$, et $s = c/\sqrt{n}$, c étant un nombre réel positif que l'on précisera. Il vient

$$d(n)e^{-ns} \leqslant \prod_{1 \leqslant i \leqslant a/2} (1 + e^{-is} + e^{-(a-i)s}) \prod_{i \geqslant a+1} (1 + e^{-is})$$

et

$$\log Q(n,a) \leq \log d(n) \leq ns + \sum_{1 \leq i \leq a/2} \log(1 + e^{-is} + e^{-(a-i)s}) + \sum_{i \geq a+1} \log(1 + e^{-is}).$$
(23)

Maintenant la fonction $u \to \log(1 + e^{-su})$ est décroissante pour s positif fixé, et donc

$$\sum_{i \geqslant a+1} \log(1 + e^{-is}) \leqslant \int_a^\infty \log(1 + e^{-su}) du.$$

De même la fonction $u \to \log(1 + e^{-su} + e^{-s(a-u)})$ est décroissante pour $u \le a/2$, et il s'en suit que:

$$\sum_{1 \le i \le a/2} \log(1 + e^{-is} + e^{-(a-i)s}) \le \int_0^{a/2} \log(1 + e^{-su} + e^{-s(a-u)}) \, du.$$

En faisant dans ces intégrales le changement de variable $u = \sqrt{nt}$, et en posant $s = c/\sqrt{n}$ et $a = \lambda \sqrt{n}$, l'inégalité (23) donne:

$$\log Q(n,a) \leqslant \Phi(c,\lambda)\sqrt{n} \tag{24}$$

avec

$$\Phi(c,\lambda) = c + \int_0^{\lambda/2} \log(1 + e^{-ct} + e^{-c\lambda + ct}) dt + \int_1^{\infty} \log(1 + e^{-ct}) dt.$$
 (25)

En utilisant la relation $\int_0^\infty \log(1 + e^{-t}) dt = \pi^2/12$ (cf. [12]), on obtient

$$\Phi(c,\lambda) = c + \int_0^{\lambda/2} \log(1 + e^{-ct} + e^{-c\lambda + ct}) dt + \frac{\pi^2}{12c} - \int_0^{\lambda} \log(1 + e^{-ct}) dt. \quad (26)$$

Pour λ fixé, la majoration (23) est valable pour tout c>0. Or la fonction $\Phi(c,\lambda)$ donnée par (26) est continue pour tout c>0, et tend vers $+\infty$ lorsque $c\to 0^+$ et $c\to +\infty$; elle a donc un minimum obtenu pour une (ou plusieurs) valeurs de c. On pose

$$g(\lambda) = \min_{c>0} \Phi(c,\lambda)$$

et (24) donne $\log Q(n,a) \leq g(\lambda) \sqrt{n}$. La tracé approximatif de $g(\lambda)$ montre que g est décroissante puis croissante, avec un minimum pour λ voisin de 1.5. Si cette observation était rigoureuse le point (i) du lemme en résulterait après calcul de g(0.83) et g(2.49). Pour valider ce raisonnement, nous allons majorer $\partial \Phi/\partial \lambda$ et découper l'intervalle [0.83, 2.49] en sous-intervalles sur lesquels on appliquera le théorème des accroissements finis. Il vient

$$\frac{\partial \Phi}{\partial \lambda}(c,\lambda) = \frac{1}{2}\log(1+2e^{-c\lambda/2}) - \log(1+e^{-c\lambda}) - c\int_0^{\lambda/2} \frac{\mathrm{d}t}{1+e^{c\lambda-ct}+e^{c\lambda-2ct}}.$$
(27)

La fonction sous l'intégrale ci-dessus est minimale pour t = 0. On en déduit

$$\frac{\partial \Phi}{\partial \lambda}(c,\lambda) \leqslant y_1 \left(\exp\left(-\frac{c\lambda}{2}\right) \right) \tag{28}$$

où y_1 est définie dans le Lemme 4.1. Par application de ce lemme on déduit de (28):

$$\frac{\partial \Phi}{\partial \lambda}(c,\lambda) \begin{cases}
< 0 & \text{pour } \lambda c < 0.94, \\
< \frac{1}{10} & \text{pour } \lambda c < 2.4.
\end{cases}$$
(29)

On découpe alors l'intervalle [0.83, 2.49] en sous intervalles à l'aide des valeurs $\lambda_i = 0.83$, 1.05, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.19, 2.27, 2.33, 2.42, 2.45, 2.47, 2.49.

Lorsque $\lambda_i < 2$, on choisit $c_i = 0.888$; Pour $\lambda_i \ge 2$ on choisit $c_i = 0.84$, et on vérifie que

$$\Phi(c_i, \lambda_i) + (\lambda_{i+1} - \lambda_i) \max_{\lambda_i \leqslant \lambda_i \leqslant \lambda_{i+1}} \frac{\partial \Phi}{\partial \lambda}(c_i, \lambda) \leqslant 1.74$$

à l'aide de (29). On a en particulier

$$\Phi(0.888, 0.83) = 1.7392...$$
 et $\Phi(0.84, 2, 49) = 1.737...$.

Cela prouve la première partie du Lemme (4.2).

La démonstration de (ii) est similaire: on définit $d_2(n)$ par:

$$\sum_{0}^{\infty} d_2(n) x^n = \prod_{1 \le i \le a/2} (1 + x^i + x^{2i} + x^{a-i} + x^{2(a-i)}) \prod_{i \ge a+1} (1 + x^i + x^{2i}),$$

et l'on a $Q(n, a, 2) \le d_2(n)$. La relation (24) devient alors

$$\log Q(n,a,2) \leq \Phi_2(c,\lambda)\sqrt{n}$$

avec

$$\Phi_2(c,\lambda) = c + \int_0^{\lambda/2} \log(1 + e^{-ct} + e^{-2ct} + e^{-c(\lambda - t)} + e^{-2c(\lambda - t)}) dt + \frac{\pi^2}{9c} - \int_0^{\lambda} \log(1 + e^{-ct} + e^{-2ct}) dt,$$

en remarquant que

$$\int_0^\infty \log(1 + e^{-t} + e^{-2t}) = \int_0^\infty [\log(1 - e^{-3t}) - \log(1 - e^{-t})] dt = \frac{\pi^2}{9}.$$

Il vient ensuite:

$$\frac{\partial \Phi_2}{\partial \lambda}(c,\lambda) = \frac{1}{2} \log(1 + 2e^{-c\lambda/2} + 2e^{-c\lambda}) - \log(1 + e^{-c\lambda} + e^{-2c\lambda})$$
$$-c \int_0^{\lambda/2} \frac{2 + e^{(\lambda - t)c}}{1 + e^{(\lambda - t)c} + e^{2(\lambda - 2t)c} + e^{(2\lambda - 3t)c} + e^{2(\lambda - t)c}} dt.$$

Pour minorer l'intégrale on fait $t = \lambda/2$ au numérateur et t = 0 au dénominateur, ce qui donne

$$\frac{\partial \Phi_2}{\partial \lambda}(c,\lambda) \leqslant y_2 \exp\left(-\frac{c\lambda}{2}\right). \tag{30}$$

L'application du Lemme 4.1 donne alors

$$\frac{\partial \Phi_2}{\partial \lambda}(c,\lambda) \begin{cases}
< 0 & \text{pour } \lambda c < 0.76, \\
< 0.18 & \text{pour tout } c \text{ et } \lambda.
\end{cases}$$
(31)

On choisit λ_i dans {0.64, 0.74, 0.78, 0.83, 0.9, 0.98, 1.07, 1.17, 1.27, 1.36, 1.44, 1.50, 1.58, 1.65, 1.71, 1.76, 1.80, 1.83, 1.85, 1.87, 1.88, 1.89, 1.9, 1.91, 1.92}.

Lorsque $\lambda_i < 1.5$, on choisit $c_i = 1.02$, et pour $\lambda_i \ge 1.5$, on prend $c_i = 0.95$. On a: $\Phi_2(0.95, 1.92) = 1.9802...$ Pour $0.64 \le \lambda \le 0.74$ et c = 1.02, on a par (30), $(\partial \Phi_2/\partial \lambda)$ $(c, \lambda) < 0$ et pour $0.74 \le \lambda_i \le 1.92$ on vérifie que

$$\phi_2(c_i, \lambda_i) + 0.2(\lambda_{i+1} - \lambda_i) < 1.982.$$

Remarque. Soit R(n,a) le nombre de partitions (sans restriction) qui ne représentent pas a. En utilisant la série génératrice:

$$\prod_{i \leq a/2} (1 + x^i + x^{2i} + \dots + x^{a-i} + x^{2(a-i)} + \dots) \prod_{i \geq a+1} \frac{1}{1 - x^i},$$

on obtient par la méthode ci dessus la majoration suivante:

$$\log R(n,a) \leq \Phi_0(c,\lambda)\sqrt{n}, \quad c>0$$

où l'on a posé $a = \lambda \sqrt{n}$ et

$$\begin{split} \Phi_0(c,\lambda) &= c + \frac{\pi^2}{6c} + \int_0^{\lambda/2} \log\left(\frac{1}{1 - e^{-ct}} + \frac{1}{e^{c\lambda - ct} - 1}\right) dt + \int_0^{\lambda} \log(1 - e^{-ct}) dt \\ &= c + \frac{\pi^2}{6c} + \frac{\lambda}{2} \log(1 - e^{-c\lambda}), \end{split}$$

ce qui améliore la majoration de R(n,a) donnée dans [12,5].

Lemme 4.3. Lorsque $n \rightarrow \infty$ on a:

- 1. Pour $0.83\sqrt{n} \le a \le n 0.83\sqrt{n}$: $Q(n,a) \le \exp((1+o(1))1.74\sqrt{n})$,
- 2. Pour $0.64\sqrt{n} \le a \le n 0.64\sqrt{n}$: $Q(n, a, 2) \le \exp((1 + o(1))1.982\sqrt{n})$

Démonstration. A peu de choses près c'est le Lemme 2.1 de [2]. On pose, pour 1, $\varepsilon = 0.83$, et l'on démontre par récurrence que pour $i\varepsilon\sqrt{n} \leqslant a \leqslant (i+1)\varepsilon\sqrt{n}$, et $i \leqslant \sqrt{n}/2$, on a

$$Q(n,a) \leq (2p(2\varepsilon\sqrt{n}))^{i-1} \exp(1.74\sqrt{n}). \tag{32}$$

Dans (32) on a extrapolé la fonction p, en posant $p(x) = p(\lfloor x \rfloor)$. Notons que pour $n \le 100$, on a $Q(n,a) \le q(n) \le \exp(1.74\sqrt{n})$, et la relation (32) est vérifiée pour tout a. On applique (32) avec $i = \lfloor \log n \rfloor$ et (19) puis les Théorèmes 1 et 2 de [6] pour majorer Q(n,a) lorsque $\varepsilon \sqrt{n} \le a \le n/2$.

La preuve est similaire pour 2. L'équation (32) est remplacée par

$$Q(n, a, 2) \le (2p(2\varepsilon\sqrt{n}))^{i-1} \exp(1.982\sqrt{n}).$$

On observe que $Q(n, a, 2) \le R(n, a)$, le nombre de partitions sans restrictions de n qui ne représentent pas a, et l'on utilise les majorations de R(n, a) données par les Théorèmes 1 et 2 de [6].

Démonstration du Théorème 4. On remarque d'abord que pour prouver la minoration (2) dans [12], on minore en fait $\hat{q}(n)$ par $p(n)^{0.361}$, et compte tenu de (19) et (21), cela prouve la minoration dans (9). Pour la majoration on procède comme dans [12]: Par le Lemme 4.3 le nombre de partitions qui ne représentent pas un a, avec $0.83\sqrt{n} \le a \le n - 0.83\sqrt{n}$ est $\le n \exp((1+o(1))1.74\sqrt{n})$. Si l'on enlève ces partitions, pour une partition restante Π , $\mathscr{E}(\Pi)$ contiendra tous les nombres entre $0.83\sqrt{n}$ et $n - 0.83\sqrt{n}$. De tels ensembles, il y en a au plus $2^{0.83\sqrt{n}}$, compte tenu de la symétrie. On a donc

$$\hat{q}(n) \le 2^{0.83\sqrt{n}} + n \exp((1 + o(1))1.74\sqrt{n})$$

et avec (21), cela démontre (9). La majoration dans (10) se démontre de la même façon. Quant à la relation $\hat{p}(n) = \hat{q}(n, 2)$, elle découle du Théorème 1, (5).

5. Grandes valeurs de l(E)

On rappelle que deux partitions de n sont dites équivalentes si elles représentent le même ensemble. Dans ce paragraphe, nous supposons $\mathscr{A} = \mathbb{N}^*$. On sait par le Lemme 1.1 que toute partition est équivalente à une partition 2-réduite c'est à dire telle que chaque sommant apparait au plus deux fois. On va préciser un peu ce résultat. On dit qu'une partition est *complètement 2-réduite* si, pour tout couple d'entiers naturels non nuls (u,r), il existe au plus r+1 sommants à valeurs dans $\{u,2u,4u,\ldots,2^{r-1}u\}$. Remarquons que toute partition complètement 2-réduite est 2-réduite; en effet, prenant r=1, pour tout u, il existe au plus 2 sommants à valeur dans le singleton $\{u\}$.

Lemme 5.1. Toute partition est équivalente à une partition complètement 2-réduite, qui a moins de sommants que la partition initiale.

Demonstration. Soit Π une partition de n non complètement 2-réduite. Soit $\{u, 2u, 4u, \ldots, 2^{r-1}u\}$ une progression géométrique de raison 2 et de longueur r la plus petite possible qui empêche la partition Π d'être complètement 2-réduite. Si r=1, il y a au moins trois sommants qui prennent la valeur u et on obtient une partition équivalente plus courte, en remplaçant les sommants u, u, u par les sommants u, 2u. Si r>1 alors la partition Π contient au moins une fois chaque sommant $u, 2u, \ldots, 2^{r-1}u$, car si l'un des 2^ju n'était pas un sommant de Π , l'une des deux suites $(u, 2u, \ldots, 2^{j-1}u)$, $(2^{j+1}u, \ldots, 2^{r-1}u)$ empêcherait Π d'être complètement 2-réduite, contredisant la minimalité de r. De plus les sommants u et $2^{r-1}u$ apparaissent deux fois; si, par exemple le sommant $2^{r-1}u$ n'apparaissait qu'une fois, la suite $u, 2u, \ldots, 2^{r-2}u$ empêcherait Π d'être complètement 2-réduite. Ainsi Π contient la suite:

$$u, u, 2u, 4u, \ldots, 2^{r-1}u, 2^{r-1}u,$$

Cette suite représente tous les multiples de u depuis u jusquà $3.2^{r-1}u$ et la suite

$$u, 2u, \ldots, 2^{r-1}u, (2^{r-1}+1)u$$

représente le même ensemble. Ces deux suites sont donc équivalentes. En remplaçant la suite $u, u, 2u, 4u, \ldots, 2^{r-1}u, 2^{r-1}u$ de longueur r+2 par la suite $u, 2u, \ldots, 2^{r-1}u$, $(2^{r-1}+1)u$, de longueur r+1, on obtient une partition équivalente à la première.

Tant que la partition obtenue n'est pas complètement 2-réduite on la remplace par une partition équivalente, soit en remplaçant un triplet de la forme u, u, u par le doublet u, 2u, soit en remplaçant un (r+2)-uplet de la forme $u, u, 2u, 4u, \ldots, 2^{r-1}u, 2^{r-1}u$ par le (r+1)-uplet $u, 2u, \ldots, 2^{r-1}u, (2^{r-1}+1)u$. Chaque réduction diminue d'une unité le nombre des sommants, le processus se termine donc. \square

Lemme 5.2. Soit une suite croissante d'entiers naturels non-nuls $1 \le x_1 \le x_2 \le \cdots \le x_r = m$, telle que, pour tout $u \ge 1$ et $r' \ge 1$, il y ait au plus r' + 1 des x_i quiprennent leur valeur dans $\{u, 2u, \ldots, 2^{r'-1}u\}$. Alors on a $r \le (3m+1)/2$. En particulier, si

$$n = n_1 + n_2 + \cdots + n_r$$
, $n_1 \leqslant n_2 \leqslant \cdots \leqslant n_r$

est une partition complètement 2-réduite de n, pour tout i, $1 \le i \le r$, on a $n_i \ge (2i-1)/3$.

Démonstration. On considère la partition suivante de $\{1, 2, ..., m\}$, indexée par les entiers impairs $\leq m$:

$$A_1 = \{1, 2, 4, 8, \ldots\},\$$

 $A_3 = \{3, 6, 12, \ldots\},\$
 $A_5 = \{5, 10, \ldots\},\$
 $A_7 = \{7, 14, \ldots\},\$

. . .

Par hypothèse, pour chaque nombre impair $u \le m$, le nombre des i tels que $x_i \in A_u$ est majoré par $1 + \operatorname{card}(A_u)$. Il en résulte que r est majoré par m augmenté du nombre des entiers impairs $\le m$.

Appliquant maintenant ce résultat à la suite $n_1, n_2, ..., n_i$ on obtient $i \le (3n_i + 1)/2$ c'est à dire $n_i \ge (2i - 1)/3$. \square

Démonstration de la majoration (11) du Théorème 5. Soit $n = n_1 + n_2 + \cdots + n_r$ une partition la plus courte possible ayant E comme ensemble de sous-sommes. Par le Lemme 5.1, on peut supposer que cette partition est complètement 2-réduite. En appliquant le lemme précédent on obtient $n_i \ge (2i - 1)/3$, ce qui donne

$$n = \sum_{i=1}^{r} n_i \geqslant \frac{1}{3} \sum_{i=1}^{r} (2i - 1) = \frac{1}{3} r^2.$$

Lemme 5.3. Soit une partition de n dont les plus petits sommants sont a, a + 1, a + 2,..., 2a - 1 (ce qui suppose $n \ge (3a^2 - a)/2$)). Alors toute autre partition équivalente contient aussi les sommants a, a + 1, a + 2,..., 2a - 1.

Demonstration. Elle est immédiate, car une telle partition ne contenant aucun entier plus petit que a ne peut représenter les entiers $a, a + 1, \dots a + (a - 1)$ que si chacun d'eux est un sommant. \square

Démonstration de la minoration (12) du Théorème 5. On choisit pour a le plus grand entier tel que 3(a+1)a/2 ne dépasse pas n et l'on considère la partition Π formée des sommants

$$a, a + 1, \dots, 2a - 1, n - (3a^2 - a)/2.$$

Par le Lemme 5.3, on a $l(\mathscr{E}(\Pi)) \geqslant a \geqslant (1 + o(1))\sqrt{2n/3}$. \square

A jouté à la lecture des épreuves. Récemment, J.-C. Aval (aval@math.u-bordeaux.fr) a amélioré le lemme 2.1 de [2], ce qui lui permet de remflacu les constantes 0.96 et 0.773 du Théorème 4 par 0.955 et 0.768.

Références

- N.G. de Bruijn, On Mahler's partition problem, Nederl. Akad. Wetensch. Proc. 51 (1948) 659-669;
 Indag. Math. 10 (1948) 210-220.
- [2] J. Dixmier, Partitions avec sous-sommes interdites. Bull. Soc. Math. Belgique 42 (1990) 477-500.
- [3] J. Dixmier, J.L. Nicolas, Partitions without small parts, Colloquia Mathematica Societatis János Bolyai 51, Number Theory, Budapest, Hungary, 1987, pp. 9-33.
- [4] P. Erdős, J.L. Nicolas, On practical partitions, Collectanea Math. 46 (1995) 57-76.
- [5] P. Erdős, J.L. Nicolas, A. Sárközy, On the number of partitions of n without a given subsum I, Discrete Math. 75 (1989) 155–166.
- [6] P. Erdős, J.L. Nicolas, A. Sárközy, On the number of partitions of n without a given subsum II, in: B. Brendt, H. Diamond, H. Halberstam, A. Hildebrand (Eds.), Analytic Number Theory, Birkhaüser, Basal, 1990, pp. 205–234.

- [7] P. Erdős, M. Szalay, On some problems of J. Dénes and P. Turán, in: P. Erdős (Ed.), Studies in Pure Mathematics to the memory of Paul Turán, Budapest, 1983, pp. 187–212.
- [8] G.H. Hardy, S. Ramanujan, Asymptotic formulae in combinatory analysis, Proc. London Math. Soc. 2 (17) (1918) 75-115; and Collected Papers of S. Ramanujan, pp. 276-309.
- [9] A. Hildebrand, On a conjecture of Balog, Proc. Amer. Math. Soc. 95 (1985) 517-523.
- [10] L.K. Hua, On the number of partitions of a number into unequal parts, Trans. Amer. Math. Soc. 51 (1942) 194-201.
- [11] A.E. Ingham, A Tauberian theorem for partitions, Ann. Math. 42 (1941) 1075-1090.
- [12] J.L. Nicolas, A. Sárközy, On two partitions problems, Acta Math. Hung. 77 (1997) 95-121.
- [13] H. Rademacher, Topics in analytic number theory, Die Grundleheren der Math. Wiss., Band 169, Springer, Berlin, 1973.